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In most north temperate lakes, phytoplankton biomass oscillates on an annual scale. While phytoplankton seasonal succes-
sion within a year has been described for many lakes, much less is known about variability in seasonal succession over mul-
tiple years. Here, we describe how continuous wavelet transforms can be used to identify variation in the periodicity in
phytoplankton time series at multiple timescales. To demonstrate our approach, we analyzed 16 years of biweekly phyto-
plankton data from eutrophic Lake Mendota, USA, that coincided with substantial variability in climate and nutrient
loading. Throughout the time series, the wavelet transforms identified the annual scale as the dominant scale of variation
in aggregated phytoplankton, except for a 3-year period when there was no significant dominant scale. This period coin-
cided with drought and decreased nutrient loading. During this time, phytoplankton biomass was markedly lower, and the
phytoplankton community exhibited a unimodal, not bimodal, pattern of seasonal succession. Our results highlight the
utility of wavelet techniques for identifying changes in seasonal succession in long-term phytoplankton records, which are
becoming more available for many lakes. As aquatic ecosystems increasingly experience exogenous forcings at multiple
timescales, wavelet analyses provide a powerful tool for determining how phytoplankton communities may respond.
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I N T RO D U C T I O N

The annual succession of phytoplankton has been well
documented in many dimictic north temperate lakes

(reviewed by Sommer, 1989; Reynolds, 2006). This yearly
oscillation in phytoplankton biomass has been described in
the Plankton Ecology Group (PEG) model, a conceptual
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framework that examines the effects of both abiotic factors
(e.g. light, temperature, nutrients) and biotic factors (e.g.
zooplankton grazing) on phytoplankton seasonal succes-
sion (Sommer et al., 1986). Sommer et al.’s (Sommer et al.,
1986) paper outlining the 24 successional steps of phyto-
plankton in the PEG model remains one of the most cited
in plankton ecology, and has motivated decades of research
examining phytoplankton seasonal succession within a
year (e.g. Padisak et al., 2010; Sommer et al., 2012).

According to the PEG model, the phytoplankton com-
munity should exhibit predictable, cyclical dynamics on
an annual scale in deep, thermally stratified temperate
lakes. In eutrophic systems, it is expected that the commu-
nity should exhibit two or three distinct peaks within a
year (a spring bloom of diatoms, summer bloom of chloro-
phytes and/or cyanobacteria and potentially a fall diatom
bloom), and in oligotrophic lakes, it is expected that
there should be a unimodal phytoplankton maximum
in the spring due to nutrient limitation (Sommer et al.,
1986, 2012). Although deviations from the PEG model
have been documented for several lakes (Jeppesen et al.,
1997; Alvarez-Cobelas et al., 2005; Moustaka-Gouni
et al., 2014), and recent advances in our understanding
of the microbial loop, phytoplankton food quality and
parasites are not represented in the model (De Senerpont
Domis et al., 2013), the PEG template provides an import-
ant starting point for examining lake phytoplankton com-
munity dynamics (e.g. Padisak et al., 2010).

While many studies have examined phytoplankton suc-
cession within years, much less is known about commu-
nity dynamics from years to decades, primarily due to the
absence of data. While the PEG model predicts that the
dominant annual pattern of phytoplankton succession
should generally persist over time (Sommer et al., 1986),
changes to the magnitude or timing of phytoplankton
blooms due to altered nutrient loading or climate, for
example, could weaken the annual cycle of phytoplankton
periodicity (e.g. Winder and Schindler, 2004; Elliott et al.,
2006; Drake et al., 2010). Inter-annual variability may be
an intrinsic property of plankton communities in north
temperate latitudes (Dakos et al., 2009), but there have
been relatively few datasets available to examine these dy-
namics. Long-term phytoplankton data are now becom-
ing more readily available, providing the opportunity to
re-address assumptions about phytoplankton seasonal
succession. In particular, little is known about the variabil-
ity of community succession patterns from year to year, es-
pecially in response to changing environmental drivers
(Jassby et al., 1990; Anneville et al., 2002; Arhonditis
et al., 2004; Roelke et al., 2004).

Here, we describe the application of wavelet transforms
to quantify the strength and persistence of patterns in phyto-
plankton biovolume through time. Wavelet transforms are

useful tools for determining the dominant scales of variation
in time series (Chatfield, 1989) and are increasingly used to
examine periodicities in plankton communities (e.g. Keitt
and Fischer, 2006; Vasseur and Gaedke, 2007; Cloern and
Jassby, 2010; Winder and Cloern, 2010; Vasseur et al.,
2014). Time series for many environmental variables show
multiple scales of variation, and quantifying the occurrence
and magnitude of those patterns provides clues to the
underlying ecosystem processes controlling them.

We use the example of dissolved oxygen concentrations,
an important indicator of ecosystem state and function
(Odum, 1956), to illustrate how wavelet analyses can be
used to examine periodicity in biologically relevant time
series data. Dissolved oxygen concentrations in lakes fluctu-
ate at multiple scales: e.g. oscillations on the minute to hour
scales detected by in situ high-frequency sensors can indicate
fluctuations in water column stratification; daily oscillations
tend to be driven by the balance of primary productivity
and respiration; seasonal oscillations are driven by the wax
and wane of phytoplankton communities; and annual pat-
terns are driven by temperature (Hanson et al., 2006;
Langman et al., 2010). Quantifying how these scales con-
tribute to the overall variability of the time series is the basis
of spectral analysis. For our dissolved oxygen example, the
hierarchy of variability contributed by the different scales is
decadal . annual . daily . hourly (Hanson et al., 2006).
However, the overall hierarchy does not tell us when during
the time series each of the scales contributes significantly to
the variance, because the importance of certain scales may
vary over time. For example, the daily oscillation of dissolved
oxygen, which is pronounced during summer, disappears
during winter, indicating greatly reduced metabolism.
Thus, we need to use continuous wavelet transforms,
which decompose the time series of a response variable by
estimating its spectral characteristics as a function of time
(Torrence and Compo, 1998); this approach determines
how the importance of different scales, or periods, varies
over a time series (Daubechies, 1992).

We can use continuous wavelet transforms to examine
the importance of different timescales in phytoplankton
time series in much the same way as described for dis-
solved oxygen above. An important difference, however,
is that phytoplankton time series are usually composed of
biweekly to monthly resolution discrete samples, limiting
the minimum scale of analysis to weeks, rather than
minutes. A decadal dataset of biweekly (i.e. fortnightly)
phytoplankton samples would allow us to examine a mini-
mum scale of variation of 28 days and a maximum scale
of variation roughly 1

2 the total duration of the time series,
following the Nyquist–Shannon sampling theorem (Nyquist,
1928; Shannon, 1949), and thus compare the relative im-
portance of monthly, seasonal and annual scales. Monthly
oscillations of phytoplankton indicate blooms; seasonal
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oscillations reflect succession patterns of different phyto-
plankton groups and annual oscillations indicate differ-
ences in exogenous factors, such as nutrient loading or
climate.

Examining the hierarchy of monthly, seasonal and
annual scales over the time series provides valuable
information on phytoplankton seasonal succession. For
example, a phytoplankton community that exhibits a con-
sistent pattern of seasonal succession year after year, as
expected by the PEG model, will exhibit a dominant
annual scale of variation throughout its time series.
Similarly, years when the annual scale of variation is wea-
kened may indicate deviations in seasonal succession
from the typical pattern.

Recent studies have used wavelet analyses to determine
that the annual scale is generally the most dominant scale
of variation in total phytoplankton biomass in temperate
lakes, which provides an important baseline for identify-
ing when seasonal succession may be disrupted (Vasseur
and Gaedke, 2007; Winder and Cloern, 2010). In a
meta-analysis of total phytoplankton biomass time series
from marine, estuarine and freshwater ecosystems,
Winder and Cloern (Winder and Cloern, 2010) observed
that the dominant scale of variation of chlorophyll a in
most, but not all, temperate lakes was at the annual scale.
In a complementary analysis, Vasseur and Gaedke
(Vasseur and Gaedke, 2007) found that the annual scale
was also the dominant scale of variability of the aggre-
gated phytoplankton community in north temperate
Lake Constance (Germany). Both studies were primarily
focused on determining the overall most important scale
of variation of the time series, not how the dominant
scale may change over time. Consequently, it remains un-
tested if wavelet analyses can be used to examine the vari-
ability in phytoplankton seasonal succession over time.

Here, we used wavelet transforms to identify the dom-
inant scales of variability of a phytoplankton community
over 16 years. We used the phytoplankton record of Lake
Mendota, WI, USA, a eutrophic north temperate lake
that experiences considerable inter-annual variation in
environmental conditions that may affect seasonal succes-
sion (Lathrop and Carpenter, 1992a). We hypothesized
that the annual scale of variation in phytoplankton would
be weakened during years with disrupted seasonal suc-
cession. Following the PEG paradigm, we expected that
cyanobacteria and chlorophytes would exhibit a domin-
ant annual scale that persisted through the time series,
and that diatoms would exhibit a dominant bi-annual
scale, consistent with a spring and fall bloom. The over-
arching goal of this Lake Mendota case study was to dem-
onstrate the increasing utility and value of wavelet
techniques for analyzing variability in long-term phyto-
plankton time series.

M E T H O D

Observational data

We analyzed phytoplankton dynamics in Lake Mendota,
WI, USA (43o60, 2400N; 89o2502900W). Lake Mendota is a
eutrophic north temperate lake that has been extensively
studied for over a century (for an in-depth description,
see Brock, 1985; Kitchell, 1992; Lathrop, 2007) and has
been sampled as part of the North Temperate Lakes
Long-Term Ecological Research (NTL-LTER) site since
1995 (http://lter.limnology.wisc.edu; Carpenter et al.,
2007). The lake is ice-covered typically from December
or January to March or April and has a mean residence
time of 4.3 years, a surface area of 40 km2 and mean and
maximum depths of 12 and 25 m, respectively.

We focused on 1995–2010 as our study period
because Lake Mendota experienced substantial environ-
mental variability during this time, as exemplified by
trends in annual phosphorus (P) loads (Fig. 1) that might
affect phytoplankton seasonal succession. In particular,
loads were low (�4000 kg P year21) during a drought
period with little runoff during 2002–2003; whereas
loads were very high (.21 000 kg P year21) during 2008
and 2009 due to major runoff events in late spring and
late winter in the two respective years (Fig. 1; Lathrop
and Carpenter, 2014). Annual P loads to Lake Mendota
are highly correlated to both inorganic and organic nitro-
gen (N) loads to the lake (Lathrop, 1992), so it is likely that
the concentration of both nutrients in the lake exhibited
substantial variability during 1995–2010. We expected
that this variability in nutrients, as well as other environ-
mental factors (see below), would result in year-to-year
differences in phytoplankton succession (Lathrop and
Carpenter, 1992a).

The phytoplankton community in Lake Mendota
was sampled biweekly to monthly during 1995–2010 as
part of the routine NTL-LTER monitoring (for detailed
methodological information and data, see: http://lter
.limnology.wisc.edu). In summary, phytoplankton were
collected during both the open-water period and through
the ice at the deepest part of the lake with an integrated
8-m tube, pooled into a composite 0–8-m sample and im-
mediately preserved with glutaraldehyde. More than 400
natural units (i.e. cells, filaments or colonies) were identi-
fied to species per sample using an Olympus BX51 com-
pound microscope following a stratified counting
modification of the method of Utermöhl (Utermöhl,
1958), as described by St. Amand (St. Amand, 1990).
Biovolume was calculated for up to 15 natural units of
each species per sample by approximating cells to geomet-
ric shapes, and represented our primary phytoplankton
response variable (Hillebrand et al., 1999). Importantly,
all phytoplankton microscopic analyses were conducted
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by the same taxonomist throughout the time series
(A.L.S.).

Wavelet analyses

We used continuous wavelet transforms to determine the
dominant scales of variability in the phytoplankton com-
munity over the time series. Our wavelet approach
required a dataset sampled at a fixed interval throughout
the time series. Because the Mendota phytoplankton were
collected approximately biweekly to monthly throughout
the 16-year time series, we used several approaches for
converting our unevenly sampled observations into a
fixed, biweekly interval dataset. To account for variation
in phytoplankton identification and biovolume estimates
over time, and because we were primarily interested in
the succession of aggregate phytoplankton groups as
described by the PEG model, we first aggregated all
phytoplankton species to division. Second, we reassigned

sampling days to the closest regularly spaced day on a bi-
weekly interval throughout the time series. In the spring
(after ice-off ) and summer months, phytoplankton were
sampled consistently on a biweekly interval (generally+
4 days) except for the rare occasion in which sampling did
not occur due to weather or equipment failure. In those
few cases (n , 10), we linearly interpolated the missing
phytoplankton data. In October to December, phyto-
plankton were sampled monthly, in which case we also
linearly interpolated the missing biweekly values. The
under-ice period had much fewer observations than the
open-water period: typically only 1–2 sampling days oc-
curred during the �3 months of ice cover every year. We
compiled a dataset of all under-ice phytoplankton obser-
vations during the 1995–2010 time series, and randomly
resampled these data at a biweekly interval to create a
simulated time series of under-ice observations. Because
our analysis of annual succession required data at fixed
intervals year-round, bootstrapping provided a practical

Fig. 1. (A) Annual phosphorus loading index, a metric of the total amount of phosphorus entering Lake Mendota as runoff each calendar year
from 1995 to 2010 (for more information on this index, see Lathrop and Carpenter, 2014). (B) Mean epilimnetic total phosphorus (TP, solid line)
and dissolved reactive phosphorus (DRP, dashed line) for each year of the time series.
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approach for gap-filling consecutive missing sampling
days that had ice cover. These winter observations consist-
ently exhibited an order of magnitude lower phytoplank-
ton biovolumes than the open-water period: the median
and standard deviation of the under-ice total phytoplank-
ton biovolume was 1.96 � 105 (+ 2.89 � 105) mm3

mL21, in comparison with 1.31 � 106 (+ 2.57 � 106)
mm3 mL21 in the open-water period. Aggregated across
the 16 years, the under-ice phytoplankton biovolumes
were significantly lower than the open-water biovolumes
(Welch one-way analysis of variance for unequal var-
iances; F1,390 ¼ 165.40, P , 0.0001). To ensure that these
steps did not affect the wavelet analyses, we down-
sampled the final biweekly dataset to a monthly interval
and found that the interpolation did not qualitatively
affect our overall results.

Once the time series of phytoplankton biovolume
observations for each division were finalized, we per-
formed additional data quality control steps. We removed
extreme outliers (biovolumes greater than 5 standard
deviations from the mean biovolume observed for each
division) and applied a standard normal transformation
to all phytoplankton biovolume observations prior to ana-
lysis to enable comparison of the wavelet transforms
from phytoplankton divisions that had widely varying
biovolumes.

We used a continuous wavelet transform to examine
cyclical fluctuations in the phytoplankton biovolumes over
the entire 1995–2010 time series (Torrence and Compo,
1998; Grinsted et al., 2004). We chose the Morlet wavelet
as the wavelet base function because it provides a good
balance between time and frequency localization
(Grinsted et al., 2004). A wavelet base function, “the
wavelet,” is depicted as the colored line in Fig. 2. For the
analysis, only the wavelet changes by scale; however, for il-
lustrative purposes, we have smoothed the observed Lake
Mendota total phytoplankton biovolume data to 28-day,
6-month and 1-year scales to show how stretching the
wavelet corresponds to different scales of variability in the
observational data in Fig. 2. When applied to the time
series, the length of the wavelet is often set initially to two
times the sampling period (here, for a 14-day sampling
period, the first wavelet is set at 28 days; Torrence and
Compo, 1998). The wavelet is compared with a section at
the beginning of the time series, and the correlation
between the wavelet and that section of the time series is
calculated as a coefficient, C (Torrence and Compo,
1998). C is calculated as an inner product of the wavelet
and the time series, and is akin to a power value (i.e.
square of original units), hereafter referred simply as
“power.” It is important to note that this usage of “power”
is separate from the traditional use of the term power in a
statistical sense. The wavelet is passed through the time

series, and C is then calculated for successive windows
within the time series.

After the calculations for the first scale are complete,
the wavelet is then “stretched” (also known as “scaled”)
slightly so that it represents a longer period than the pre-
vious wavelet, and C is recalculated for the new scale.
This process is repeated until the length of the wavelet
approaches 1

2 of the length of the entire time series. The
result is a matrix of C, which typically is depicted in three
dimensions, with time as the x-axis, scale as the y-axis and
power as the z-axis (usually visualized as a colored heat
map). The coefficients are then evaluated for significance
by comparing with coefficients from a red-noise power
spectrum (Torrence and Compo, 1998), and regions of
significance within the space-time dimensions are out-
lined on the heat map. A red-noise spectrum is chosen
because many environmental variables have higher
power at longer periods (Torrence and Compo, 1998).

Fig. 2. An illustration of a continuous Morlet wavelet transform using
total phytoplankton biovolume in Lake Mendota from 1995 to 2010,
smoothed to a 28-day scale (top), 6-month scale (middle) and 1-year
scale (bottom), after a standard normal transformation to center the
time series on zero. The wavelet is first passed through the 28-day time
series, and the correlation between the wavelets and different windows
in the time series are calculated as coefficients. After the calculations for
the first scale are complete, the wavelet is then “stretched” (also known
as “scaled”) slightly so that it represents a longer period than the
previous wavelet, and C is recalculated for the new scale. This process is
repeated for multiple scales, including the 6-month and 1-year scales, to
create a matrix of coefficients, which are represented in heat maps (see
Fig. 3).
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Calculating every scale can be compute-intensive. For
efficiency, the algorithm for stretching the wavelet
between scales follows a pattern of octaves, with the
maximum scale identified by the following equation:

J ¼ d j�1log2ðNdt=s0Þ ð1Þ

in which J is the maximum scale; dj is spacing between
the scales, or the number of sub-octaves; N is the number
of sampling periods within the time series; dt is the length
of the sampling period; and s0 is the smallest resolvable
scale, usually defined at 2dt (Torrence and Compo,
1998). For our Lake Mendota study, we specified the first
scale of variation to be examined as 28 days, twice as
long as the sampling interval, and set the spacing
between scales at 1/12 (12 sub-octaves per octave), fol-
lowing Winder and Cloern (Winder and Cloern, 2010).
Thus, we were able to examine the importance of 92
scales in total that ranged between 28 and 2785 days for
our 16-year time series. All wavelet transforms were
calculated in the R statistical environment using v. 3.1.1
(R Development Core Team 2014), using package dplR
(Bunn, 2008, 2010), as described by Bruesewitz et al.

(Bruesewitz et al., 2015).
To determine which scales were most important

throughout the entire time series, we calculated the
global wavelet power spectrum, or time-averaged wavelet
spectrum, for each phytoplankton division (Torrence and
Compo, 1998), using the R package WaveletCo (Tian
and Cazelles, 2013). This is similar to a power spectrum,
in which the coefficients for one scale are averaged over
the length of the entire time series (Percival and Walden,
2000). This R package also calculated significance tests
for each of the scales analyzed in the global wavelet
power spectrum. The value of our combined continuous
wavelet transform and global wavelet power spectrum
approach is that we can both: (i) identify the overall most
important scale of variation averaged throughout a time
series via the global wavelet power spectrum, and (ii) de-
termine how the strength of specific scales of variation
(e.g. the annual scale) change throughout the time series
via the continuous wavelet spectrum.

Dominant scales of variation and seasonal
succession

We first constructed the global wavelet spectrum for the
total phytoplankton community (i.e. all phytoplankton
taxa aggregated together) to determine the overall dom-
inant scale averaged throughout the time series. The
global wavelet spectrum defined the baseline pattern of
phytoplankton succession over the 16 years. Second, we
analyzed the continuous wavelet transform for the

biovolume of the total phytoplankton community to
identify the dominant scales of variation at each 14-day
sampling interval, and then compared the dominant
scale over time with the global wavelet spectrum to iden-
tify when deviations in seasonal succession may have oc-
curred. We repeated this analysis for the biovolume of
each of the dominant aggregated phytoplankton divisions.

We then examined if year-to-year variability in the
annual periodicity of total phytoplankton biovolume was
related to seasonal succession. As an index of the annual
peak magnitude of total phytoplankton biovolume, we
identified the coefficient C at the annual (365-day) scale
with the observed maximum power within each year.
Thus, 16 values were identified from the 1995–2010
time series, each representing maximum power for a
year. Hereafter, we refer to the value of this coefficient as
annual peak power. The higher the annual peak power
within a calendar year, the more significant the annual
scale for the total phytoplankton biovolume during that
particular year; conversely, the lower the annual peak
power, the less likely the annual scale was an important
scale of variation for the total phytoplankton biovolume
in that year. Annual succession can be conceptualized as
a feature of the phytoplankton time series; with the
annual peak power as a metric of the strength of succes-
sion from year to year, assuming a default annual pattern.

Using the NTL-LTER monitoring data, we assembled
a dataset of environmental variables that we hypothe-
sized may have influenced phytoplankton succession and
periodicity from 1995 to 2010. This analysis was con-
ducted to determine if changes in phytoplankton succes-
sion were associated with changes in lake environmental
conditions. In total, this dataset included physical drivers
(Schmidt stability, or a metric of the strength of thermal
stratification (Idso, 1973), water temperature), chemical
drivers [total P (TP), total N (TN), TN:TP, ammonium
(NH4), nitrate–nitrite (NO3-NO2), dissolved reactive P
(DRP), dissolved reactive silica (DRSi)] and biological
drivers (Daphnia and cladoceran biomass, total phyto-
plankton biovolume). All variables were sampled consist-
ently throughout the time series, following standardized
protocols (for detailed methods, see: http://lter.limnology
.wisc.edu). Nutrient concentrations were measured at mul-
tiple depths on a sampling day, so we included both
surface and mean (integrated) water column values in the
dataset. Schmidt stability was calculated from water
column temperature profiles using LakeAnalyzer, a
MATLAB (R2014a, Mathworks, Natick, MA, USA)
program that derives physical limnology metrics (Read
et al., 2011). The zooplankton community in Lake
Mendota is dominated by Daphnia, primarily D. galeata men-

dotae and D. pulicaria, which are the primary grazers of
phytoplankton in the lake (reviewed by Lathrop and
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Carpenter, 1992b). Consequently, we focused on Daphnia

and cladoceran biomass as the primary zooplankton vari-
ables affecting phytoplankton succession. Zooplankton
were sampled with an 80-mm mesh net in 20-m vertical
tows at the deep hole. All zooplankton abundances were
corrected for net efficiency, converted to biomass using
established length–weight regressions for each species,
aggregated to genus and reported as g m22 (following
Lathrop and Carpenter, 1992b). In this study, zooplankton
were reported in biomass units and phytoplankton were
reported in biovolume units to be consistent with previous
analyses of Mendota plankton (e.g. Brock, 1985; Kitchell,
1992; Carpenter and Kitchell, 1993).

Because these environmental variables were not mea-
sured on the same temporal frequency as the phytoplank-
ton community and because we focused on inter-annual
variability, we aggregated all environmental observations
by calendar year to match the annual peak power for
total phytoplankton biovolume, and calculated three
summary statistics (mean, minimum and maximum) for
each environmental variable by year.

We compared the annual peak power of total phyto-
plankton and dominant division biovolume to the full suite
of environmental variables using scatterplots and Spearman
rank correlations to account for potential non-linearity in
associations. Because all variables were aggregated to cal-
endar year, the maximum sample size in any correlation
was 16 years (1995–2010). We conducted visual inspection
of scatterplots of relationships for which r . 0.5, disre-
garded associations that were driven by influential outliers
and adjusted a to account for multiple comparisons.

R E S U LT S

We observed substantial variability in the biovolume of the
phytoplankton community in Lake Mendota throughout
1995–2010. Total phytoplankton biovolume ranged by four
orders of magnitude from 9.4� 103 mm3 mL21 in 2002 to
2.9� 107 mm3 mL21 in 2008 (Fig. 3A). Aggregated over
the 16 years, the Cyanobacteria and Bacillariophyta contrib-
uted the largest proportion of phytoplankton biovolume
(70% and 21%, respectively), whereas the other phytoplank-
ton divisions (Chlorophyta, Cryptophyta, Pyrrophyta and
Xanthophyta) each composed 5% or less of total observed
biovolume (Fig. 3B). However, Bacillariophyta biovolume
was markedly lower during the middle part of the time
series, from 2002 to 2007.

Phytoplankton seasonal succession

When averaged across the 16 years, the phytoplankton
community exhibited a classic pattern of seasonal

succession, as predicted by the PEG model for a eutroph-
ic lake (Fig. 3B). In general, a spring bloom of
Bacillariophyta occurred in April after ice-off, which
crashed by the end of May and was followed by a small
increase in Chlorophyta biovolume in June. The
Cyanobacteria exhibited a large increase in biovolume
from June to October before a late autumn diatom
bloom in October and November preceded ice-on.
Throughout the time series, the three major phytoplank-
ton groups exhibited relatively similar taxonomic compo-
sitions. For example, the Bacillariophyta were dominated
by centric taxa, especially Stephanodiscus, which contribu-
ted 70% of the observed diatom biovolume during the
monitoring period; the Chlorophyta were dominated by
Sphaerocystis, Chlamydomonas and Spirogyra, which together
contributed 53% of the green algal biovolume; and
the Cyanobacteria were dominated by bloom-forming
filamentous taxa, especially Aphanizomenon and Anabaena,
which together contributed 59% of the cyanobacterial
biovolume.

As we expected, the annual pattern of phytoplankton
seasonal succession was generally consistent over the
16-year monitoring period in Lake Mendota, with a
notable exception in 2003–2004 (Figs 3A and 4). In
2003–2004, the typical seasonal succession pattern was
disrupted: peak phytoplankton biovolume was much
lower than in other years and, notably, there was not a
large spring or autumn diatom bloom. As shown for
2003 in Fig. 4, the highest Cyanobacteria biovolume was
observed in July in both years, a month earlier than
observed in the time series’ average, and the Chlorophyta
composed a larger proportion of the yearly total biovo-
lume during a longer unimodal bloom in May to August.
In contrast to 2003, both the timing and magnitude of
the peaks of phytoplankton biovolume were substantially
different in 2008, a year that exemplified the “typical”
annual pattern. In 2008, maximum phytoplankton bio-
volume was more than four times greater than average,
with a large spring diatom bloom in April. The highest
Cyanobacteria biovolume in that year was observed in
August, and Chlorophyta contributed much lower biovo-
lume throughout the summer (Fig. 4).

Across the time series, regardless of the variability in
phytoplankton succession, the annual peak of Daphnia

biomass occurred during May (Fig. 4). In general, the
magnitude of Daphnia biomass mirrored total phytoplank-
ton biovolume: for example, biomass was much lower in
2003 than in 2008 (Fig. 4).

Wavelet analyses

We examined if the continuous wavelet transforms were
able to successfully identify variability in the annual
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periodicity and seasonal succession of the phytoplankton
community, as shown by the disrupted seasonal succes-
sion pattern in 2003–2004. Throughout the time series,
the annual scale was the most dominant scale of variation
in the total phytoplankton biovolume (Fig. 3C). All of the
significant scales in the global wavelet power spectrum
were clustered around 365 days (Fig. 3D), and for most of
the time series, the annual scale was highly significant in
comparison with a null red-noise power spectrum.
However, the power of the annual scale was much lower
during 2002–2004 and became non-significant during
2003–2004, the same period that exhibited altered sea-
sonal succession. In contrast, the years with the highest
annual peak power exhibited the classic eutrophic sea-
sonal succession pattern (as exemplified by 2008, the year
that exhibited the maximum annual peak power
observed during the time series; Fig. 4). Some sub-annual
scales were significant for short durations, especially
during 2008, but none of them emerged as significant in
the global wavelet power spectrum. No multi-year dom-
inant scales of variation emerged as significant for total
phytoplankton biovolume.

The biovolume of the major phytoplankton divisions
exhibited different patterns in their continuous wavelet
transforms. For Cyanobacteria, the annual scale of vari-
ation was consistently significant throughout the time
series, even in 2002–2004 (Fig. 3E). No other scales of
variation were significant in the Cyanobacteria global
wavelet power spectrum (Fig. 3F). In contrast, the
Bacillariophyta exhibited no significant dominant scales of
variation between 2000 and 2008, and sub-annual scales
from 164 to 195 days (�5.5–6.5 months) were the most
significant across the time series (Fig. 3G and H). For the
diatoms, the annual scale of variation was only significant
from 1995 to 1999. Finally, the Chlorophyta exhibited a
significant annual scale of variation during the 2002–
2006 interval when the annual scale of total phytoplank-
ton biovolume was weakest (Fig. 3I). The Chlorophyta’s
annual scale was non-significant when the total phyto-
plankton’s annual signal was strongest in 1998–2002 and
2006–2009; no other scales emerged as being significant
in the global wavelet power spectrum (Fig. 3J).

Drivers of variability in annual periodicity

We observed that the annual peak power for total phyto-
plankton biovolume and Cyanobacteria were both posi-
tively associated with N and P concentrations (Table I and
Fig. 5). Aggregated by year, the annual peak power of total
phytoplankton biovolume was more positively correlated
with minimum surface TP than any other driver variable
(r ¼ 0.78, P ¼ 0.0004). The correlations between annual
peak power and N and P were robust to the summary stat-
istic examined (maximum surface and integrated NH4,
mean integrated TN and minimum surface TP all exhib-
ited positive relationships with annual peak power). The
annual peak power of total phytoplankton biovolume was
also strongly correlated to mean phytoplankton biovolume,
which was expected because the wavelet coefficients were
a function of the biovolume (P ¼ 0.004). Cyanobacteria
annual peak power was also significantly positively corre-
lated to all of the same N, P and phytoplankton biovolume
variables (all P � 0.003). No other environmental vari-
ables, including Schmidt stability or cladoceran zooplank-
ton biomass, emerged as significant correlates of the
annual peak power of total phytoplankton biovolume or
Cyanobacteria, whereas the annual peak power of
Bacillariophyta was only significantly correlated to
maximum integrated and surface DRSi, both negatively.
The annual peak power of Chlorophyta did not exhibit
any significant correlations with environmental variables.

D I S C U S S I O N

Our analyses demonstrate that continuous wavelet trans-
forms were able to successfully detect variation in the
pattern of annual phytoplankton seasonal succession
over time. Throughout the time series, the annual period-
icity represented the dominant scale of variation for the
aggregated phytoplankton community in Lake Mendota.
This result follows predictions from the eutrophic PEG
model, which adequately represented phytoplankton dy-
namics in Lake Mendota for almost all years. In marine
systems, the annual cycle of phytoplankton dynamics,
embodied by the classical spring bloom, has been

Fig. 3. (A) Time series of the biovolume of the total aggregated phytoplankton community and Bacillariophyta, Chlorophyta and Cyanobacteria
divisions from 1995 to 2010. (B) Mean (+ 1 standard error, SE) biovolume of total phytoplankton; mean Bacillariophyta, Chlorophyta and
Cyanobacteria biovolume, averaged for each month across the 1995–2010 time series. In both A and B, the difference between the total biovolume
and the sum of the Bacillariophyta, Chlorophyta and Cyanobacteria biovolume is due to the biovolume of other phytoplankton groups not shown
in the figure. (C, E, G and I) Continuous wavelet power spectra showing the periodicity of total phytoplankton biovolume, Cyanobacteria
biovolume, Bacillariophyta biovolume and Chlorophyta biovolume, respectively. The thick black contour designates the 5% significance level
against red noise, and diagonal lines denote the cone of influence (COI), where edge effects may distort the interpretation of that region of time and
frequency. The continuous wavelet spectrum illustrates how the strength of the periodicities changed over time; colors reflect the strength of
intensity, or power (dark red indicates high power; dark blue indicates low power; the color scale represents power squared). (D, F, H and J)
Time-averaged (global) wavelet power spectra for total phytoplankton biovolume, Cyanobacteria biovolume, Bacillariophyta biovolume and
Chlorophyta biovolume, respectively. The colored points denote significant (P , 0.05) periods.
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documented for decades (Sverdrup, 1953; Cushing,
1959). In freshwater lakes, the phenology of phytoplank-
ton can be more variable (e.g. Winder and Cloern, 2010),
but our data emphasize the importance of the annual
cycle for total phytoplankton in eutrophic, dimictic, deep
north temperate lakes such as Mendota. Earlier studies
on Lake Mendota in the 1970s and 1980s also found that
the phytoplankton generally exhibited a very consistent
annual cycle in aggregated phytoplankton, at a similar
level of biovolume (Brock, 1985; Lathrop and Carpenter,
1992a). While we focused on the division level of phyto-
plankton here as an example test case, wavelet analyses
may also be a valuable tool for testing if individual taxa

and functional groups of plankton differentially fluctuate
in synchrony over time, as observed by Rocha et al.

(Rocha et al., 2011, 2012).
The annual peak power provided a metric for quanti-

fying the change in magnitude of the annual scale
through time (Fig. 3), which was related to variability in
phytoplankton seasonal succession. As noted above,
annual succession can be conceptualized as a feature of
the phytoplankton time series, and the wavelet transform
has quantified the magnitude and change in that feature
over time. While the original phytoplankton time series
provided a means for quantifying change in total biovo-
lume over time, the wavelet transforms provided a means

Table I: Environmental driver variables correlated to the annual peak power, or the maximum power of the
annual scale of variation observed within a year throughout 1995–2010, for total aggregated
phytoplankton and three dominant phytoplankton divisions

Phytoplankton variable Environmental variable Spearman’s r coefficient P-value

Total aggregated phytoplankton Minimum surface TP 0.78 0.0004
Maximum surface NH4 0.76 0.0006
Maximum integrated NH4 0.76 0.0006
Mean total biovolume 0.68 0.004
Mean integrated TN 0.67 0.005

Cyanobacteria Maximum surface NH4 0.80 0.0002
Maximum integrated NH4 0.80 0.0002
Minimum surface TP 0.78 0.0004
Mean integrated TN 0.72 0.002
Mean total biovolume 0.70 0.003

Bacillariophyta Maximum integrated DRSi 20.71 0.002
Maximum surface DRSi 20.68 0.004

All environmental observations were aggregated each calendar year to maximum, mean and minimum summary statistics, which were used for the
Spearman correlations (n ¼ 16 years for each correlation). We adjusted a to 0.005 to account for multiple comparisons. There were no significant
correlations observed for Chlorophyta.

Fig. 4. The seasonal succession of the biovolume of the phytoplankton community and Daphnia biomass in 2003 and 2008. In 2003, the annual
scale of variation for the biovolume of the total phytoplankton community was not significant. In comparison, in 2008, the annual peak power of
the total phytoplankton biovolume was at its strongest during the 1995–2010 time series.
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for quantifying the change in the dominant scales of vari-
ation. Consequently, the consistency of phytoplankton suc-
cession observed in many marine and freshwater systems
over decadal time series indicates that our method of using
continuous wavelet transforms to identify deviations from
a “typical” successional pattern may be applicable for
aquatic ecosystems beyond Lake Mendota.

The continuous wavelet transforms identified a tem-
porary decrease in the strength of the annual periodicity
of total phytoplankton biovolume that coincided with dis-
rupted phytoplankton succession (Figs 3 and 4); i.e., the
phytoplankton succession for that period did not fit
the baseline pattern of the eutrophic PEG model. While
the annual periodicity was the most important scale of vari-
ation for the phytoplankton community during 1995–
2010, it was greatly weakened in 2002–2004, when it
became no longer statistically significant. We hypothesize
that the weakened annual signal was likely related to
lower nutrient concentrations in 2002–2004 (Fig. 1).
Interestingly, both N and P exhibited positive relation-
ships with the strength of the annual scale, which is likely
due to their strong correlation (Table I). Not surprisingly,
lower nutrient concentrations in the water column during
2002–2004 coincided with lower total phytoplankton
biovolume, primarily driven by the Cyanobacteria,
during those years. In the absence of large blooms of

Cyanobacteria in the open-water period, the continuous
wavelet transform did not detect a strong annual scale
during this period. While other factors in addition to
nutrients are likely also responsible for the weakened
annual signal, it is notable that one of the most important
environmental drivers was the minimum annual concen-
tration of TP at the water’s surface (Table I), indicating
that there may be a threshold concentration of P needed
to observe a significant annual scale of total phytoplank-
ton biovolume and Cyanobacteria.

The ultimate driver of the decreased nutrient concen-
trations during 2002–2004 may be related to drought.
During 2002–2003, the watershed experienced much
lower precipitation, resulting in much lower P loads
entering the lake (Fig. 1; Lathrop and Carpenter, 2014).
This hypothesis is supported by the opposite scenario in
2008, the second wettest year on record from 1890 to the
present (Madison Water Year Dataset; Wisconsin State
Climatology Office), when there were very large floods
and extremely high nutrient loads entering the lake
(Lathrop and Carpenter, 2014). The high nutrient loads
and water column nutrient concentrations in 2008 were
correlated with the peak total phytoplankton biovolume
observed in that year (Fig. 3A), which also coincided with
the strongest observed annual peak power during the
1995–2010 time series.

Fig. 5. Environmental drivers of total phytoplankton periodicity, aggregated to the yearly scale: annual peak power, or the maximum power of the
annual scale of variation observed within a year for total phytoplankton biovolume; mean total phytoplankton biovolume (106 mm3 mL21);
minimum surface TP (mM); and maximum surface NH4 (mM) during 1995–2010. The shaded area highlights the period of the time series when
the annual scale of total phytoplankton was weakened and non-significant. All Spearman’s r coefficients and P-values denote the relationship
between the driver variable and annual peak power of total phytoplankton biovolume.
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The decreased nutrient concentrations in 2003 did not
merely alter the magnitude of total phytoplankton biovo-
lume, but it also affected the pattern and timing of sea-
sonal succession (Fig. 4), which in turn altered the annual
periodicity of the phytoplankton community. The largest
nutrient loads entering Mendota typically occur during
the late winter and spring months (Lathrop, 2007;
Lathrop and Carpenter, 2014), fueling large spring
diatom blooms and summer cyanobacterial blooms. In
high biovolume years, such as 2008, diatoms exhibited a
large bloom in April, followed by a clear-water phase in
May and June before a very large cyanobacterial bloom
peaked in August. This succession follows the pattern
that would be predicted by the PEG model for a eutroph-
ic, deep north temperate lake (Sommer et al., 1986). In
contrast, in 2003, which was marked by much lower total
phytoplankton biovolume, there was no distinct diatom
bloom, and the peak cyanobacterial biovolume occurred
in July before decreasing in August (Fig. 4). Consequently,
the lack of a significant annual periodicity in 2002–2004
in comparison with other years in the time series may be
due to the altered timing of peak biovolume, in addition to
lower overall biovolume.

Interestingly, in 2003, the phytoplankton succession in
Lake Mendota resembled the unimodal pattern predicted
by the PEG model for an oligotrophic, north temperate lake
(Sommer et al., 2012). Similarly, Lathrop and Carpenter
(Lathrop and Carpenter, 2014) observed that the normally
eutrophic Mendota exhibited mesotrophic conditions
during 2003, according to trophic state criteria for TP con-
centration and Secchi depth. Consequently, our results
suggest that wavelet transforms may be able to identify years
in phytoplankton time series when a lake transitions
between different trophic states.

Our data suggest that cladoceran zooplankton may
not have been as important as nutrients in driving the
inter-annual variability in total phytoplankton biovolume
and succession. Daphnia biomass was substantially lower
in 2003 than in 2008, but importantly, the timing of the
clear-water phase throughout the time series did not
change, and no cladoceran zooplankton variable was
correlated to the strength of the annual periodicity, either
for the aggregated phytoplankton community or for the
individual phytoplankton divisions. It is possible that the
difference in Daphnia biomass among years was due to
limitation of phytoplankton food for zooplankton
grazers, especially in 2003, when phytoplankton biovo-
lume was at its lowest. In Vanni and Temte’s (Vanni and
Temte, 1990) analysis of the seasonal pattern of phyto-
plankton in Lake Mendota in 1987, they found that the
relative importance of top-down and bottom-up control
on phytoplankton varied throughout the open-water
period. Among years, however, it is possible that nutrients

may be the more important variable determining the
magnitude of phytoplankton biovolume and the pattern
of succession.

The three major phytoplankton divisions in Lake
Mendota, the Cyanobacteria, Bacillariophyta and
Chlorophyta, exhibited markedly different continuous
wavelet transforms, indicating that each division is
responding differently to environmental conditions over
time. In contrast to the total phytoplankton biovolume,
the annual scale of the Cyanobacteria was highly signifi-
cant throughout the time series, including the 2002–
2004 interval. Interestingly, the annual scale of the
Chlorophyta was strongest during the drought period,
when no significant dominant scales, annual or sub-
annual, of the Bacillariophyta were observed. The
Chlorophyta was the only major phytoplankton division
that did not exhibit any significant correlations between
annual peak power and the environmental variables
(Table I). The highest Chlorophyta biovolume observed
during the time series, driven by blooms of Spirogyra, was
observed during the period when the Bacillariophyta and
Cyanobacteria biovolumes were at their lowest, indicat-
ing that trade-offs occurring among the different phyto-
plankton groups may be mediated by environmental
conditions. Some species of Spirogyra prefer mesotrophic
(�1 mM TP) conditions (Hainz et al., 2009), so it is pos-
sible that the taxon was favored when nutrient loads were
lower during the drought period.

The Bacillariophyta was the only division that exhib-
ited a sub-annual (184-day, or �6-month) dominant
scale in its global wavelet power spectrum. The 6-month
period roughly corresponds to a spring and autumn
bloom in April and October/November, as observed in
the mean succession pattern of the phytoplankton during
the time series (Fig. 3B) and following the PEG model.
Over the monitoring period, the lack of any significant
dominant scale from 2000 to 2008 may be related to
both lower diatom biovolume and altered timing of the
peak diatom biovolume every year. The biovolume of all
diatom taxa was extremely low during this time, with
very small or completely absent spring and autumn
blooms. This prolonged lack of diatoms had not been
observed in previous years of monitoring: in 1985 and
1989, spring diatom blooms were absent in Lake
Mendota, but those events were primarily linked to the
depletion of DRSi from early, large diatom blooms the
preceding year (Lathrop and Carpenter, 1992a). There
were no major changes in water temperature or thermal
stratification during this period and DRSi concentrations
actually increased, most likely due to lower uptake, as sug-
gested by the negative correlation between annual peak
diatom power and DRSi, so other factors were likely re-
sponsible. It is possible that drought and low runoff may
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have altered nutrient availability for the diatoms. The
dominant diatom genus in the lake, Stephanodiscus, has a
high cellular P requirement (Lynn et al., 2000), so its
growth may have been P-limited. Alternatively, an algal
parasite or virus may have been responsible for the
decreased diatoms during this time period (Ibelings et al.,
2011; Gsell et al., 2013), but we do not have data to test
that hypothesis.

CO N C LU S I O N

Wavelet analyses can yield insights into phytoplankton
dynamics that are not immediately evident from raw
abundance or biovolume data. In our Lake Mendota
example, year-to-year variability in the annual cycle of
the phytoplankton due to changing environmental condi-
tions had substantial effects on the timing and pattern of
phytoplankton succession. In turn, because changes in
phytoplankton succession can have substantial effects on
zooplankton and higher trophic levels (e.g. Winder and
Schindler, 2004), determining how phytoplankton respond
to environmental forcing over longer timescales is critical.
Our application of wavelet analyses to phytoplankton sea-
sonal succession at the decadal scale demonstrates that
this approach can be a powerful tool for identifying
altered phytoplankton dynamics.
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Utermöhl, H. (1958) Zur Vervollkommnung der quantitativen
Phytoplankton-Methodik. Mitteil. Intl Verein. Limnol., 9, 1–38.

Vanni, M. J. and Temte, J. (1990) Seasonal patterns of grazing and nu-
trient limitation of phytoplankton in a eutrophic lake. Limnol.

Oceanogr., 35, 697–709.

Vasseur, D. A., Fox, J. W., Gonzalez, A., Adrian, R., Beisner, B. E.,
Helmus, M. R., Johnson, C., Kratina, P. et al. (2014) Synchronous
dynamics of zooplankton competitors prevail in temperate lake eco-
systems. Proc. R. Soc. London B Biol. Sci., 281, 20140633.

Vasseur, D. A. and Gaedke, U. (2007) Spectral analysis unmasks syn-
chronous and compensatory dynamics in plankton communities.
Ecology, 88, 2058–2071.

Winder, M. and Cloern, J. E. (2010) The annual cycles of phytoplank-
ton biomass. Proc. Roy Soc. London B Biol. Sci., 365, 3215–3226.

Winder, M. and Schindler, D. E. (2004) Climate change uncouples
trophic interactions in an aquatic ecosystem. Ecology, 85, 2100–2106.

JOURNAL OF PLANKTON RESEARCH j VOLUME 38 j NUMBER 1 j PAGES 27–40 j 2016

40

 at V
irginia T

ech on February 21, 2016
http://plankt.oxfordjournals.org/

D
ow

nloaded from
 

http://plankt.oxfordjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


