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a b s t r a c t

We evaluated the predictive ability of a one-dimensional coupled hydrodynamic-biogeochemical model
across multiple temporal scales using wavelet analysis and traditional goodness-of-fit metrics. High-
frequency in situ automated sensor data and long-term manual observational data from Lake Men-
dota, Wisconsin, USA, were used to parameterize, calibrate, and evaluate model predictions. We focused
specifically on short-term predictions of temperature, dissolved oxygen, and phytoplankton biomass
over one season. Traditional goodness-of-fit metrics indicated more accurate prediction of physics than
chemical or biological variables in the time domain. This was confirmed by wavelet analysis in both the
time and frequency domains. For temperature, predicted and observed global wavelet spectra were
closely related, while observed dissolved oxygen and chlorophyll fluorescence spectral characteristics
were not reproduced by the model for key time scales, indicating that processes not modeled may be
important drivers of the observed signal. Although the magnitude and timing of physical and biological
changes were simulated adequately at the seasonal time scale through calibration, time scale-specific
dynamics, for example short-term cycles, were difficult to reproduce, and were relatively insensitive
to the effects of varying parameters. The use of wavelet analysis is novel to aquatic ecosystem modeling,
is complementary to traditional goodness-of-fit metrics, and allows for assessment of variability at
specific temporal scales. In this way, the effect of processes operating at distinct temporal scales can be
isolated and better understood, both in situ and in silico. Wavelet transforms are particularly well suited
for assessment of temporal and spatial heterogeneity when coupled to high-frequency data from
automated in situ or remote sensing platforms.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Anthropogenic activity has resulted in a globally pervasive
degradation of freshwater ecosystem services, such as the
All rights reserved.
availability and quality of water for consumption, irrigation, and
recreation. In lakes with high nutrient loads from surrounding
landscapes, eutrophication is one of the leading concerns. Eutro-
phic lakes are characterized by frequent phytoplankton blooms that
affect the esthetic nature of the lake, and may produce toxins that
disrupt food webs and affect humans (Carmichael, 2002; Jonasson
et al., 2010). Despite extensive research on phytoplankton
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dynamics, the frequency and timing of phytoplankton blooms
remain elusive to accurate prediction (Arhonditsis and Brett, 2004;
Flynn, 2005a).

Numerical simulations are often used to predict the impact of
environmental changes, including those imposed by climate, land-
use, nutrient loading, and groundwater, on aquatic ecosystems (e.g.
Arhonditsis and Brett, 2005a, b; Gal et al., 2009; Markensten et al.,
2010; Trolle et al., 2011, 2008). Typically, models are calibrated to
data from routine monitoring programs that sample the environ-
ment at fortnightly or monthly intervals, enabling simulations to
reproduce seasonal and inter-annual variations. However,
ecosystem phenomena relevant to water quality, such as phyto-
plankton succession and bloom formation, can occur over time
scales of hours or days, and models calibrated exclusively to longer
time scales may not provide adequate insight into the causes and
consequences of these phenomena (Harris, 1987) as even for the
same state variable, different drivers may dominate variability at
different time scales (Hanson et al., 2006).

Advection, light, nutrients, and predation are among the drivers
of spatial and temporal heterogeneity of phytoplankton pop-
ulations. Aquatic ecosystemmodels such as DYRESM-CAEDYM (Gal
et al., 2009), ELCOM-CAEDYM (Romero et al., 2004), PROTECH
(Elliott et al., 2007), and PCLake (Janse et al., 2010) are designed to
represent these processes and predict outcomes on phytoplankton
populations, but validation at the lower end of ecologically rele-
vant time and space scales (e.g. hours to days and meters to tens of
meters), is frequently limited by the resolution of observed data.
Recently, the assessment of modeling accuracy of spatial hetero-
geneity in phytoplankton has been facilitated by the use of in situ
and remote sensing technologies (e.g. Alexander and Imberger,
2009; Fragoso et al., 2008), but similar assessments of variations
at short time intervals (e.g., hours to days) are rare, in part due to
the cost and effort associated with making high-frequency obser-
vations using traditional, manual means. However, high-frequency
water quality variables including temperature, dissolved oxygen,
and phytoplankton pigment fluorescence data are available for
many lakes via sensor networks (Porter et al., 2009). Here, we use
both manual and high-frequency data to assess a model intended
to capture the critical physicalebiogeochemical interactions
driving phytoplankton dynamics. We assess model predictions in
the time and frequency domains using wavelet analysis; the
application of this technique is novel for the assessment of aquatic
ecosystem models, and allows exploration of how model setup,
structure, and parameterization affect predictions of variability
across a range of temporal scales. We demonstrate that the advent
of high-frequency automated sensor data from in situ lake obser-
vatories presents new opportunities and challenges for evaluating
the predictive abilities of numerical simulations at temporal scales
previously impossible.

2. Materials and methods

Lake Mendota, Wisconsin (WI) was chosen for this study because of its eutro-
phic status, extensive historical datasets, frequent manual water quality observa-
tions, and in situ sensor observatory. With some notable exceptions, summertime
phytoplankton biomass in the lake is dominated by the Cyanobacteria genera
Microcystis and Aphanizomenon (Brock, 1985; Carpenter et al., 2006). We chose to
apply themodel during this season (late June through late September 2008) because
of availability of manual and high-frequency automated observations that could be
used for comparative purposes with model simulation output.

The Dynamic Reservoir Simulation Model (DYRESM) was configured for Lake
Mendota and coupled to the Computational Aquatic Ecosystem Dynamic Model
(CAEDYM). DYRESM simulates the one-dimensional (1D) vertical structure of
temperature, density, and salinity in a water body. CAEDYM is a process-based lake
ecosystem model that simulates the time-varying distributions of carbon, nitrogen,
phosphorus, dissolved oxygen, silica, phytoplankton and zooplankton. DYRESM and
CAEDYM have been described elsewhere in detail (Gal et al., 2009; Imberger and
Patterson, 1981).
2.1. Site description

Lake Mendota is located in Wisconsin, USA (43�060240 0N; 89�250290 0W) and has
three main inflows, a single outflow, and a mean residence time of 4.5 years. The
surface area is 39 km2 and the mean and maximum depths are 12 and 25 m,
respectively. The 686-km2 watershed is dominated by agriculture, which has
contributed significantly to the eutrophic status of the lake (Brock, 1985). The onset
of eutrophication is considered to have occurred in the mid-1800s (Stewart, 1976)
and has been the focus of scientific study for more than a century, starting with the
work of Birge and Juday (Birge, 1915; Birge and Juday, 1911; Juday, 1914). Lake
Mendota has comprehensive historical datasets and is a site of continuing long-term
study (Beckel, 1987; Brock, 1985; Magnuson et al., 2006).

2.2. Observed data

Data for model calibration and validation were obtained from the North
Temperate Lakes Long Term Ecological Research (NTL LTER) program, the University
of Wisconsin Space Science and Engineering Ground-Based Atmospheric Moni-
toring Instrument Suite Rooftop Instrument Group (SSEC GAMIS RIG, located 1.2 km
from south shore of Lake Mendota andw3 km from location of instrumented buoy),
the United States Geological Survey (USGS) and an automated, instrumented buoy
located near the center of the lake. We utilized these sources and historical publi-
cations to derive model forcing data and parameters for the simulations presented
here.

Meteorological data at the hourly frequency were used to drive simulations.
Wind speed, short-wave radiation, percent cloud cover, air temperature, vapor
pressure, and precipitation were acquired from the SSEC GAMIS RIG. Hypsometric
data input included area and volume at 1-m elevation intervals (Kamarainen et al.,
2009). Volumetric flow rates and water temperature of three major inflows were
acquired from USGS stream gage data at daily frequency.

Biweekly manual observations from the NTL LTER were used to prescribe initial
conditions and for calibration of the model (NTL-LTER, 2011a, b, c). Data from
1995e2008 were used to assist with setting parameters for sediment nutrient fluxes
and water column nitrogen transformations. The dataset included biweekly or
monthly measurements of NO�

3 � N (NO�
3 hereafter), NHþ

4 � N (NH�
4 here after),

PO3�
4 P (PO3�

4 hereafter), dissolved organic carbon (DOC), dissolved inorganic carbon
(DIC), total nitrogen (TN), and total phosphorus (TP), at 0, 4, 8, 12, 16, and 20 m
depths; temperature, pH, and dissolved oxygen (DO) every meter from 0 to 20 m; In
2008, weekly measurements of NO�

3 , PO
3�
4 , TN, TP, DOC, DIC, and solvent-extracted

chlorophyll-a (chl-a) at depths 0.5, 5, 10, 14, and 20 mwere made. Depth integrated
(0e8 m) samples were preserved biweekly and enumerated for phytoplankton cell
counts by species and biovolume, and zooplankton counts by species and length. To
align measurements of biomass of phytoplankton and zooplankton species with the
partitioning in model simulations, phytoplankton and zooplankton counts were
binned into one of four functional groups corresponding to groups of ecological
coherence. For each sample, a minimum of 400 natural units per sample were
counted and each sample was counted until the standard error of the mean of total
cell counts was less than 10%. Phytoplankton biovolume and zooplankton mean
lengths were converted to units of carbon concentration (g C m�3) using conversion
factors from the literature specific to functional groups (Table 1).

Automated high-frequency (min�1) observations of temperature, DO, and
chlorophyll fluorescence were made from an instrumented buoy platform at the
deepest point in Lake Mendota (Figs. 1aec and 2a). A thermistor chain measured
water temperature at 0.5 m increments from 0 to 2 m and 1 m increments from 2 to
20 m depths (Apprise Templine, Duluth, MN), which was used to prescribe initial
conditions for model simulations and was used to evaluate model performance for
water temperature simulations. Dissolved oxygen (D-Opto, Zebra-tech Ltd., Nelson,
New Zealand) and fluorescence (Cyclops-7 Chlorophyll Fluorometer, Turner Designs,
Sunnyvale, CA) sensors were positioned at 0.5 m depth. After aggregation from
min�1 to hour�1 frequency to match model output, high-frequency temperature,
DO, and chl-a fluorescence data were used for comparison against high-frequency
model output of temperature, dissolved oxygen, and biomass expressed as chloro-
phyll-a. For chlorophyll fluorescence, the raw voltage output with the fluorometer
default auto-gainwas used; hereafter we refer to this measure as chl-a fluorescence
in relative fluorescence units (RFU).

For each inflow, water samples were collected over the hydrograph to generate
a total phosphorus (TP)-discharge relationship. Daily TP mass loading for 2008 was
calculated using the USGS Graphical Constituent Loading Analysis System (GCLAS,
Koltun et al., 2006). Average base-flow TP and dissolved inorganic phosphorus
ðPO3�

4 Þ concentrations specific to each inflow have been measured previously
(Lathrop, 1979). We assumed the difference between TP and PO3�

4 concentrations
was dominated by particulates (Lean, 1973a, b; Wetzel, 2001), and further specified
to be organic in composition. A sensitivity analysis of chemical and biological
response to the specific forms of P in hydrologic inflows was performed (e.g. the
difference between TP and PO3�

4 defined as dissolved P, particulate P, particulate
inorganic P, etc), and was found to have little effect on phytoplankton biomass and
the chemical variables highlighted in this study, likely due to the small contribution
of external TP loading to the in-lake P mass. We also tested the sensitivity of key
state variables to both a range of historical P loading and a range of early summer



Table 1
General (A), bacterial (B), phytoplankton (C) and zooplankton (D) parameters used for the CAEDYM simulations, with modifications after Gal et al. (2009).

Parameter Description Units Assigned value Values from field/literature

(A) General parameters
Kd Light extinction coefficient of pure water m�1 0.25
KPAR Fraction of incoming solar radiation which is photosynthetically active e 0.45
KeDOC Specific light attenuation coefficient due to the action of labile DOC m�1 (gC m�3)�1 0.02 0.02i

KeDOC Specific light attenuation coefficient due to the action of refractory DOC m�1 (gC m�3)�1 0.001 0.001ii

KePOC Specific light attenuation coefficient due to the action of labile POC m�1 (gC m�3)�1 0.01 0.01i

KePOC Specific light attenuation coefficient due to the action of refractory POC m�1 (gC m�3)�1 0.02
kSOD Maximum sediment oxygen demand (SOD) at 20 �C g m�2 day�1 0.46 0.918iii, 7.97iv

kDOSOD
Half saturation constant for DO effect on SOD g DO m�3 1.5 1.5iv, 0.5iii

wSOD Temperature multiplier for SOD e 1.08 1.02e1.14v

DOatm Equivalent DO at the airewater interface g DO m�3 Equation Doatm ¼ f (p,T,S)v

kO2
Oxygen transfer coefficient dependent on wind speed m s�1 Equation kO2

¼ f ðu; T ; SÞv
PCOatm

2 Partial pressure of CO2 at the airewater interface atm 350 � 10�6

kpCO2
Gas transfer velocity for CO2 m s�1 Equation kpCO2

¼ f ðu; T; SÞv
Kw Ion product of water Equation Kw ¼ f (T)vi

Ka1;Ka2 First and second acidity constants Equation Kal,2 ¼ f (T)vi

YO2C Stoichiometric ratio of DO to C during photosynthesis and respiration g DO (g C)�1 2.67 Stoichiometric relationship
YO2N Stoichiometric ratio of DO to N during nitrification g DO (g N)�1 3.43 Stoichiometric relationship
VsPOM Settling velocity of particulate detritus (POM), used for POC, PON, POP m s�1 Equation Calculated from Stoke’s Law:

VsPOM ¼ gd2POM
18v

ðrPOM � rwÞ
dPOM Diameter of POM particles m 8 � 10�5

rPOM Density of POM particles kg m�3 1040 1070vii

mDECPOC
Maximum rate of POC decomposition to DOC at 20 �C day�1 0.070 0.0187 (benthic)viii

mDECPOP
Maximum rate of POP decomposition to DOP at 20 �C day�1 0.030 0.01e0.1ix

mDECPON
Maximum rate of PON decomposition to DON at 20 �C day�1 0.035 0.01e0.03ix

kden Maximum denitrification rate under anoxia at 20 �C day�1 0.05 0.1ix

wden Temperature multiplier for denitrification e 1.05 1.045viii

Kden Half saturation constant for denitrification dependence on oxygen g DO m�3 0.4 0.4ix

knit Maximum nitrification rate under oxygen saturation at 20 �C day�1 0.106 0.106iv, 0.1e0.2ix

wnit Temperature multiplier for nitrification e 1.08 1.08ix

Knit Half saturation constant for nitrification dependence on oxygen g DO m�3 1.5 1.5iv

wS Temperature multiplier for sediment nutrient fluxes e 1.08
SFRP Maximum release rate of PO4 from sediments at 20 �C g m�2 day�1 0.0125 0.03iv, 0.065x, 0.0008xi

KDOFRP
Half saturation constant for sediment PO4 release dependence on DO g DO m�3 2.0 2.0iv

SNH4
Maximum release rate of NH4 from sediments at 20 �C g m�2 day�1 0.31 0.31iv

KDONH 4
Half saturation constant for sediment NH4 release dependence on DO g DO m�3 2.0 2.0iv, 0.025xi

SNO3
Maximum release rate of NO3 from sediments at 20 �C g m�2 day�1 �0.12 �0.12iv

KDONO 3
Half saturation constant for sediment NH4 release dependence on DO g DO m�3 50 50iv

SDOC Maximum release rate of DOC from sediments at 20 �C g m�2 day�1 0.0 0.0iv

SDOC Maximum release rate of DOP from sediments at 20 �C g m�2 day�1 0.0 0.0iv

SDOC Maximum release rate of DON from sediments at 20 �C g m�2 day�1 0.0 0.0iv

KDODOC
Half sat constant for sediment DOC release dependence on DO g DO m�3 0.5 0.5iv

(B) Bacterial parameters
wB Temperature multiplier for growth e 1.08
TSTDB

Standard temperature �C 20
TOPTB Optimum temperature �C 30 30xii

TMAXB
Maximum temperature �C 38 38xii

KDOB
Half saturation constant for dependence of POM/DOM decomposition on DO g DO m�3 1.5

fAnB
Aerobic/anaerobic factor e 0.8

wBr Temperature multiplier for loss e 1.08
kBr Bacterial respiration rate at 20 �C day�1 0.12
kBe DOC Excretion e 0.7
KB Half saturation constant for bacteria function g C m�3 0.01
mDECDOC

Maximum bacterial DOC uptake rate day�1 0.05
kBIN Internal C:N ratio of bacteria g N (g C)�1 0.16 0.16xiii

kBIP Internal C:P ratio of bacteria g P (g C)�1 0.04 0.04xiii

E.L.Kara
et

al./
Environm

ental
M
odelling

&
Softw

are
35

(2012)
104

e
121

106



Parameter Description Units Assigned values Values from field/literature

AMic:
Microcystis

AAph:
Aphanizomenon/
Anabaena

AChlor:
Chlorophytes/
Chrysophytes

ADiat:
Diatoms

AMic:
Microcystis

AAph:
Aphanizomenon/
Anabaena

AChlor:
Chlorophytes/
Chrysophytes

ADiat: Diatoms

(C) Phytoplankton parameters
mMAx Maximum potential growth rate day�1 0.6 0.48 0.2 1.25 0.048e1.11xiv 0.27e0.98xv

0.27e1.56xvi
2.4e8.57xvii

0.62e2.91xiv

0.33e0.55xviii

1.7xix

Is Light saturation for maximum production mmol m�2 s�1 250 220 170 20 75i

KeA Specific attenuation coefficient m�1 (gC m�3)�1 0.198 0.198 0.198 0.198 0.448xx

KP Half saturation constant for phosphorus uptake g P m�3 0.0018 0.0012 0.01 0.005 0.0011xxi

0.001xxii
0.0028e0.0111xxi

KN Half saturation constant for nitrogen uptake g N m�3 0.02 0.001 0.030 0.060
INMIN Minimum internal N ratio g N (g C)�1 0.070 0.070 0.090 0.090 0.163xiv 0.163xiv 0.034xiv 0.125xxi

INMAx Maximum internal N ratio g N (g C)�1 0.24 0.16 0.14 0.15 0.239xiv 0.239xiv 0.135xiv 0.146xxi

UNMAx Maximum rate of nitrogen uptake g N (g C)�1 day�1 0.08 0.12 0.060 0.15
IPMIN Minimum internal P ratio g P (g C)�1 0.002 0.005 0.006 0.021 0.014xiv 0.014xiv 0.021xiv 0.0119xxi

IPMAx Maximum internal P ratio g P (g C)�1 0.023 0.023 0.059 0.085 0.023xiv 0.023xiv 0.059xiv 0.085xxi

UPMAx Maximum rate of phosphorus uptake g P (g C)�1 day�1 0.01 0.01 0.007 0.018 0.01xxiii 0.0074xxi 0.0031e0.0187xxi

kNF N fixation rate g N (g C)�1 day�1 0 0.15 0 0 0 0.140xxiv 0 0
fNF Growth reduction under N2 fixation e 1.00 0.67 1.00 1.00
wAg Temperature multiplier for growth e 1.07 1.10 1.08 1.08 1.075xxv 1.075xxv

TSTDA
Standard temperature �C 19 24 20 19

TOPTA Optimum temperature �C 30 30 21 17 20e30xxi

29e34xxvi
25xiv 14e28xxvii

14e25xli,
20xxviii

16e17xxi

TMAXA
Maximum temperature �C 40 40 35 22 35xxvi 30xiv 29e35xxvii,

>35xxi
26e27xxi

kr Metabolic loss rate coefficient day�1 0.05 0.05 0.05 0.05 0.08xxix 0.07xliii 0.039e0.051xxi

0.01xliii

wAr Temperature multiplier for metabolic loss e 1.10 1.09 1.06 1.08 1.05xxv

kpr Rate of photorespiration (day�1) e 0.014 0.014 0.014 0.014
fres Fraction of respiration relative to total metabolic loss e 0.8 0.8 0.8 0.5
fDOM Fraction of metabolic loss rate that goes to DOM e 0.3 0.1 0.1 0.5
dA Cell diameter m 1 � 10�5 1 � 10�7 1 � 10�5 1 � 10�5

VSA Settling velocity m s�1 3.6 � 10�5 �5.1 � 10�7 1.2 � 10�6 �0.057 7 � 10�6

e1.2 � 10�5xxi

YChlC Chlorophyll:C ratio e 50 100 40 40
YCBiovol Carbon:biovolume ratio (used for estimating

algal biomass gC/m3)
pg C mm�3 0.127 0.127 0.198 0.199 0.127xiv 0.127xiv 0.198xiv 0.199xiv

Parameter Description Units Assigned values Values from field/literature

Z1: Predatory Z2: Macro-large Z3: Macro-small Z4: Micro Z1: Predatory Z2: Macro-large Z3: Macro-small Z4:
Micro

(D) Zooplankton parameters
gMAx Grazing rate gC m�3 (g Z m�3)�1

day�1
1 0.75 0.3 0.5 1xxx 0.75xxxi

1.67xxxii
0.3xxxi

kmf Grazing efficiency e 0.8 0.7 0.8 0.85
kZr Respiration rate coefficient day�1 0.1 0.2 0.075 0.025 0.32xxx 0.12xxxii

0.195xxxiii
0.06xxxiv

kZm Mortality rate coefficient day�1 0.02 0.04 0.015 0.005
kZf Fecal pellet fraction of grazing day�1 0.025 0.05 0.02 0.007
kZe Excretion fraction of grazing day�1 0.1 0.1 0.1 0.1 0.13xxx 0.11xxxii

ffSED Fecal pellet fraction that sinks directly to sediments e 0.7 0.1 0.1 0.1
wZg Temperature multiplier for growth e 1.07 1.07 1.07 1.07 1.1xxx 1.15xxxii

TSTDZ
Standard temperature �C 20 20 20 20 20xxx 20xxxii 20xxx 20xxxv

TOPTZ Optimum temperature �C 19 20 18 24 29xxx

11xxxvi
28xxxii

17xxxvi
17xxxvi 25xxxv

TMAXZ
Maximum temperature �C 35 35 35 35 34xxx 34xxxii

(continued on next page)
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PO3�
4 concentrations, and found phytoplankton biomass was very sensitive to in-

lake PO3�
4 initial conditions, while effects of P external loading was negligible

(results not shown). The inflow-specific proportions of PO3�
4 to particulate organic P

were applied to TP loading estimated by GCLAS.
Nitrogen load data for the year 2008 was not available, thus TN load was

estimated by assuming an approximately constant mass ratio of TN:TP in inflows as
has been observed historically in inflows to this lake (Lathrop, 1979). A range of
annual TN load (520,000e1,150,000 kg N yr�1) to Lake Mendota was estimated by
Sonzogni and Lee as reported by Brock (1985). We assumed the ratio of 2008 TN
load to the historical maximum TN load (1,150,000 kg N yr�1) in any single year was
proportional to the ratio of 2008 TP load (50,700 kg P yr�1) to the maximum
recorded annual TP load since 1976 (1994: 67,000 kg P yr�1; (Lathrop et al., 1999)).
Thus, TN load for 2008 was estimated to be 522,000 kg N yr�1. The ratio of total
nitrogen, inorganic N (NO�

3 and NHþ
4 ), and organic N for each inflow have been

measured previously (Lathrop, 1979) and we assumed that the same ratio amongst
species existed in 2008. Similar to external P loading and in-lake initial conditions,
we also tested sensitivity of key state variables to external TN loading and in-lake
TN initial conditions and found initial conditions to be much more important for
subsequent predictions of phytoplankton biomass and chlorophyll than external TN
loading (results not shown).

2.3. Model configuration

We initialized DYRESM-CAEDYM on day 179 of 2008 (June 27 2008) and simu-
lated a 90 d period. Initial conditions for day 0 were based on observed data and
exogenous drivers (e.g. prescribed daily meteorology, inflows and outflows)
controlled subsequent dynamics. State variables were not reset to observed data at
any time during the simulation. Minimum and maximum model vertical layer reso-
lution was 0.5 and 2 m respectively, and the calculation and output time steps were
1 h.

The CAEDYM model was configured with four functional groups of phyto-
plankton, four zooplankton groups, and one bacterial functional group. For
phytoplankton and zooplankton, functional groups were chosen to represent
broader taxonomical groups of the most abundant phytoplankton and zooplankton
in Lake Mendota for the modeled season and these also largely correspond to
groups of ecological coherence. For phytoplankton functional groups, we included
a nitrogen-fixing cyanobacteria genus represented by Aphanizomenon sp. (AAph),
a non nitrogen-fixing cyanobacteria genus represented by Microcystis sp. (AMic),
chlorophytes and chrysophytes (AChlor), and diatoms (ADiat). Four zooplankton
groups were modeled: predatory zooplankton (e.g. copepods, ZCop), large
zooplankton (e.g. daphnia, ZDaph), small zooplankton (e.g. small cladocerans, ZClad),
and micro-zooplankton (e.g. rotifers, ZRot). Phytoplankton were configured with
fixed internal carbon concentration (IC) and fixed carbon to chlorophyll-a ratio. One
bacterial functional group was activated in the biogeochemical model, configured
to assimilate organic C, N, and P and release excess C, N, and P in inorganic forms.

2.4. Parameterization

Literature values, estimates from observed data, and user-defined values
comprised the chemical and biological parameter set, specific to Lake Mendota,
which was adapted for this system based on a parameter set used by Gal et al.
(2009). Site-specific parameters were used when possible. When no site-specific
parameters were available, we used values based on those from the literature.
We summarize abbreviations, descriptions, values and sources for general param-
eters (Table 1a), bacteria (Table 1b), phytoplankton (Table 1c) and zooplankton
(Table 1d). Zooplankton observed mean lengths from NTL LTER database were
converted to dry weight using empirical relationships specific to the four defined
functional groups (Culver et al., 1985; McCauley, 1984; Ventura et al., 2000; Wiebe
et al., 1975). Phytoplankton were parameterized with functional group-specific
biomass to carbon ratios (Table 1c) while zooplankton was assumed to be 33% C
by dry weight (Wiebe et al., 1975).

2.4.1. Light attenuation
Modeled chemical and biological feedback to hydrodynamic driver variables

includes light attenuation from pure water, phytoplankton, dissolved and particulate
organic material, and suspended inorganic materials; these variables contribute to
vertical attenuationas a function of their simulated concentrations at eachmodel time
step. We estimated coefficients for DOC extinction (KeDOC) and phytoplankton groups
(KeP) fromobserveddata, and assumed anegligible effect byother non-phytoplankton
particulate material and dissolved inorganic materials. We assume a linear relation-
ship between chromophoric dissolved organic matter (CDOM) and DOC.

Photosynthetically active radiation (PAR, 400e700 nm) diffuse attenuation
coefficients (Kd PAR) were calculated from observed Secchi disk depth (zs) for the
2008 ice-free season. For each zs, Kd PAR was estimated (Kirk, 1994):

Kd PAR ¼ 1:7=zs (1)

We examined the linear relationship between phytoplankton functional group
biomass (g C m�3) and the estimated Kd PAR (m�1) for each observation, and



a

b

c

d

Fig. 1. High-frequency observed (solid) and predicted (dashed) temperature (a), dissolved oxygen (b) and chl-a fluorescence (c) and concentration (d). Predicted values were from
the 0.5 m depth layer of the simulation. High-frequency observations (a, b, and c) were collected at an instrumented buoy (0.5 m depth) located near the center of Lake Mendota, WI
from day number 180 to 270, 2008. Manual temperature, DO, and in vitro solvent eextracted chl-a measurements are overlaid as solid circles.
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differentiated the attenuation imparted by constituent materials. We tested for
significance between phytoplankton functional group biomass (g C m�3) and esti-
mated Kd PAR (m�1) in order to assign a specific Kd for each phytoplankton functional
group, using 13 observations from 2008. Only the N-fixing functional group biomass
showed a significant linear relationship (r2 ¼ 0.37, p < 0.05) with Kd PAR, but there
was also a significant relationship between total phytoplankton biomass and Kd PAR

for the 2008 season (R2 ¼ 0.59, p < 0.01). Therefore, we assumed the uniform Kd PAR

per unit total phytoplankton biomass applied to all four phytoplankton functional



a

b

d

e

c

Fig. 2. Interpolated observed (upper) and predicted (lower) temperature (a), DO (b), NO�
3 (c), PO3�

4 (d), and chl-a (d). Observed temperature data (hr-1) from automated thermistor
chain positioned at least every 1 m from 0 to 20 m (a), PO3�

4 (b), NO�
3 (c), and laboratory-extracted manual chl-a (d). Phosphate, NO�

3 and laboratory-extracted manual chl-a were
sampled at 5 discrete depths from 0 to 20 m; vertical lines above observed plots c, d, and e indicate occurrence of manual sampling.
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groups from the slope of this relationship (KeA: 0.198 m2 (mg chl-a)�1). We assumed
that the y-intercept (0.454 m�1) of the regression line fit to the data was an estimate
of Kd for all light-attenuating materials in the water column other than phyto-
plankton (i.e. CDOM, inorganic constituents, and pure water). We assumed the
attenuation of pure water to be 0.05 m�1 (Pope and Fry, 1997). The remaining
attenuation (0.404 m�1) was attributed to CDOM. Assuming a constant relationship
between CDOM and DOC, we generated a KeDOC per unit DOC based on the mean
DOC concentration over the study period in Lake Mendota. The resulting KeDOC
estimate, (0.0072 m2 (g DOC)�1) is within the range of literature values for DOC-
specific absorbance (Morris et al., 1995).

2.4.2. Water column nitrification rate
Simulated nitrification in the water column is modeled in CAEDYM as a function

of a maximum temperature-referenced (20 �C) nitrification rate (mNIT) modified by
temperature, concentrations of NHþ

4 and DO, and a half saturation constant for the
effect of oxygen on nitrification. To estimate the maximum nitrification rate, we
applied the following relationship:

knit ¼ ½ðlog C2 � log C1Þ*2:303�=ðT2 � T1Þ (2)

where knit is maximumnitrification ratewhen oxygen is saturated in thewater at the
mean of the observed temperatures, T2 and T1, and Cn is nitrate concentration at time
tn. Nitrification rate was corrected for temperature using an Arrhenius relationship:

knit ¼ knit 20$ychem
�
Tavg � 20

�
(3)

where knit 20 is the maximum nitrification rate under oxygen saturation at 20 �C, Tavg
is the average of temperature, T, at t1 and t2, and ychem is the temperature multiplier
(1.08; Jorgensen and Bendoricchio, 2001).

After fall turnover in Lake Mendota, a near-linear increase in NO�
3 concentra-

tions initially occurs (t1 through t2; approximately day 265e335 in 2008) under
saturated DO conditions. The source of the increase is presumably nitrification
associated with oxidation of NHþ

4 to NO�
3 , as evidenced by a simultaneous decrease

in NHþ
4 . The half saturation constant for nitrification dependence on DO (kDO nit) was

estimated by visually inspecting a plot of NO�
3 versus DO concentration and
identifying a step change in NO�
3 concentration as DO approaches zero; the DO

concentration at this break was identified as the half saturation constant. We
investigated trends for all available years (1995e2008), and used 2008 estimates for
parameter values; consistent patterns in DO, NO�

3 , and NHþ
4 were observed

following fall mixis from 1995 to 2008.

2.4.3. Sediment nutrient flux
Fluxes of C, N, P, and O across the sediment-water boundary were simulated as

a function of an assignedmaximum rate referenced to a standard temperature (20 �C)
and in turn modified by temperature, pH and DO. We estimated maximum fluxes by
assuming hypolimnetic accumulation or loss of the variable of interest during
summer stratification reflected sediment release or uptake, respectively. Sediment
fluxes of NO�

3 , NH
þ
4 , PO

3�
4 , dissolved oxygen (i.e., sediment oxygen demand; SOD),

DOC, dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP)
were estimated in this manner. Hypolimnetic accumulation rate constants for these
nutrients were estimated during summer stratification from 1995 to 2008 as:

Rchem ¼ ðC2 � C1Þ=ðt2 � t1Þ (4)

Where Rchem is the maximum linear rate of hypolimnetic accumulation of the
variable, calculated as the difference in concentration between C1 and C2 from time
t1 to t2. The value of Rchem was normalized by volume to give a rate of change of
concentration (g m�3 d�1) and divided by mean hypolimnetic depth (fixed at 7.3 m
from seasonally average estimates) to yield the maximum sediment flux term, Schem
(g m�2 d�1). Fluxes were corrected for temperature using an Arrhenius relationship
analogous to Eq. (3). Observations made at the maximum routine sampling depth
(20 m) were used for this analysis, although hypolimnetic C, N, P, and O concen-
trations are not necessarily homogenous with depth. Rate of change for N, P, and O
during summer stratification were greatest at 20 m as compared to at other depths
(data not shown), and thus represent maximum possible fluxes that could be
derived from observational data. This simplifying assumption ignores the effect of
spatial heterogeneity in sediment flux and the influence of biomass accumulation in
the deepest part of the lake, both of which could be contributing to the most
extreme flux rates in the deepest part of the lake, resulting in an overestimate of the
maximum potential fluxes. The half saturation constant for maximum sediment
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nutrient flux dependence on DO (SDO chem) was estimated by visually inspecting
a plot of the concentration of the relevant nutrient species versus DO concentration
during summer stratification and identifying a step change in nutrient concentra-
tion as DO approached zero as described above for rates of nitrification. We inves-
tigated all available NTL LTER data and consistent patterns of hypolimnetic nutrient
accumulation were observed during summer stratification from 1995 to 2008, but
we used quantitative values for 2008 to define relevant sediment flux parameter
values. Observation-based estimates and literature values specific to Lake Mendota
were available for sediment oxygen demand (KSOD) and sediment PO3�

4 flux ðSPO4Þ.
However, key state variables were highly sensitive to these parameters, and thus
manual manipulation to minimize error was required.

For DOC from 1995 to 2008, we found no relationship between SDOC and time or
SDOC and DO. Lake Mendota DOC is relatively low (mean hypolimnetic DOC
5.9 g m�3, standard deviation 1.1 g m�3) and has little temporal or spatial variation.
Based on the DOC observations, and because of absence of DOP and DON
measurements, we assumed no sediment flux of DOC and that DOP and DON
sediment fluxes were likewise negligible, i.e., SDOC, SDOP, and SDON were set to zero.

2.5. Calibration

With known inflows and water elevation, the water balance was closed by
estimating outflow discharge that minimized the error in observed and predicted
water level. The flux of water and energy from the lake via evaporation is included in
DYRESM, and this process acts to concentrate solutes in the water column. We
assumed that the evaporative fluxes were properly parameterized by the wind-
driven formulation in DYRESM, although we did not validate modeled evaporation
rates.

Trial-and-error adjustments of sediment oxygen demand (kSOD), maximum
sediment flux of PO3�

4 ðSPO4Þ, and phytoplankton settling velocity (vSA), were made
within the bounds of available published literature and system-specific field values
(Table 1a) until satisfactory performance was achieved based on goodness-of-fit
metrics pertaining to range and temporal pattern of DO, PO3�

4 , and phytoplankton
biomass, respectively. These parameters were used for manual calibration because
of the sensitivity of key state variables (DO, PO3�

4 , and phytoplankton biomass) to
parameter values and because of the lack of agreement among literature and field-
based values (see Table 1a for ranges from the literature and field).

2.6. Model evaluation

We used three statistical measures and wavelet analysis to evaluate model
output against observational data (Table 2). Linear coefficient of determination,
Spearman’s rank correlation coefficient, and normalized mean absolute error were
used for both manual measurements and for automated, high-frequency measure-
ments of temperature, DO, and chl-a fluorescence. Wavelet analysis was used only
for the high-frequency measurements of temperature, DO, and chl-a fluorescence,
made at an instrumented platform at 0.5 m depth. Statistics were calculated for
observed and predicted data at depths and times when observations were available.
Observational data sampling frequency and statistical results are summarized in
Table 2. All observations and predictions were compared directly, with the following
exceptions: (1) all observed automated data (min�1) were aggregated to hourly
intervals to match the model output, (2) statistical calculations of observed chl-
a fluorescence (RFU) and model output of chl-a concentration (g m�3) were made
after standard normal transformation of data, such that chl-a RFU could be evaluated
directly against model output, and (3) standard normal transform preceded wavelet
analysis. Water temperature measurements were interrupted periodically from July
22 through August 9 2008 (day number 204e222); only available data were
considered in evaluation.

Data were compared to model output using three well-accepted goodness-of-fit
measures: coefficient of determination from linear regression (R2) values, Spear-
man’s rank correlation coefficient (Spearman’s rho), and the normalized mean
absolute error (NMAE, Alewell and Manderscheid, 1998):

N MAE ¼
Pn

t ðjSt � Ot jÞ
nO

(5)

where n is number of observations, O is observed value, S is the simulated value, and
t is time. NMAE provides a goodness-of-fit metric for state variables that do not
cover strong gradients but whose mean values are important to reproduce. For
example, epilimnetic soluble reactive phosphorus concentration can be very low
during algal-dominated phases of the summer, and the observed values appear to
fluctuate randomly around a low mean value quantitatively similar to analytical
detection limits. In this case, it is important to reproduce the mean of the data, but
not the random fluctuations, and the resultant NMAE coefficient would indicate the
degree to which the mean is reproduced.

For the state variables for which high-frequency observations were available
(temperature, DO, and chl-a), model performance was evaluated using wavelet
transforms at global and individual scales (Torrence and Compo, 1998). We per-
formed wavelet analysis on several derived metabolic variables (whole water net
primary productivity, gross primary productivity and respiration) to gain insight
into phytoplankton dynamics, but had no observational data with which to compare
those results. Wavelet analysis was also used to assess model sensitivity to variation
in three CAEDYM parameters (Kd DOC, SPO4, and Minres); we considered simulated
variables temperature, DO, and chl-a concentration for this analysis. The wavelet
analysis software used to generate the results presented here can be downloaded at
http://atoc.colorado.edu/research/wavelets/.

Global wavelet spectra represent the sum of variability of each time scale
through time and can be plotted as a power spectrum. Visualizing observation and
model data as power spectra provides a convenient means for determining whether
model predictions apportion variability to time scales across the entire simulation in
ways consistent with the observational data. Wavelet transforms at individual scales
can be used to separate data by time scale (e.g., hour, day, week periods), while
maintaining the time domain. When transforms are performed on both observed
and modeled data, a direct comparison of scale-specific variation can be made
through time. For example, we might expect a strong diel cycle in dissolved oxygen
due to metabolism at times during the summer when phytoplankton biomass is
high and days are sunny. However, the dissolved oxygen signal can be driven by
processes at multiple scales, such as the aforementionedmetabolism and changes in
solubility driven by seasonal temperature cycles. Isolating the daily scale using
wavelet transforms allows us to evaluate, e.g., daily dissolved oxygen cycles without
the confounding effects of other scales. Wavelet transforms have been shown to be
robust to modest deviations from stationarity, i.e. constant mean and variance
(Cazelles et al., 2008). Differences between the spectra of observed and modeled
data may provide clues to processes missing or inappropriately represented in the
model.
3. Results- evaluation of model predictions

3.1. Traditional goodness-of-fit

Surface water level at the outflow ranged 0.8 m in elevation
through the simulation and was maintained within 4% of observed
elevation. Water temperature and features of thermal stratification
were reproduced well, including surface water temperature, met-
alimnetic depth, and hypolimnetic temperature (Fig. 2a). Observed
and predicted temperature (Tobs and Tpred) between 0 and 20 m
were highly correlated (R2 ¼ 0.94, Rho ¼ 0.97, Table 2). The met-
alimnetic Tobs gradient was stronger than that of Tpred, but the
observed seasonal hypolimnetic deepening by approximately 3 m
was represented in the model output.

Over the duration of the simulation, the range and temporal
variability of DO through the water column was well represented,
though surface DOwas under-predicted for most of the simulation
(Fig. 2b). Under-predictions of DO at the surface (0.5 m) resulted in
poorer goodness-of-fit metrics R2 and Rho for high-frequency DO
observations, but not for biweekly DO manual observations
through the water column (R2 ¼ 0.79, Rho ¼ 0.87, Table 2). NMAE
metrics for both high frequency and manual DO observations
against simulated DO concentrations were both low (0.26 and
0.32, respectively). The predicted oxygen gradient reflected the
predicted metalimnetic thermal gradient, which was similarly
weaker than the observed gradient. Statistical analyses showed
that the nutrients NO�

3 , NH
þ
4 , PO

3�
4 , TP, and TN were generally well

represented in the simulation (Table 2), though the metalimnetic
gradients were weaker than those observed (Fig. 2c and d). The
model reproduced the trend of epilimnetic and hypolimnetic
depletion of NO�

3 and simultaneous persistence of metalimnetic
NO�

3 through w day 220 (Fig. 2c). A decrease in simulated epi-
limnetic PO3�

4 from 0.030 g m�3 to <0.005 g m�3 from day
180e200, and accumulation of hypolimnetic PO3�

4 from 0.15 gm�3

to 0.25 g m�3 over the duration of the simulation are both
consistent with observed data (Fig. 2d, Table 2). Observed TN,
TP, pH and DIC were significantly and positively correlated with
model predictions (Table 2). Ammonium (NHþ

4 ) and DOC in
general followed the seasonal pattern and magnitude of the
observed data (Table 2). Both observed and predicted DOC had
limited concentration range (w1 g m�3) and no clear temporal
pattern over the 90-day simulation, which resulted in poor R2 and
Spearman’s rho terms, however the NMAE value was low (0.053),

http://atoc.colorado.edu/research/wavelets/


Table 2
Coefficient of determination (R2) from linear regression, Spearman’s rank correlation coefficient (Spearman’s rho), and NMAE value for key state variables and observed data.
Number of observation indicates number of values used in analyses after outlier removal and aggregation. Depth range of 0e20 indicates discrete sampling depths detailed in
methods.

State variable Frequency of observation
(aggregated frequency,
when applicable)

Depth or depth range
(no. of discrete depths)

Number of
observations

R2 Spearman’s
rho

NMAE Wavelet
analysis

Temperature min�1 (hr�1) 0.5 (1) 1488 0.83 0.92 0.034 x
Temperature min�1 (2 hr�1) 0e20 (24) 21,230 0.94 0.97 0.047
DO min�1 (hr�1) 0.5 (1) 1777 0.01 �0.04 0.26 x
DO 2 week�1 0e20 (24) 178 0.79 0.87 0.32
chl-a (in situ fluorescence) min�1 (hr�1) 0.5(1) 1777 0.10 0.40 1 x
chl-a (extracted, g m�3) week�1 0e20 (5) 130 0.07 0.12 1.2
DIC month�1 0e20 (11) 25 0.84 0.96 0.053
pH week�1 0e20 (20) 39 0.91 093 0.020
NHþ

4 week�1 0e20 (5) 190 0.11 0.26 1.8
NO�

3 week�1 0e20 (5) 190 0.75 0.88 0.28
PO3�

4 week�1 0e20 (5) 189 0.33 0.39 1.6
TN week�1 0e20 (5) 190 0.28 0.65 0.41
TP week�1 0e20 (5) 173 0.21 0.51 0.35
DOC week�1 0e20 (5) 189 0 �0.02 0.053
AAph 2 week�1 0e8 (integrated) 7 0.08 0.70 0.51
AMic 2 week�1 0e8 (integrated) 7 0.01 �0.20 0.96
Predicted phytoplankton

biomass, respiration, NPP, and GPP
n/a n/a 2160 (for all

variables)
n/a n/a n/a x
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reflecting the small proportion of model residuals to mean
observational values.

Surface (0.5 m) and upper water column (0e8 m) chl-a concen-
tration were consistently higher in the modeled data than in
observed in vitro chl-a concentrations from day number 180e230
by w 0.01e0.02 g m�3 (Figs. 1d and 3a). Chlorophyll-a was over-
predicted in the water column from day 0. The values of manual
chl-a observations sometimes matched simulated chl-a, though
shorter-term chl-a dynamics were not well captured, resulting in
low correlation coefficients (R2 ¼ 0.074, Spearman’s rho ¼ 0.12).
Model simulations reproduced the range of phytoplankton biomass
although some temporal patterns were not reproduced (Fig. 3b and
c). The Microcystis-like functional group (AMic) biomass increased
throughout the season and was similarly simulated, though a peak
in observed biomass on day 231 was not predicted (Fig. 3b). Both
observed and simulated AAph biomass was lowest at the beginning
and end of the simulated period, though the simulation did not
predict twomid-season peaks in AAph on days 198 and 228 (Fig. 3c).
Observed and simulated AChlor and ADiat biomass never exceeded 1%
of total phytoplankton biomass in both simulated and measured
data, butwere included inmodel configuration to represent the two
additional ecologically relevant groups.

In the time domain, goodness-of-fit metrics for high-frequency
(h�1) observations and predictions at 0.5 m indicated good model
representation of temperature (R2 ¼ 0.83, Rho ¼ 0.92, and
NMAE ¼ 0.034), poorer representation of DO (R2 ¼ 0.01,
Rho ¼ �0.04, NMAE ¼ 0.26), and moderate reproduction of chl-
a concentration as compared to in situ chl-a fluorescence in RFU
(R2 ¼ 0.10, Rho ¼ 0.40, NMAE ¼ 1).

To assess the simulated zooplankton biomass, particularly for
controls on phytoplankton biomass, we consider loss of phyto-
plankton biomass to zooplankton grazing, which represents <1%
loss of standing biomass per day. Because we model the
cyanobacterial-dominated phase in Lake Mendota, we expected
zooplankton grazing to be low. Observed zooplankton standing
biomass ranges from 0.01 to 0.06 g C m�3, which is consistent with
loss of w0.001 g C m�3 d�1 of phytoplankton biomass due to
grazing. Zooplankton speciation and abundance have remained
remarkably stable over the past few decades, and our simulation of
small loss of phytoplankton by zooplankton grazing is consistent
with historical data (Brock, 1985).
3.2. Wavelet analysis

Water temperature spectra for observations and predictions
had similar pattern across scales from hours to w25 d, with
spectral peaks at the 1 d andw13 d scales (Fig. 4a and b). Both Tobs
and Tpred spectra had an increase in power at w27 d and Tobs
power exceeded Tpred at this scale. Observed DO (DOobs) power
spectra exceeded predicted DO (DOpred) at all scales < 38 d, and
both spectra had peaks at the 1 d scale, although the DOobs spectra
exceeded DOpred spectra at that scale (Fig. 4c and d). DOobs spec-
trum also had peaks at w5, 13, 18, and 33 d scales; DOpred spec-
trum had peaks of much lower power at the 7, 10, and w17 d
scales.

Wavelet analysis of chl-a fluorescence spectra and simulated
chl-a concentration (after standardization of both variables) indi-
cated higher relative power in observed chl-a (chl-aobs) fluores-
cence at time scales < 10 d (Fig. 4e and f). Peaks were visible at the
3, 7, 9, and 18 d scale for chl-aobs spectrum, with an average
decrease in power at >18 d scale. The predicted chl-a (chl-apred)
spectrum exhibited peaks at the 1, 5, and 13 d scales, with large
increase in power especially for >20 d period.

Wavelet transforms shown for a single scale through time
indicate the strength of variation at a particular frequency
through time (Fig. 5). Wavelet transform at the 1 d scale for Tobs
showed higher amplitudes than the transform for Tpred (Fig. 5a),
but the amplitudes and phases at the 10 d scale were closely
matched (Fig. 5b). The single-scale 1 d wavelet transform for
DOobs had higher amplitude than DOpred for most of the simu-
lated period, particularly from day 195e205 (Fig. 5c). The DOobs
10 d scale had higher amplitude than DOpred (Fig. 5d). The chl-
aobs transform had higher amplitude than chl-apred at the 1 d
scale, but not at the 10 d scale (Fig. 5e and f). Observed and
predicted chl-a transforms at the 10 d scale were out of phase
through time.

Global wavelet analysis of simulated biomass, respiration,
productivity, and net primary productivity (NPP) indicated strong
diel signals for respiration, productivity, and NPP (Fig. 6). The
biomass spectrum has low power at shorter periods and higher
power with longer period. Spectra of productivity, respiration, and
NPP all contain peaks at the w12 d period, and lesser peaks at the
5e6 d period.
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Fig. 3. Observed (solid circles) and predicted (solid line) total chlorophyll-a concentration (a), the Microcystis-like functional group (AMic) biomass (b) and the Aphanizomenon-like
functional group (AAph) biomass (c) vertically averaged over 0e8 m depth. Predicted and observed values from 0 to 8 m vertically averaged (depth integrated) range.
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4. Discussion

Aquatic ecosystem models are intended to reproduce the
pattern, range, and timing of physico-chemical and biological
variables driven by environmental change through time. The char-
acteristic time scales at which environmental drivers operate (e.g.
the life span of predators, the occurrence of El Niño-Southern
Oscillation, or annual hydraulic flushing) have been shown to
control features of aquatic ecosystems (e.g. long-term records of
sedimented algal pigment, primary productivity, or water column
transparency) independently at corresponding time scales, result-
ing inmultiple scales of variation due tomultiple drivers (Carpenter
and Leavitt, 1991; Jassby et al., 1999, 1990). Here, we use wavelets to
analyze predictions from an aquatic ecosystem model in both the
time and frequency domains, assessing variability across a range of
temporal scales. This allows for the more focused examination of
model performance across multiple time scales, potentially high-
lighting missing or mischaracterized mechanisms that dominate at
different time scales. To our knowledge, this represents the first
work evaluating coupled hydrodynamic-water quality model
prediction of dissolved oxygen and chlorophyll at short (daily to
sub-day) time scales. Understanding a model’s ability to reproduce
variability at characteristic time scales may highlight which
processes contributing to overall variability are least understood.

Wavelet analysis has been used by others to assess observed
temporal variability in lakes for long-term time series (e.g. Keitt and
Fischer, 2006); short-term, high-frequency data (e.g. Langman et al.,
2010); and plankton spatial heterogeneity (Blukacz et al., 2009).We
demonstrate that this new and complementary approach is
particularly powerful when environmental modeling predictions
can be comparedwith the ever-increasing abundance of in situ data.
The use of automated sensor data for validation of numerical
ecosystemmodel predictions has been suggested as the next step in
aquatic ecosystem modeling (Arhonditsis and Brett, 2004; Beck
et al., 2009), and wavelet analysis offers a methodology for using
the multi-scale data in calibration and validation.

We hypothesized that variation at characteristic time scales might
provide insight into important processes, both observed andmodeled.
Some unexpected analytical results in the frequency domain led us to
discuss the implications for model setup and configuration on time-
scale predictions, and motivated a closer investigation into how
model parameterization affects key predictions in both the time and
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Fig. 4. Global wavelet analysis of high-frequency (hr�1) temperature (a, b), dissolved oxygen (c, d) and chlorophyll-a (e, f) observations (black) and predictions (dashed). Global
wavelet transforms are plotted on linear (a, c, and e) and logarithmic (b, d, and f) axes.
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frequency domains. Finally, our particular interest in short-term
phytoplankton dynamics in this study necessitated scrutiny of the
well-established biomass quantification methods and newer in situ
fluorometric methods, and the challenges of making meaningful use
of multiple phytoplankton data streams.

4.1. Time scale prediction

The model output re-created key spectral characteristics for
temperature and in part for DO, but not for chl-a, suggesting other
factors not modeled are relevant for high-frequency variables of
interest at scales of hours to weeks. We were surprised to find the
observed DO and chl-a signals to be decoupled, but we also found
the predicted metabolic variables (NPP, GPP, R) were decoupled
from the predicted DO signal. In general, predicted and observed
spectra for all variables converged around the 7e10 d scale, while
observations hadmore variability than predictions at scales of hours
tow1 week (Fig. 4). It is notable that the DOobs and chl-aobs spectral
signals were not closely coupled, particularly at lower scales around
1 d, although they are linked physiologically throughmetabolism. In
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Fig. 5. Single-scale wavelet transforms of temperature (a, b), dissolved oxygen, (c, d), and chl-a fluorescence (e, f) at the 1 d (a, c, and f) and 10 d scale (b, d, and f). Observed data
indicated with solid lines and predicted data indicated with dashed lines. Missing temperature data from day 208e218 were removed for the analysis and the two sets of adjacent
data were made consecutive so that the analysis was run on a continuous time series. Single-scale transform shown here was separated after analysis to indicate missing data.
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contrast, the spectra of DOpred and chl-apred both had clear peaks at
7e10 d and at 1 d (Fig. 4d and f).We also expected the global spectra
for the predicted productivity, respiration, and NPP for phyto-
plankton to exhibit similar spectral characteristics as DOpred and chl-
apred. However, peaks at the daily scale and at the w10e15 d scale
for these metabolic variables occurred in the chl-apred spectrum, but
not in the DOpred spectrum. De-coupling of closely related variables
and processes in both predictions and observations in the frequency
domain was unexpected and demands further investigation into
drivers of variation in through time.
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Fig. 6. Spectral analysis of biomass (a), gross primary productivity (b), respiration (c) and net primary productivity (d) for 2008 from model output.
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Wavelet transform of a single scale through time demonstrates
how the scale-specific timing of model predictions may not match
observations. The differences in amplitude of predictions and
observations for DO and chl-a in the single-scale wavelet trans-
forms were especially evident in the individual scale (1 d) plots
(Fig. 5). A large increase in the amplitude of the single scale DOobs
transform occurred from day 198e208. A similar increase in
amplitude of chl-aobs did not occur. The high amplitude of DOobs
during this period may be explained by physical changes related to
a large precipitation event that occurred on day 194, where inflow
volumes were approximately three times base-flow. The event
resulted in observable disturbances in water temperature, DO,
PO3�

4 , NO�
3 , (Fig. 2), and NHþ

4 and DOC (not shown) around day 198.
Water column chemical gradients for PO3�

4 , NO�
3 , NH

þ
4 , and DOC

were also disrupted; hypolimnetic PO3�
4 fell to < 100 mg m�3 and

upper water column (0e10 m) NO�
3 increased by w100 mg m�3,

while lower water column (10e20 m) NO�
3 decreased

by w 100 mg m�3, possibly indicating the entrainment of hypo-
limnetic nutrients into the epilimnion. Even though daily inflow
data, which included this disturbance event, were used to drive the
model, we did not see the disturbance expressed in model
predictions. We speculate that three-dimensional effects in the lake
system that were not represented in the 1Dmodel may explain this
discrepancy between observations and predictions.

4.2. Model limitations

Ecosystem models are simplifications of the systems they
represent, and cognizance of the limitations of a model permits the
user to make more informed interpretation of model behavior.
Some aspects of model setup and configuration thatmay contribute
to the prediction accuracy of short-term phytoplankton dynamics
in this study are explored below, and include spatial dimension-
ality, time-step calculation, and representation of biological state
variables.
Patterns detected by automated high-frequency observations
and not reproduced in the 1D model e for example, the event
beginning day 198- may represent spatial heterogeneity in the
horizontal dimension (Fragoso et al., 2008; Platt et al., 1970; Steele
and Henderson, 1992) or vertical dynamics not accounted for in the
model (e.g. those described and modeled by Serizawa et al., 2010).
Hillmer et al. (2008) established an index for validation of the 1D
assumption of horizontal homogeneity of phytoplankton:

L ¼ ðk=mÞ1=2 (6)

where L is the characteristic length scale at which phytoplankton
growth is offset by diffusion, k is horizontal diffusivity and m is the
net growth rate of phytoplankton. According to this index, phyto-
plankton patch size will exceed lake area when k/m >> (basin
scale)2 and a 1D assumption of homogenous phytoplankton
distribution is valid. When k/m << (basin scale)2, patch size will be
localized and the 1D assumption violated by horizontal concen-
tration gradients (Hillmer et al., 2008). By bracketing potential
horizontal diffusivity coefficients for Lake Mendota within ranges
measured in systems of comparable area (0.02e0.3 m2 s�1, Peeters
et al., 1996) and assuming net growth rate of 1.0 d�1, a basin scale
length of 6 km (Yuan, 2007), L2 >> k/m, and the 1D assumption is
not met. Thus, the variability in high-frequency observations we
detected across some temporal scales may be in part due to hori-
zontal heterogeneity, e.g. phytoplankton patchiness due to physical,
chemical, or biological heterogeneity. When three dimensions are
collapsed into one, and a model is calibrated to 1D observational
data, spatial heterogeneity is effectively subsumed into the mean
seasonal value for the training period. As with other dynamic
models, caution must be exercised when applying the calibrated
parameters outside of the training period, as a new set of spatially
heterogeneous conditions may subsequently be at play (Hillmer
et al., 2008). Kamarainen et al. (2009) used a 3D hydrodynamic
model for LakeMendota to investigate the contribution to P loading



Fig. 7. Simulated and observed chlorophyll-to-carbon (Chl:C) ratios over a range of
time scales. Chl:C for Aug 4 2008 is a mean of hourly values for the simulation and
a single combined observation of biomass and chl-a.
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of hypolimnetic entrainment; for that purpose, the authors found
that single-location sampling to estimate average hypolimnetic P
entrainment was sufficiently similar to multi-location sampling
averages. For investigating the more complex processes of nutrient
advection and biological response, a 3D modeling and sensing
approach (as described by Vos et al. (2003)) would provide
a powerful dataset for evaluating temporal and spatial predictions
of a 3D model for the Lake Mendota system, but is nevertheless
outside of the scope of this paper.

Likewise, the effects of the temporal resolution used in the
model should be considered. The relationship between model
calculation time step and prediction accuracy across time scales is
unknown and deserves further investigation, particularly for short-
term variation on the order of hours to days. Here, we used 1 h
driver data and investigated predicted patterns at scales as short as
3 h. However, many high frequency environmental variables are
measured at scales of seconds to tens of minutes on many plat-
forms, which could provide a convenient test for time-step effects.

Surprising differences between predicted and observed chloro-
phyll-a in the time and frequency domains motivated a closer
inspection of the configuration of the biogeochemical model. Here,
and typically among published studies of CAEDYM, the model was
configured with static chlorophyll-a:C ratios (chl:C) and fixed
internal C content for each phytoplankton functional group. Under
this configuration, predicted water column chl-a concentration is
derived from predicted phytoplankton biomass and varies only as
a function of functional group composition of biomass and total
biomass. We used the long-term NTL LTER dataset to explore the
validity of a static chl:C ratio assumption for this system (Fig. 7). A
range of two orders of magnitude of chl:C ratios was calculated for
this system between 1999 and 2008. Predicted chl:C ratios are closer
to the decadal median values than to those observed at the annual,
seasonal, and daily scales. Although fixed chl:C ratios are used to
derive chl-a concentration by the model, chl:C ratios are known to
varywith cell age, across species, andwith variations in temperature,
nutrient, and light (Geider, 1987; Reynolds, 2006). For our simula-
tions, chl-a concentration was overestimated by model output from
the first day of the simulation; overestimates of chl:C ratio may
explain some deviation of model fit with observations. But, had
a fixed chl:C ratio been assigned to fit initial conditions of observed
chl-a, it is likely that chl-a goodness-of-fit would be poor later in the
simulation. Likewise, the poor correspondence of observed and
predictedphytoplankton functional group biomass in units of carbon
concentration could be due inpart to the introduction of error and/or
uncertainty in observation, introduced by the static configuration of
chl:C ratios used for converting microscopic cell counts to carbon
units (parameters shown inTable 1c), and the de-coupling of DO and
chl-a. As suggested by Flynn (2005b), the use of dynamic chl:C ratios
by aquatic ecosystem modelers may provide more realistic repre-
sentations of chl-a concentrations, especially relevant to those using
in situ, in vitro or in vivo chl-a measurements as a proxy for phyto-
plankton biomass, but is beyond the scope of this paper.

4.3. The challenges of multiple phytoplankton quantification
methods

The challenges of mapping multiple types of observational data
onto one or two state variables or derived variables in the model
have been encountered by others (e.g. Rigosi et al., 2011), and
requires closer consideration of the relationship between observa-
tional data, model configuration and the use of multiple types of
observational data (Flynn, 2005a). We focus here on model predic-
tions of phytoplankton biomass and chl-a concentration, and
compare them against three types of phytoplankton observations:
(1) manual taxonomic identification to estimate biomass in units of
carbon concentration [g C m�3] and referred to as ‘biomass’ here-
after; (2) in vitro laboratory solvent extraction and spectrophoto-
metric or fluorometric analysis of chl-a concentration, ‘in vitro chl-a’
hereafter; and (3) in situ optical chlorophyll fluorometry, ‘in situ chl-
a’ hereafter. Each method has well-documented strengths and
limitations (e.g. Gregor and Marsalek, 2004; Kepner and Pratt, 1994;
Marra, 1997). We consider some challenges associated with the use
of multiple methods for validation data in more detail below.

In vitro chl-a, in situ chl-a fluorescence, and biomass estimates
from microscopy are all used routinely in comparison to model
predictions, and we determined how these three variables linearly
correlate to one another in this system. In Lake Mendota, long-term
(1995e2008) biomass and in vitro chl-a concentration were posi-
tively and significantly correlated (R2 ¼ 0.400, n ¼ 195). The
correlation coefficient between in situ chl-a RFU to manual in vitro
chl-a concentration in 2008 between days 175 and 270 (where both
were measured/collected at 0.5 m at the same location) was weak
(R2 ¼ 0.06, n ¼ 17, in situ fluorescence hourly average for the date
and time corresponding to sample collection). These observations
indicate that while biomass estimated frommicroscopy and in vitro
chl-a concentrations are correlated, in situ chl-a fluorescence is not
linearly correlated to in vitro chl-a. This is not surprising given the
documented methodological limitations of chl-a fluorescence (e.g.
Fuchs et al., 2002; Heaney, 1978). Despite these limitations, fluo-
rescence remains as one of the only practical methods of measuring
short-termvariability of chl-a. Our results further show that in vitro
chl-a and in situ fluorescence are not interchangeable for Lake
Mendota, and the use of one or another should be intentional.

Goodness-of-fit statistics indicated that model prediction of chl-
a concentration was better represented by in situ chl-a fluorescence
better than in vitro solvent-extracted chl-a measurements (Table 2).
This finding is notable because in vitro chl-a concentration e as an
estimate of pigment concentration e is conceptually more similar to
model predictions of chl-a concentration than in situ chl-a fluores-
cence, which is a quantification of the emission intensity (and
photosystem II photochemical efficiency) of chl-a within cells in
whole water. Deriving more meaningful units of measure for in situ
chl-a fluorescence data requires calibration of in situ data to in lab
extracted in vitro chl-a concentration, but would also introduce
assumptions about the relationship between in vivo and in situ chl-
a (Falkowski and Kiefer, 1985). Gregor et al. (2005) suggested that in



a

c

b

Fig. 8. The effect of modifying key CAEDYM parameters in the time and frequency domains on simulated variables temperature (a), dissolved oxygen (b), and chl-a (in units of
g C m�3) (c) as assessed by global wavelet analysis.
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situ pigment fluorescence measurements should be the source of
quantitative data and that taxonomic identification should be used
to provide detailed taxonomic information about dominant phyto-
plankton taxa. In consideration of the frequency of manual sampling
to inform automated data, or the use of automated high-frequency
data at all, requirements for sample transport, analyst expertise,
lab reagents and instruments must be balanced against the cost of
sensors, platforms, and maintenance. Likewise, the optical proper-
ties of chl-a such as fluorescence yield, photo-adaptation and non-
photochemical quenching must be acknowledged (Marra, 1997).
Other types of automated sensing technologies (e.g. PHYTO-PAM,
image-based monitoring and in situ flow cytometry) are being
developed and in some cases are available (Shade et al., 2009), and
may fill a gap in high-frequency biological data in the future.

4.4. Improving model parameterization using wavelet analysis

A few important model parameters estimated from long-term
observational data led to unrealistic lake chemical predictions.
Observation-based estimation of two ecologically relevant param-
eters was unsuitable: sediment oxygen demand (KSOD) and sedi-
ment PO�3

4 flux ðSPO4Þ. Both estimates from field observationswere
too high for model use, as they caused excessive depletion of
hypolimnetic DO and buildup of hypolimnetic PO�3

4 . Thus, these
variables were manually calibrated: the final user-defined KSOD

value was 0.46 g m�2 d�1, approximately half of that estimated by
Brock (1985), and only 6% of the estimate from historical hypo-
limnetic DO data (Table 1a). The final user-defined SPO4 value was
0.0125 g m�2 d�1; published laboratory estimates for SPO4 in Lake
Mendota were approximately six-fold greater than this value
(Holdren and Armstrong, 1980), and three-fold greater than our
estimates from historical hypolimnetic PO3�

4 (Table 1a). These two
processes are chemically and biologically relevant in a thermally
stratified eutrophic lake and the inconsistency between observed
rates from laboratory experiments or estimation from field obser-
vations and final model parameter values could be due to error
derived from heterogeneous hypolimnetic nutrient concentrations
or biomass accumulation in hypolimnetic waters. Alternatively,
these parameters may be estimated correctly, but model processes
(e.g. 1D layer averaging) may be flawed.

To investigate the effects of parameterization onwavelet spectra
in the frequency domain, we altered the values of three CAEDYM
parameters that have strong control over key physical, chemical
and biological variables. Temperature, PO3�

4 concentration, and
phytoplankton biomass are sensitive to DOC-derived light attenu-
ation (Kd DOC: standard value 0.15 g�1 m3 m�1, low 0.0075, high
0.03), sediment PO3�

4 flux (SPO4: standard value 0.0125 g Pm�2 d�1,
low 0.06, high 0.025), and Minres, the minimum biomass below
which zooplankton do not graze (standard value 0.01 g C m�3-, low
0.0, high 1.0), respectively. Model output for temperature and DO
were robust to changes in values (data not shown), but mean values
of chl-a concentrationwas sensitive to a range of parameters tested
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(Fig. 8). The sediment PO�3
4 flux term had the strongest effect on

chl-a of the three parameters tested here, likely due to the limita-
tion of phytoplankton growth by dissolved inorganic P. This
observable relationship between parameter scaling and mean
seasonal values in the prediction makes calibration of the model to
long simulations of years to decades tractable. However, repro-
ducing temporal dynamics, both in terms of the timing of critical
peaks (e.g., phytoplankton blooms) and the sub-seasonal cycles of
the ecosystem is much more challenging. For phytoplankton
biomass, patterns of variation in the frequency domain did not
respond substantially to parameter optimization (Fig. 8a and b), in
contrast to the average seasonal value, which was more sensitive to
parameters values (Fig. 8c). The frequency response may be a result
of the configured model complexity (e.g., number of trophic levels
used) or the design of the model (e.g., functional forms of the
fluxes). For the sensitivity analysis of these three parameters, our
preliminary results indicate differential response of state variables
in the time versus frequency domains; wavelet analysis could be
a tool complementary for calibration techniques such as those
described by Makler-Pick et al. (2011) or Rigosi et al. (2011).

5. Conclusion

We used high-frequency water quality data to assess the
prediction accuracy of an aquatic numerical model over multiple
temporal scales using wavelet analysis. Traditional goodness-of-fit
metrics indicated physical predictions were more accurate than
chemical and biological variable predictions. Wavelet analysis
confirmed these findings in the frequency domain and added
information about the scales at which patterns were reproduced.
Physical predictions were more accurate at all scales assessed, while
chemical and biological patterns were reproduced over a smaller
range of scales. Wavelet analysis of in situ data is particularly rele-
vant for the assessment of short-term predictions such as phyto-
plankton bloom events, and represents a new domain within which
numerical models can be calibrated and validated.

Consideration of spatial heterogeneity is important for interpre-
tation of biological observations and predictions in this system and
deserves further study. There are physicalechemicalebiological
interactions likely not well represented in our model, and identi-
fying what these are and how they operate at the ecosystem scale
over scales of hours to weeks is critical, especially when trying to
reproduce ecosystem frequency response. Investigation of how
variance scales with mean values of temperature, dissolved oxygen,
pigment fluorescence, and other high-frequency variables measured
by automated sensing platforms would increase understanding of
model and system behavior and aid interpretation of results. A better
understanding of automated sensing of biological variables and their
relationship to model output will improve the utility of aquatic
ecosystem models. Further research is required to understand how
model complexity and predictive capability interact with the type
and frequency of observed variables.

Our work highlights the challenges of reconciling multiple
observational methods (e.g. phytoplankton biomass and various
estimates of chlorophyll as a proxy for biomass) and we show that
results and subsequent interpretation may not be independent of
commonly used methods. These differences reveal the need for
a better understanding of how and why various methods diverge,
and what useful information can be drawn from them.

Using data from sensor networks gave us a unique opportunity
to evaluate the model at highly resolved time scales. For the aquatic
modeling community, high-frequency sensing represents a step
change for observational datasets with which to use for calibration
and validation of aquatic ecological simulations. Most aquatic
modelers use daily or sub-daily calculations, but predictions are
usually presented at the frequency of observational data. The
observational and analytical framework presented here sets the
stage for future work that will doubtless include more high-
frequency sensing data and, by necessity, involve a closer inspec-
tion of model behavior at high frequencies. Closer inspection will
reveal surprises (e.g. the de-coupling of dissolved oxygen and
primary productivity presented in this work), but we believe
learning more about model behavior at all temporal scales of
interest will advance the science of aquatic ecosystem simulations.
Wavelet analysis allowed us to enter a new domain- frequency,
leading to insight into the relationships between observations and
model predictions. Now that such data are becoming more readily
available, we anticipate new discovery of ecosystem processes that
not only informs model development but also improves our
prediction at scales pertinent to those of phytoplankton dynamics
in eutrophic systems.
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