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Abstract Lakes are sentinels of change in the landscapes

in which they are located. Changes in lake function are

reflected in whole-system metabolism, which integrates

ecosystem processes across spatial and temporal scales.

Recent improvements in high-frequency open-water

metabolism modeling techniques have enabled estimation

of rates of gross primary production (GPP), respiration (R),

and net ecosystem production (NEP) at high temporal

resolution. However, few studies have examined metabolic

rates over daily to multi-year temporal scales, especially in

oligotrophic ecosystems. Here, we modified a metabolism

modeling technique to reveal substantial intra- and inter-

annual variability in metabolic rates in Lake Sunapee, a

temperate, oligotrophic lake in New Hampshire, USA.

Annual GPP and R increased each summer, paralleling

increases in littoral, but not pelagic, total phosphorus

concentrations. Storms temporarily decoupled GPP and R,

resulting in greater decreases in GPP than R. Daily rates of

GPP and R were positively correlated on warm days that

had stable water columns, and metabolism model fits were

best on warm, sunny days, indicating the importance of

lake physics when evaluating metabolic rates. These

metabolism data span a range of temporal scales and

together suggest that Lake Sunapee may be moving toward

mesotrophy. We suggest that functional, integrative met-

rics, such as metabolic rates, are useful indicators and

sentinels of ecosystem change. We also highlight the

challenges and opportunities of using high-frequency

measurements to elucidate the drivers and consequences of

intra- and inter-annual variability in metabolic rates,

especially in oligotrophic lakes.

Keywords Gross primary productivity (GPP) � Net
ecosystem production (NEP) � Respiration (R) �
Metabolism � Storms � Lakes � Temporal variability

Introduction

Lake metabolism is an integrative measure of ecosystem

function that represents the production and aerobic con-

sumption of organic carbon (C); in many respects,

metabolism defines the trophic state of the ecosystem

(Odum 1956). Estimates of lake metabolism can inte-

grate signals of complex anthropogenic changes within

and beyond the broader lake catchment (Williamson

et al. 2009; Adrian et al. 2009), and as such, are sen-

tinels (sensu Williamson et al. 2009) of environmental

change in lakes. Lake metabolism is typically summa-

rized by three rates: gross primary production (GPP),

ecosystem respiration (R), and net ecosystem production

(NEP; also known as net ecosystem metabolism). GPP is

the rate at which phytoplankton, benthic algae, various

prokaryotes, and submerged macrophytes create organic

C from inorganic C using light energy via
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photosynthesis, R is the rate at which that organic C is

respired, and NEP is the balance between rates of pro-

duction and respiration in a lake. A negative NEP

indicates that R exceeds GPP and suggests a use of

external sources of organic C, whereas a positive NEP

indicates that GPP exceeds R, with the excess fixed C

available for storage in the lake sediments, non-biologi-

cal oxidation, or export downstream (Lovett et al. 2006).

Thus, metabolism estimates can provide indices of

change in biological production in a lake over multiple

time scales, as well as indicate whether lakes are net

heterotrophic (-NEP) or autotrophic (?NEP).

Traditionally, metabolism has been estimated directly

from bottle incubations or diel oxygen fluctuations using a

‘bookkeeping’ calculation (Odum 1956; Cole et al. 2000;

Staehr et al. 2010). Advances in high-frequency dissolved

oxygen sensor technology (e.g., Staehr et al. 2012;

Weathers et al. 2013), increased metabolism model com-

plexity, and use of parametric statistical techniques (van de

Bogert et al. 2007; Hanson et al. 2008) have improved the

spatial and temporal resolution of metabolism estimates.

These advances have enabled new discoveries about the

role of lakes in the global C cycle (e.g., Solomon et al.

2013), controls on metabolism (Hoellein et al. 2013), and

spatial variability of metabolism within lakes (Van de

Bogert et al. 2012). Furthermore, these rapidly-developing

techniques have facilitated investigation of the variability

of metabolism at finely-resolved spatial (Klug et al. 2012;

Van de Bogert et al. 2012) and temporal (Hanson et al.

2008; Solomon et al. 2013) scales.

New ‘‘open-water’’ metabolism modeling techniques are

dependent on fitting high-frequency daily oxygen curves

with a model that includes parameters representing rates of

gross primary production and total respiration, as well as

some empirical estimates of physical fluxes of oxygen

across the water–air boundary. To date, most lake meta-

bolism studies using these techniques have focused on

temporal variation based on measurements made in the

epilimnion and restricted to one year time periods (e.g.,

Carignan et al. 2000; Sadro et al. 2011; Klug et al. 2012;

Solomon et al. 2013; Morales-Pineda et al. 2014), in part

because the deployment of high-frequency sensors is a

recent phenomenon (Weathers et al. 2013). In the few

studies when metabolism was estimated across multiple

years in lakes, rivers, or estuaries, metabolic rates were

linked to anthropogenic nutrient loading (Uehlinger 2006)

and climatic variation (Roberts et al. 2007; Staehr and

Sand-Jensen 2007; Einola et al. 2011; Laas et al. 2012;

Caffrey et al. 2014; Roley et al. 2014). Here, we expand

upon these earlier studies to intensively investigate the

patterns of metabolism over longer-term scales (i.e.,

[5 years) in a large, oligotrophic lake that has not expe-

rienced directional climate variation (Carey et al. 2014).

Many environmental factors control metabolic rates in

lakes at different temporal scales. For example, at the daily

scale, photosynthetically-active radiation (PAR) is one of

the primary controls on GPP and NEP, as phytoplankton

respond to the diel cycle of fluctuating PAR over 24 h

(Hanson et al. 2006; Langman et al. 2010; Silsbe et al.

2015), whereas temperature is a primary control on R

(Yvon-Durocher et al. 2012). Seasonal variability in

metabolism could be driven by changes in temperature or

light (Hanson et al. 2006; Langman et al. 2010; Laas et al.

2012), plankton abundance and succession (e.g., phyto-

plankton blooms, the zooplankton clear water phase), as

well as by storms (Jennings et al. 2012; Klug et al. 2012;

Staehr et al. 2012). For example, Klug et al. (2012)

detected a decoupling of GPP and R in seven lakes in

northeastern North America during and after Hurricane

Irene in 2011, likely due to increased physical mixing and

nutrient and organic matter entering the lakes from their

catchments. At the inter-annual scale, variation in meta-

bolic rates could be due to broader changes in climate or

the catchment that alter subsidies of nutrients or organic

matter. For example, if nutrient loads to a lake increase, the

lake may exhibit increased GPP (Wetzel 2001), or, if the

frequency and intensity of storms increase, GPP and R may

become increasingly decoupled (e.g., Klug et al. 2012).

Oligotrophic lakes provide an interesting opportunity to

study metabolism at different time scales. This is, in part,

because of their high sensitivity to nutrient and organic

matter loading (Wetzel 2001). It may be difficult to detect

the first signals of eutrophication in an oligotrophic lake

with weekly or monthly sampling of standard limnological

trophic state indicators (e.g., chlorophyll a concentrations,

Secchi depth, nutrient concentrations; Carlson 1977).

Incipient eutrophication may be better tracked using high-

frequency GPP, R, and NEP. However, open-water meta-

bolism models have not proven entirely effective for

analysis of oligotrophic lake metabolism because models

can sometimes predict oxygen concentrations that poorly

match observed data (McNair et al. 2015). Further, due to

subtle diel variation in oxygen concentrations in olig-

otrophic lakes, physical processes may overwhelm the

biological signal. For example, in a global survey of

metabolic rates across 25 lakes, two oligotrophic systems,

Lake Sunapee, New Hampshire, USA and Sparkling Lake,

Wisconsin, USA, had many days with near-zero estimates

of GPP and R (Solomon et al. 2013). Traditional open-

water metabolism models may need modification to cap-

ture diel fluctuations in GPP and R in lakes with low

productivity (McNair et al. 2015).

Here, our overarching goal was to study the temporal

variability in metabolism of oligotrophic Lake Sunapee, a

deep, clear-water lake. Lake Sunapee has a unique, seven-

year record of high-frequency oxygen data, enabling
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examination of metabolism at daily, weekly, monthly, and

annual time scales. We asked three questions: (1) How do

GPP, R, and NEP vary at both intra- and inter-annual time

scales in this oligotrophic lake? We predicted that GPP and

R would generally be strongly coupled and low relative to

rates estimated in mesotrophic and eutrophic lakes (Solo-

mon et al. 2013) and that NEP would usually be negative,

given low algal production (Hanson et al. 2004; Solomon

et al. 2013). (2) What are the effects of storms on metabolic

rates? We predicted that storms would decrease GPP and

increase R, thereby decoupling the two rates (Klug et al.

2012). (3) What environmental drivers are correlated with

variability in metabolism at different time scales? At the

daily scale, we predicted that increased mixing in the water

column would reduce the magnitude of GPP, whereas PAR

would increase GPP. We predicted that R would be linked

to temperature (e.g., Yvon-Durocher et al. 2012) and that

NEP would be negative (net heterotrophic) in a system

with low algal biomass (Cole et al. 2000). Seasonally, we

expected that storms would play a large role in driving GPP

and R as described above, and annually, we expected that

inter-annual variability in nutrient concentrations would be

positively associated with GPP and R.

Methods

Site description

We examined multi-year metabolism dynamics in Lake

Sunapee (438240N, 72820W), an oligotrophic lake located in

central New Hampshire, USA (Fig. 1). Lake Sunapee has a

surface area of 16.6 km2, a volume of 1.59 9 109 m3, a

mean depth of 11.2 m, a maximum depth of 33.7 m, a

maximum fetch of 9.1 km (Carey et al. 2014) and a resi-

dence time of 3.1 years. The dimictic lake is ice-covered

from December or January through March, April, or May

(Bruesewitz et al. 2015) and exhibits thermal stratification

in summer months with a maximum thermocline depth at

*6–8 m depth (Carey et al. 2014). Lake Sunapee is con-

sidered a clear-water lake and summer epilimnetic dis-

solved organic C (DOC) concentrations are\2.5 mg L-1

(Solomon et al. 2013). The Lake Sunapee catchment is

123 km2 with the majority of surface cover in forest

(80 %), open water, and wetland (combined, 90 %) and

small proportions of urban (6 %) and agricultural land use

(4 %) (K. C. Weathers, unpubl. data).

Buoy description

The Lake Sunapee Protective Association (LSPA; lake-

sunapee.org) deployed a monitoring buoy associated with

the Global Lake Ecological Observatory Network (GLEON;

gleon.org) near Loon Island lighthouse in late August 2007

(Fig. 1). The buoy location was chosen as representative of

the lake, subject to boat navigation constraints (LSPA pers.

comm.). The buoywas outfittedwithmultiple environmental

sensors including air temperature, wind speed, water dis-

solved oxygen at 1 m depth, and a thermistor string from 1 to

14 mdeep recording data every 10 min (seeKlug et al. 2012;

Bruesewitz et al. 2015 for all sensor descriptions). In most

years, the buoy was removed from the lake in October or

November to prevent ice damage and redeployed in April or

May every year. We focused on the summer period from 20

May to 15 October 2007–2013, when the buoy was anchored

at *15 m depth (Fig. 1). To make inter-annual compar-

isons, we used data for which we have a complete summer

record from 2008 to 2013 because most data are missing

from summer 2007 prior to buoy deployment.We did not use

data from 2009 because the buoy had been severely damaged

by ice in the preceding winter and data were not collected

from 20May to 29 July 2009. There were no other multi-day

Fig. 1 Bathymetric map of Lake Sunapee, New Hampshire, USA.

The triangle represents the location of the pelagic Lake Sunapee

Protective Association GLEON buoy, and the circle denotes the

location in Herrick Cove where littoral sampling occurred
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gaps in the dataset except for a 15-day period (27 August–10

September 2013) when the buoy was taken offline to add

additional sensors.

Data quality assurance and quality control process

for streaming data

All buoy sensor datasets were carefully examined using a

standardized quality control/quality analysis process simi-

lar to that described in Bruesewitz et al. (2015). The DO

sensor, as expected, was subject to drift throughout each

year. Manually-collected monthly DO profiles with a

HQ40 Hach multi-parameter meter (Hach Inc., Loveland,

CO, USA) at the buoy site during 2007–2013 confirmed

that the lake was at or near saturation at 1 m depth

throughout the May–October monitoring period (LSPA,

unpubl. data). To correct for sensor drift, we compared the

measured buoy sensor DO with the saturated DO concen-

tration calculated from the water temperature at 1 m depth

and the mean atmospheric pressure for each day, following

Weiss (1970). We subtracted those two DO concentrations

to calculate a correction factor for all raw buoy sensor DO

values for each day. The corrected DO values consistently

compared well to the manually collected DO concentra-

tions (n = 18 across all years, r = 0.69, p = 0.002).

Metabolism model

Open-water modeling techniques fit a model with daily

metabolic rates as parameters to observed curves of diel

oxygen concentrations (Van de Bogert et al. 2007), which

are usually small in oligotrophic lakes. Therefore, we

modified existing modeling techniques to calculate meta-

bolic rates for Lake Sunapee (see below). We also com-

pared the modified modeling techniques to the traditional

bookkeeping techniques.

DO dynamics were calculated for each day using a

simple model (Odum 1956; Van De Bogert et al. 2007;

Solomon et al. 2013):

dO2

dt
¼ GPP� Rþ D ð1Þ

where dO2 dt
-1 is the rate of change in the DO concen-

tration at the 1 m DO sensor, GPP is the mean daily rate of

photosynthesis (mg O2 L
-1 day-1), R is the mean daily

rate of respiration (mg O2 L
-1 day-1) and D is exchange

of DO with the atmosphere (see Eq. 3 below). Every

10 min (the frequency of the sensor measurements), the

DO dynamics were modeled as follows:

Ytþ1 ¼ Yt þ g� It � r þ Dt þ ct ð2Þ

where Yt?1 and Yt are the DO concentrations at time t ? 1

and t respectively, g is the parameter describing the

average rate of photosynthesis per unit of irradiance at time

t (It), r is the average rate of respiration, and Dt is the

atmospheric flux of DO, and ct is the process error. The flux
of oxygen between the lake water and the atmosphere (Dt)

was calculated at each 10-min time step as follows:

Dt ¼ dt � �ktð Þ � ðYt � StÞ / zt ð3Þ

where zt is the mixed layer depth calculated from the water

density gradient (Coloso et al. 2011); dt is a binary variable

coded as 1 if the DO sensor is shallower than the mixed

layer depth (zt), indicating that DO can exchange with the

atmosphere, or 0 if the DO sensor is deeper than zt and

atmospheric exchange is prevented;, kt is the piston

velocity of O2 calculated for each 10-min time step using

wind speed in an empirical model from Cole and Caraco

(1998); and St is the saturation concentration of DO given

the water temperature and local average atmospheric

pressure (Weiss 1970). For each day, g and r were scaled

up to average daily rates (GPP and R). We assumed min-

imal diffusive exchange of DO between the epilimnion and

hypolimnion, which is supported by multiple profiles of

DO throughout our study period with an average difference

of 1 mg/L of DO (n = 26 over the 7 year period) between

the epilimnion and hypolimnion (Online Resource 1).

For 2007–2013, we modeled biological parameters

(GPP and R) using an inverse open-water modeling tech-

nique (hereafter, ‘‘modeling’’ method) through the opti-

mization of the statistical metabolism model (Eq. 2) with a

maximum likelihood method (Van de Bogert et al. 2007;

Hanson et al. 2008; Solomon et al. 2013). We acknowledge

the potential for autocorrelated residuals because a

smoothed model often cannot closely follow the irregular

variability in a time series (see ‘‘Results’’ below for

examples). Unlike the maximum likelihood technique,

least-squares methods do not require the assumption of

independent residuals when estimating parameter values.

However, even if the residuals are autocorrelated, the

maximum likelihood technique produces the same param-

eter estimates as least-squares methods if the residuals are

assumed to be normally distributed with a mean of 0

(McNair et al. 2013). Additionally, modeling an autocor-

relation term from the residuals resulted in non-autocor-

related residuals but did not change the estimates of

metabolic rates (Van de Bogert et al. 2007). All analyses

were conducted in the R statistical environment (v. 3.0.2, R

Development Core Team 2013). GPP was modeled as a

linear function of the above-lake irradiance (Hanson et al.

2008). If the mixed layer depth was above the DO sensor at

1 m, then no atmospheric gaseous exchange (i.e., Dt = 0)

was considered for that time step (Solomon et al. 2013).

We did not include temperature dependence in the model

because we wanted to test for the effects of temperature on

model fits (see below). We ran optimization code for each
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day in the months May to October to select the best

modeled metabolic rates (GPP and R) for Eq. 2 using the

Nelder-Mead optimization algorithm (Solomon et al. 2013)

that minimized the negative log-likelihood between the

modeled DO concentrations and the observed DO data

(Van de Bogert et al. 2007). The fluxes calculated for each

time step of the model were adjusted from mass flux per

time step (10 min; Eq. 2) to mass flux per day (Eq. 1) by

multiplying by the number of time steps in each day.

Modifications to the metabolism model

Despite parameter convergence and successful optimiza-

tion of the metabolism model, the modeled DO did not

always accurately predict observed DO curves. For exam-

ple, on many days, daily GPP and R approached zero (e.g.,

\10-6 mg O2 L
-1 day-1) and were not ecologically

realistic rates, but mere artifacts of model optimization. To

prevent the use of erroneous metabolism estimates in our

analyses, we made several modifications to the metabolism

model described by Solomon et al. (2013) and added a final

check on model fits.

For each day starting 1 h before sunrise, the initial

modeled DO concentration was calculated from the mean

DO concentration from the first hour of measurements.

This reduced the effect of initial conditions that may result

from non-metabolism processes that lead to high frequency

noise in the data. Second, we extended each modeled day

from 24 (sunrise to sunrise) to 26 h by including 1 h before

and after the initial and final sunrises. This extension was

made to include dawn periods of low light prior to the

calculated sunrise. Third, on several days, there was high

variability in DO concentration immediately following

sunrise for 1–5 h, depending on the day. We could not

clearly identify the mechanism for this atypical part of the

diel curve, but it has been noticed by others and may be a

result of microstratification, rapid surface temperature

change, sunlight hitting the sensor from low angle, or

biofouling (I. Jones and C. McBride, pers. comm.). We

examined the individual metabolic rates and model fits

without the 0–5 h following sunrise. If all early morning

hours were included in the model for days that exhibited

large variability in DO concentration, the modeled DO line

was often erroneously flat, despite an observed diel curve.

Importantly, when all early morning hours were included,

the model failed to represent DO dynamics during the

remaining 21 h of the day. We analyzed the difference in

metabolism model fits for each day by sequentially

removing 0, 1, 2, 3, 4 and 5 h of data post-sunrise and

found that the models with all 5 h excluded gave the best

representation of observed DO dynamics (see ‘‘Results’’

below). To eliminate this source of data variability, which

was not explicit in the daily metabolism model, we

conservatively removed 5 h following sunrise for all days;

the metabolic rates were estimated using the remaining

21 h of data. We present a sensitivity analysis and

description of removing the 5 h following sunrise com-

paring to removing 0 h in the ‘‘Results’’ section.

Finally, we developed a protocol to exclude the

remaining days with unrealistic GPP and R model esti-

mates, based on visual assessment of plots of observed and

modeled DO curves, the DO residuals, wind, and PAR.

This protocol entailed independent examination of all of

the data (observed and modeled), residuals, and fit statistics

(R2, AICc, and residual sums of squares) by three of the

authors (DCR, CCC, and DAB), who used the data to

assign the model fit for each day as acceptable or unac-

ceptable (see ‘‘Results’’). All three independent assess-

ments of the model fits were compiled, and showed strong

agreement (all pairwise ranks were highly correlated at

r[ 0.74). If two or more authors determined that the

model fit was unacceptable, then the GPP and R estimates

for that day were conservatively removed from all future

analyses. The independent assessments of this suite of data

were necessary because numerical criteria alone often did

not distinguish between acceptable and unacceptable fits,

primarily as a result of the large number of data points used

to generate each model fit. We note that this protocol

ensured that the final dataset was conservative, excluding

some model fits that would have been included with

numeric criteria alone.

Following our metabolism analyses, we used logistic

regression to determine which environmental conditions,

including physical metrics of thermal stratification and

weather (see ‘‘Drivers of daily metabolism’’ below),

altered the likelihood of an acceptable or unaccept-

able metabolism model fit across the monitoring period.

Acceptable and unacceptable model fits were coded as

‘1’ or ‘0’, respectively, from the analysis above. We

focused on univariate relationships in logistic regression

models between model fits and driver variables, which

were aggregated at a daily scale as described above,

because many of the driver variables were correlated

with each other. We ranked the environmental predictors

that exhibited corrected AIC (AICc) values that were

within 11 units of the top model fit (Burnham et al.

2011). All logistic regressions were analyzed in JMP Pro

(v. 11.0, SAS Institute, Cary, NC).

Inter-annual trend analysis

We calculated a new metabolism time series for each May–

October year based on GPP and R temperature-corrected to

20 �C following Eq. 3 in Venkiteswaran et al. (2007). For

each day, NEP was calculated as the difference between

temperature-corrected GPP and R. The autocorrelation
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(ACF) and partial autocorrelation (PACF) functions for all

three metabolic rates for each year indicated significant

autocorrelation, especially at the 1–3 day lag for all mod-

els. We then calculated autoregressive models separately

for each year and each temperature-corrected metabolic

rate using the auto.arima function in the R software fore-

cast package (Hyndman and Khandakar 2007). We calcu-

lated the annual average by using a regression that fit a

constant (the year’s mean) and then modeled the residuals

as an ARIMA process with the possibility for drift for non-

stationary data (Hyndman and Athanasopoulos 2012).

Following model selection for each metabolic rate and

year, we recorded the annual mean and standard error. For

2010 to 2013, we used simple linear regression for each of

the metabolic rates in the R statistical environment to

assess inter-annual trends in metabolic rates.

Drivers of daily metabolism

We used the buoy data to calculate a number of physical

lake metrics at the 10-min scale using thermistor data,

including buoyancy frequency, lake number, and Schmidt

stability of Lake Sunapee during the monitoring period

(Read et al. 2011; Bruesewitz et al. 2015). We obtained

precipitation and air temperature data for 20 May to 15

October for 2008–2013 from the National Climate Data

Center (NCDC) website (ncdc.noaa.gov/cdo-web/search,

last accessed on 14 October 2014) for Newport, New

Hampshire, which is 10 km from the LSPA buoy. Baro-

metric pressure, wind, and air temperature data from the

Lebanon Airport (Lebanon, New Hampshire, 33 km from

the LSPA buoy) were also compiled for the study period

(Bruesewitz et al. 2015). All sub-data were then aggregated

to the daily scale using multiple summary statistics,

including central tendencies (mean, median) and dispersion

(maximum, minimum, 25th and 75th quartiles, standard

deviation, and coefficient of variation).

We used the suite of physical limnology and weather

variables as correlates with daily metabolism across

2008–2013. We analyzed pairwise Spearman’s rank-order

correlations for each of the environmental variables to

determine if they were significantly associated with GPP,

R, and NEP. For each metabolic rate, we selected the best

model fits as the correlation with the lowest corrected

Akaike Information Criterion (AICc) value and all of the

correlations within 11 AICc units of the top model fit

(Burnham et al. 2011).

We examined the coupling between GPP and R across

all years using least squares linear regression. Because of

the temperature dependence of metabolism processes, we

standardized GPP and R to 20 �C as described above using

the daily mean water temperature measured at the DO

sensor to remove seasonal and daily variability in water

temperature. We compared a 1:1 line with the observed

GPP:R relationship using indicator variable regression

(Kutner et al. 2004), in which the GPP:R line was coded as

0 and the 1:1 line was coded as 1.

Drivers of seasonal metabolism

We identified two types of storms, high precipitation and

wind events, using total daily precipitation (mm) and

maximum daily wind speed (m s-1) data from the National

Climate Data Center (NCDC) website (ncdc.noaa.gov/cdo-

web/search, last accessed on 14 October 2014). We iden-

tified the thresholds for storm events as the days that fell

above the 95th percentile of the precipitation

(n = 938 days) or wind (n = 869 days) distributions, fol-

lowing Jennings et al. (2012). The threshold for the clas-

sification of a storm was 19.5 mm of rain for a

precipitation event and 11.2 m s-1 wind speed for a wind

event. Any day with conditions above either or both of

these thresholds was considered one of three types of

storms: a precipitation event, wind event, or precipita-

tion ? wind event, if both precipitation and wind exceeded

their thresholds on the same day.

Based on initial exploratory analyses, we found that

storms caused relatively short-term effects (i.e., on average

less than 3 days) on metabolic rates before returning to pre-

storm conditions. As a result, we tested the short-term

(3 day) effects of storms on lake metabolism and the

coupling of GPP and R. GPP, R, and NEP were averaged

during the 3 days preceding each storm for pre-storm data;

for post-storm data, we averaged the metabolic rates on the

day of the storm and the two following days. We used

paired t-tests to compare 3 day pre- and post-storm meta-

bolic rates to determine if storms had a significant short-

term effect on metabolism and to see if there were differ-

ential effects of storms on GPP and R.

Bookkeeping technique

We used the traditional technique of estimating metabolism

directly from DO concentrations (hereafter referred to as

the ‘‘bookkeeping’’ method, also known as the ‘‘account-

ing’’ method; Odum 1956; Cole et al. 2000). In short, we

computed NEP for each 10 min time period and assumed

that only R, and not GPP, was occurring at night. We

calculated GPP as NEP for the daylight hours after

accounting for the mean R from the preceding and fol-

lowing nights (Cole et al. 2000).

Drivers of annual metabolism

The LSPA collected water samples at both littoral and

pelagic sites during 1986–2013 for total phosphorus (TP)
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and chlorophyll a analyses, and measured Secchi depth. All

TP and chlorophyll a samples were collected with a Van

Dorn sampler four times every year: once in May, June,

July, and August. Both epilimnetic pelagic and littoral

samples were collected from just below the water’s surface,

and were processed with spectrophotometric methods with

a chlorophyll a detection limit of 0.2 lg L-1 and a TP

detection limit of 5 lg L-1. Following New Hampshire

Department of Environmental Services protocol, all TP

samples\5 lg L-1 were rounded to 5 lg L-1 in their data

records. We recognized that aggregation of these data

would overestimate the true TP concentration, so to reduce

potential bias from applying this detection limit, we

aggregated TP data by year and reported the annual median

epilimnetic TP and chlorophyll a for 1986–2013. We

examined changes in annual median epilimnetic TP, epil-

imnetic chlorophyll a, and Secchi depth between the

pelagic site near the buoy with the littoral site that had the

longest record of data collection, Herrick Cove at the

northeastern inlet of Lake Sunapee (Fig. 1).

Results

Metabolism model fits

From the 2008–2013 dataset of May through October lake-

years, there were 836 days with buoy data; we excluded

108 days when the buoy was not collecting measurements.

Out of the 836 days, we were able to calculate 568 daily

metabolic rates (68 % of days) that met our criteria of

acceptable model fits (Fig. 2). These acceptable daily

metabolic rates included the removal of 5 h following

sunrise, as described above.

To ensure that the removal of 5 h of morning DO data

did not affect the interpretation of our results, we examined

the effects of the data removal on the model parameters

and metabolic rates (Fig. 3). First, when 0 h were removed,

many estimates of daily GPP and R were\0.01 mg O2 -

L-1 day-1, or biologically insignificant (Fig. 3). By com-

parison, the removal of the 5 h had little or no effect on the

modeled parameters and fits for 449/836 days (54 %;

Fig. 3a, b). Consequently, the removal of the 5 h enabled

an acceptable model fit with biologically meaningful GPP

and R estimates for an additional 119 days (Fig. 3c, d). The

remaining 268 days were eliminated as unaccept-

able model fits as described above because the residuals

were not randomly distributed and large relative to other

days, and removing 0 up to 5 h did not improve the fits

(Fig. 3e, f) despite model convergence on GPP and R and

indications from AICc criteria that both Fig. 3 and f were

optimal fits.

Intra- and inter-annual metabolism trends

Within each year, GPP and R simultaneously peaked twice,

first in early June and the second in late summer, typically

in early to mid-August (Fig. 2). Overall, both the vari-

ability and maximum GPP and R within a season increased

over time, especially in 2013, but GPP and R were still

low, with diel DO concentration oscillations generally

\1 mg L-1.
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Fig. 2 Rates of gross primary

production (GPP, open circles)

and respiration (R, closed

circles, plotted on a negative

scale to facilitate viewing) for

Lake Sunapee during May–

October in 2008–2013. In 2009,

the buoy was damaged by ice in

the winter and was removed

from the ice for repairs until 29

July; in 2013, the buoy was

taken offline for 2 weeks in late

summer to add additional

sensors
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Across years, median annual GPP ranged from 0.38 to

0.90 mg O2 L
-1 day-1 and mean annual R ranged from 0.26

to 1.05 mg O2 L
-1 day-1 (Fig. 4a, b). Since 2010, both the

median and maximum GPP and R have increased, while the

median annual NEP decreased from 0.12 to -0.06 mg O2

L-1 day-1. Using the annual means from the time series

analyses, both GPP and R had significant increasing inter-

annual trends from 2010 to 2013, but NEP did not (Table 1).

Over the length of the dataset, NEP indicated net

autotrophy, although values were close to 0 and the linear

trend was not statistically significant. In 2013, annual NEP

was negative for the first year (Table 1). Over the whole

time series, the maximum daily NEP was 0.91 mg O2

L-1 day-1 and the minimum daily NEP was -0.99 mg O2

L-1 day-1 (Fig. 4). On a daily basis, Lake Sunapee was

more often net autotrophic than heterotrophic, with

NEP[ 0 for 66 % of all days and NEP\ 0 for 34 % of all

days. When there were two consecutive days of metabolic

rates available, NEP switched from autotrophy to

heterotrophy or vice versa 39 % of the time.

Acceptable vs. unacceptable model fits: logistic

regression analysis

We identified 21 environmental variables that were sig-

nificantly related to the likelihood of a metabolic rate being

acceptable or unacceptable, as defined by being within 11

units of the minimum AICc value (Table 2). The 21

environmental variables were all related to Schmidt sta-

bility and metrics of air temperature, water temperature,

and PAR.

In general, model fits were significantly more likely to

be acceptable during warm, sunny days: the probability of

an acceptable model fit increased with mean and maximum

PAR and maximum air temperature measured at the buoy
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Fig. 4 Boxplots for a gross primary production (GPP20) and respi-

ration (R20) and b net ecosystem production (NEP20) for each year, all

temperature corrected to 20 �C. The dark line is the median, the box

edges are the quartiles, and the whiskers are the max and min.

Boxplots only include for years with comprehensive data for the entire

May–October lake-year (2008, 2010–2013)
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and the nearby airport. For example, when the mean daily

PAR was 0.1 mM cm-2 s-1, there was a 62 % probability

of an acceptable fit, but when PAR increased to

0.5 mM cm-2 s-1, there was an 82 % probability of an

acceptable fit. Similarly, when the maximum daily air

temperature was 10 �C, the probability of an acceptable fit

was 59 %, but when the temperature increased to 25 �C,
the probability of an acceptable fit increased to 78 %. The

likelihood of an acceptable model fit was also positively

related to higher standard deviations of the sensor tem-

perature, air temperature, PAR, and delta air temperature

and water temperature at the DO sensor within a day

(Table 2).

Drivers of daily metabolism

Over the 2008–2013 time series, several environmental

variables were highly correlated with each of GPP, R, and

NEP based on AICc selection (Table 2). The minimum

lake number and median buoyancy frequency, two metrics

of thermal stability, were positively correlated to GPP

(Table 2). Similarly, the median buoyancy frequency was

positively correlated with R, and the mean and median

wind speed were both positively correlated with NEP

(Table 2). Overall, the linear relationship between 20 �C

temperature-corrected GPP and R was significant (regres-

sion equation provided in Fig. 5; df = 566, p\ 0.0001,

R2 = 0.85). The slopes of the observed GPP:R line

(1.06 ± 0.019) and the 1:1 line were significantly different,

as determined by a significant interaction of the dummy

variable and GPP (p = 0.002). Below GPP = 1.80 mg

O2 L
-1 day-1, GPP was greater than R, and above that

rate, GPP was less than R.

Drivers of seasonal metabolism

During May–October in 2008–2013, there were 30 pre-

cipitation events, 19 wind events, and two combined pre-

cipitation ? wind events on days with corresponding

metabolism data. Regardless of storm type, GPP decreased

following storms (paired t test; t = -2.20, df = 50,

p = 0.03), but neither R (t = -0.56, df = 50, p = 0.58)

nor NEP (t = -0.07, df = 50, p = 0.94) exhibited con-

sistent increases or decreases, indicating that R and GPP

were decoupled in Lake Sunapee immediately following a

storm.

In May–Oct 2011, the total precipitation amount

(852 mm) and storm frequency were above normal for

New Hampshire, with the third wettest May through

October on record since 1895 (NOAA CLIMDIV 2015).

Table 1 Annual May to

October means and standard

errors (in mg O2 L
-1 day-1) of

the three metabolic rates in

Lake Sunapee, NH, calculated

from a regression that modeled

the residuals as potentially

arising from an autoregressive

process

Year GPP20 mean R20 mean NEP20 mean

2010 0.41 ± 0.05 0.32 ± 0.05 0.084 ± 0.033

2011 0.70 ± 0.28 0.64 ± 0.26 0.087 ± 0.016

2012 0.86 ± 0.10 0.84 ± 0.12 0.061 ± 0.018

2013 0.97 ± 0.34 1.11 ± 0.28 -0.063 ± 0.029

SLR eq. GPP20 = 0.19 9 year - 374 R20 = 0.26 9 year - 517 N.S.

SLR statistics F1,2 = 42.25, p = 0.023 F1,2 = 277, p = 0.004 F1,2 = 5.1, p = 0.15

GPP20 is the rate of gross primary production, R20 is the rate of respiration, and NEP20 is the rate of net

ecosystem production, all temperature corrected to 20 �C. SLR indicates simple linear regression between

the metabolic rate and year; N.S. indicates non-significant regression

Table 2 Significant daily drivers and Spearman correlation coeffe-

cients (q) of different metabolic rates for Lake Sunapee, NH: Gross

primary production (GPP), respiration (R), and net ecosystem

production (NEP), as selected by the lowest corrected Akaike

Information Criterion (AICc) for each variable

Metabolic Rate Environmental Variable Variable daily summary statistic q AICc

NEP Wind speed Median 0.44 -1743.5

NEP Wind speed Mean 0.42 -1732.1

GPP Lake number Minimum 0.30 -782.6

GPP Buoyancy frequency Median 0.47 -776.8

R Buoyancy frequency Median 0.44 -715.6

All environmental variables were aggregated to daily summary statistics. All Spearman correlations had n = 496 days. Only the top model fits

that were included within 11 of the minimum AICc units for each metabolic rate are presented. Variables are listed in descending order of best

model fit
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Summer 2011 was marked by multiple large storms,

namely Tropical Storms Irene and Lee, which passed over

Lake Sunapee on 28–29 August and 5–8 September,

respectively (Fig. 6; Klug et al. 2012). Tropical Storm

Irene had high winds (up to 13 m s-1 sustained for[1 h)

and delivered 101 mm of precipitation in a two-day period,

with the first day identified as a combined precipita-

tion ? wind storm and the second day as a precipitation-

only storm (Fig. 6a, b). Tropical Storm Lee delivered

85 mm of rain over a 4-day period, with two of the 4 days

identified as precipitation events (Fig. 6a). The storms

caused rapid decreases in lake thermal stability: Schmidt

stability decreased by 31 % following Irene and 36 %

following Lee (Fig. 6c). GPP and R responded to large

storms with a lag before the maximum effect (Fig. 6d); for

example, R was * 0.6 mg O2 L
-1 day-1 for multiple days

prior to Irene and reached a maximum of 2.5 mg O2 L-1

day-1 on 31 Aug 2011, 3 days following the storm. Both of

these storms exhibited a 14-day return time to conditions

prior to Tropical Storm Irene.

Drivers of annual metabolism

While median epilimnetic TP concentrations at the pelagic

buoy site did not significantly change over time (Fig. 7,

p = 0.90), we observed a significant increase in median TP

at the littoral Herrick Cove site (Fig. 7;

TP = 0.0008 9 year - 0.16; R2 = 0.35, p = 0.001). In

the 1980s and 1990s, median littoral TP concentrations at

Herrick Cove were generally at or below 5 lg L-1, the

method detection limit. In the 2000s, however, the sum-

mer’s median littoral TP concentration regularly exceeded

the detection limit, up to 9 lg L-1. At the pelagic site near

the buoy, there were no statistically significant trends in

epilimnetic chlorophyll a or Secchi depth during

GPP20 (mg O2 L−1 day−1)
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for Lake Sunapee. The grey line is the regression line

(R20 = 1.06 9 GPP20 - 0.11), p\ 0.0001, R2 = 0.85). The dotted
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Fig. 6 a Daily total precipitation (daily precip.; diamonds), b daily

maximum wind speed (max wind speed; triangles), c daily mean

Schmidt stability (Schmidt Stability; squares), and d GPP (rate of

gross primary production; open circles) and R (rate of respiration;

closed circles, plotted on a negative scale to facilitate viewing) for

late August through early September 2011, Lake Sunapee. This time

period coincides with when Tropical Storms Irene and Lee passed

over the lake (2 and 4 days, respectively). In a and b, filled symbols

represent storms; see text for details on these calculations
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1986–2013 (p[ 0.05); during that time period, mean

Secchi depth was 7.9 ± 1.5 (1 SD) m. The median

observed epilimnetic and hypolimnetic chlorophyll a con-

centrations were 1.3 ± 0.7 (1 SD) lg/L and 1.7 ± 0.8 lg
L-1, respectively, and median Secchi depth was

8.2 ± 1.2 m over the time series.

Metabolism methods comparison

Daily GPP from the metabolism model and bookkeeping

method, and daily R from the metabolism model and

bookkeeping method were both positively correlated

(r C 0.74, df = 566, p\ 0.001, for each correlation), and

were close to the 1:1 line (Fig. 8). However, the modeled

rates were fit as variables that were forced to be[0 while

the bookkeeping rates often had ecologically uninter-

pretable results (\0 mg O2 L-1 day-1); for GPP, this

occurred on 4 % (24/568) of days, and for R, this occurred

on 20 % (116/568) of days. Further, the modeled fits had

slightly higher rates, especially for R (Fig. 8).

Discussion

Despite the challenges of modeling metabolism in an

oligotrophic lake, our analysis of 7 years of high-frequency

data indicates that Lake Sunapee metabolism differed

across multiple temporal scales. Interestingly, we observed

that the intra-annual magnitude and variance of GPP and R

increased during the study period (Fig. 2), suggesting the

potential for the onset of a transition in trophic state from

oligotrophy to mesotrophy in Lake Sunapee. Further, GPP

and R were generally tightly coupled (Fig. 5), except

immediately after storms, as is expected in a low-nutrient

lake with small, but positive, NEP (Fig. 4). This tight

coupling of GPP and R indicates that most C fixed in

biomass is respired within the lake relatively quickly.

Further, NEP was slightly negative in 2013 relative to

small but positive NEP from previous years (Fig. 4). This

suggests a transition from net autotrophy to heterotrophy in

which R is increasing faster than GPP (Table 1), and may

be an indicator of increased organic matter subsidies from

the watershed.

Challenges of modeling metabolism in a large,

oligotrophic lake

The most significant challenge of modeling metabolism in

a low-nutrient lake is the fitting of the general metabolism

model (Eq. 1). While the model is unable to capture all of

the complex interacting ecosystem processes that control

lake metabolism, it still has utility by providing valuable

information. For example, identifying the environmental

factors that affect model fit acceptability (e.g., Schmidt

stability) helps inform our understanding of which

parameters should be included in the model under different

conditions. Part of the challenge for modeling metabolism

Fig. 7 Changes in median total phosphorus (TP) concentration at the

littoral Herrick Cove site (black circles) and pelagic buoy site (grey

circles) from 1986–2013, Lake Sunapee. There was no significant

change in TP at the pelagic site (p = 0.90), but TP significantly

increased in the littoral buoy site over time (TP = 8.26 9 10-5 9

year - 0.16; R2 = 0.35, p = 0.001)
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in Lake Sunapee is that many estimates of metabolism in

the literature are based on models built from mesotrophic

or eutrophic lake ecosystems (Staehr et al. 2012; Hoellein

et al. 2013), which typically exhibit large diel oscillations

in DO concentrations that often exceed 5 mg L-1 (Solo-

mon et al. 2013). By comparison, in oligotrophic Lake

Sunapee, we commonly observed diel DO concentration

swings\1 mg L-1.

The relatively small diel DO changes in oligotrophic

lakes makes it difficult to tease apart the effects of bio-

logical processes on DO concentrations from the effects of

physical processes. In particular, a mechanistic under-

standing of how epilimnetic DO concentrations change in

response to physical processes such as microstratification,

upward movement of cold metalimnetic water, diffusion of

oxygen across the metalimnion, and lateral mixing of

surface waters from the wind become critical in develop-

ment of metabolism estimates, and are likely related to the

rapid changes in DO occurring in the early morning of

Lake Sunapee (Fig. 3). If these physical processes over-

whelm the biological signal in the diel DO curve, the

metabolism model would not sufficiently capture real

inputs to and outputs from the epilimnion to produce an

acceptable model fit. Our results support this hypothesis:

on warm, sunny days with stable stratification, the bio-

logical signal was clear relative to other physical processes,

resulting in a higher likelihood of an acceptable model fit

(Table 3).

We observed that the metabolism model was able to

successfully estimate rates for up to 116 more days than the

bookkeeping method, likely because the model integrates

variability in rates throughout the day (McNair et al. 2015).

While the bookkeeping approach allows for estimates of

GPP and R without assuming any mathematical function,

there is an overreliance on the differencing of successive

DO concentrations (McNair et al. 2013). The modeling

approach accounts for statistical error in the observed DO

concentrations and gives objective estimates of GPP and R

without the need for the assumption or use of R in the

calculation of GPP and R (McNair et al. 2013), which may

account for the differences between the two sets of results

(Fig. 8).

Even with the open-water modeling approach, previous

research has highlighted the challenges of using high-fre-

quency buoy data to estimate whole-ecosystem GPP, R,

and NEP. Both horizontal (littoral to pelagic) and vertical

(depth of water column) positioning of DO sensors within a

lake will influence metabolism estimates, due to a poten-

tially high degree of spatial variability (Van de Bogert et al.

2012). We note that it is unlikely that the epilimnion of

Lake Sunapee is completely homogenized longitudinally

because of its complex basin morphometry (Fig. 1) and

three-year hydraulic residence time. Long-term monitoring

has demonstrated that the hypolimnion remains oxic during

the summer (Lake Sunapee Protective Association, unpubl.

data); therefore, both the vertical exchange of nutrients

from hypolimnion to epilimnion and lateral exchange

during stratification exists but is likely to be small (Van De

Bogert et al. 2007). However, the DO sensor for this study

is at 1 m below the surface and, therefore, metabolic rates

exclude a large portion of total lake volume; this omission

may play a factor in poor model fits for some daily esti-

mates of GPP and R. When averaged over longer periods of

time in a large, deep lake such as Lake Sunapee (Fig. 3),

metabolism at one central location likely integrates chan-

ges occurring across the lake, especially in the epilimnion,

and acts as a sensitive indicator of changes in trophic sta-

tus, despite day-to-day variability in metabolism (Fig. 2).

Future development of an open-water metabolism model

for oligotrophic systems should refine the ability to eluci-

date the biological signal from small diel DO curves by

considering both vertical and horizontal spatial variability

as well as adding CO2 sensors or in situ incubations with

Table 3 Significant environmental drivers of acceptable or unac-

ceptable metabolism model fits, as determined by logistic regression

for Lake Sunapee, NH

Variable Statistic v2 AICc

Schmidt stability Stdev 23.17 938.3

PAR Mean 22.18 939.2

PAR Stdev 21.48 939.9

Airport rel. humidity Stdev 15.71 940.0

PAR 75th Q 18.69 942.7

Air–water delta Stdev 18.34 943.1

Air temperature Stdev 18.10 943.3

Airport air temperature Max 15.51 944.1

PAR Range 16.35 945.1

PAR Max 16.35 945.1

Airport air temperature Stdev 10.40 945.3

Sensor temperature Stdev 15.97 945.4

Airport rel. humidity Range 13.84 945.8

Air temperature 75th Q 15.08 946.3

Air temperature Max 14.84 946.6

Airport rel. humidity Min 12.78 946.8

Sensor temperature Range 14.08 947.3

Air temperature Range 12.76 948.7

PAR Median 11.68 949.7

Airport wind speed Stdev 5.86 949.9

Air–water delta Range 11.37 950.0

Variables were aggregated at the daily scale by several summary

statistics and are listed in descending order of best model fit (i.e.,

increasing corrected AIC (AICc)). PAR refers to photosynthetically

active radiation. Airport data were measured at the Lebanon Airport

in Lebanon, New Hampshire and all other variables were measured at

the buoy. For all regression analyses, n = 836 days
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higher sensitivity. Experimental designs that include clus-

tered thermistors at shallow depths to measure microstrat-

ification or additional DO sensors in the metalimnion and

hypolimnion would increase our ability to understand the

processes occurring in the early morning hours in olig-

otrophic lakes like Lake Sunapee. Lack of such sensors to

characterize the DO dynamics of the full water column

remains a challenge for studying whole lake ecosystem

metabolism. Metabolism models that incorporate data

throughout the water column would likely be able to better

reconcile the biological signal relative to physical changes

in DO and lead to the estimation of depth-integrated

metabolic rates (e.g., Obrador et al. 2014, McNair et al.

2015).

Drivers of intra-annual metabolism trends

Although daily GPP and R were largely coupled (Fig. 5),

our data suggest that day-to-day variability in metabolic

rates was primarily controlled by physical processes. Two

physical factors (wind and rain) appear to be the main

drivers of metabolism across multiple temporal scales,

likely by altering lake stratification and mixing. Less wind

and rain promote increased stability of the water column,

as determined by buoyancy frequency, lake number, and

Schmidt stability (Read et al. 2011). For all of these met-

rics, greater stability was positively correlated with GPP

and R in Lake Sunapee (Table 2). Similarly, Staehr et al.

(2010) found that higher thermal stability facilitates the

growth of phytoplankton and correlates with increased

GPP. However, unlike Staehr et al. (2010), mean daily

PAR did not emerge as a predictor of GPP, possibly

because we used both day and night PAR when calculating

the daily mean with many 0 nighttime values lowering day

to day differences.

In addition to the abiotic factors discussed above, biotic

factors such as phytoplankton and zooplankton biomass

can control daily GPP at sub-annual scales (Lampert and

Wolf 1986; Staehr et al. 2010; Coloso et al. 2011).

Throughout the monitoring period, we observed seasonal

variation in GPP and R during May to October (Fig. 2).

GPP and R consistently peaked in June and mid-August,

which was likely tied to the seasonal succession of phy-

toplankton in the lake. Diatoms, in deep, north temperate

lakes such as Sunapee, should increase immediately after

ice-off in the spring, usually lasting through May until mid-

June, followed by a clear-water phase in late June (Rey-

nolds 2006; Sommer 1986; Senerpont Domis et al. 2012).

This pattern of algal growth and zooplankton grazing

corresponds to the increase and rapid decrease of GPP in

June, especially in 2008 and 2012 (Fig. 2).

Daily GPP and R were tightly coupled in Lake Suna-

pee over the 7 years of this study (Fig. 5): 70 % of the

daily variation in R was explained by daily variation in

GPP, indicating a strong reliance of respiration on auto-

chthonous C production by both autotrophic and hetero-

trophic organisms. This relationship represents one of the

tightest couplings of daily GPP and R observed across a

wide range of lakes around the world (Solomon et al.

2013). The DOC concentration in Lake Sunapee is low,

which may help explain why it largely exhibits net

autotrophy (Fig. 4c), especially in comparison to olig-

otrophic lakes with higher DOC concentrations that are

heterotrophic (Cole et al. 2000; Hanson et al. 2004).

Frequent switching between daily net autotrophy and

heterotrophy might indicate a lag in which fixed C is

respired a day or two later, suggesting that there may be

an increased reliance on allochthonous C when R

increases and exceeds GPP (Laas et al. 2012).

The scenario of de-coupling between GPP and R was

most clearly observed during storms. We found that

metabolism responded to storms but generally recovered

quickly to pre-storm conditions. Similarly, Vachon and del

Giorgio (2014) found that not all storms generated a shift in

metabolism because storms are dynamic, and their effects

could be masked by uncertainty in measurements or

baseline within-day variability. We observed a decrease in

GPP in the 3 days following a storm but not in R, which

could result from a dilution of nutrients and organisms in

the epilimnion from rain water and stream inflow (Abell

and Hamilton 2014), decreasing light from lateral move-

ment of organic matter from the littoral zone (Vachon and

del Giorgio 2014), or deeper mixing of the epilimnion

(Klug et al. 2012). Only extreme storms (i.e., Tropical

Storms Irene and Lee) continued to alter GPP and R for

longer than a week, with sustained increases in both GPP

and R and a decoupling of GPP from R (Fig. 5). In the

future, storms with intense precipitation and wind are likely

to increase (Knutson et al. 2010), potentially generating

even greater impacts on the overall annual metabolism

balance of lakes.

Inter-annual metabolism trends: an early indicator

of a trophic status shift?

At the annual scale, we observed a substantial increase in

annual mean GPP and R and a decrease in NEP in Lake

Sunapee over our seven-year study period (Fig. 2), despite

no change in pelagic nutrient concentrations (Fig. 7) and

no correlation with annual air temperatures. Because high-

frequency DO concentrations integrate water column

biology, chemistry, and physics, it may be a more infor-

mative—and comprehensive—sentinel of changing trophic

state than TP concentrations or chlorophyll a for olig-

otrophic lakes, where nutrient concentrations are generally

at or near detection limits.
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The data presented here suggest that Lake Sunapee may

be experiencing a trophic shift, which parallels increased

observations of the large, colonial cyanobacterium Gloeo-

trichia echinulata in the lake (Carey et al. 2008, 2012).

Gloeotrichia colonies were first observed in the water

column of Lake Sunapee by local residents in 2004 (Carey

et al. 2008; McGowan et al. 2014), and have dominated the

phytoplankton assemblage every summer of our seven-year

record (Carey et al. 2012, 2014). The large, buoyant

colonies recruit in littoral sites and then are transported by

currents and winds throughout the lake, creating patchy

blooms (Carey et al. 2014), and potentially driving the

increase in GPP at deep pelagic sites.

Conclusions

Seven years of daily metabolism data from Lake Sunapee

illustrate how ecosystemmetabolism is changing over daily,

weekly, seasonal, and annual time scales. High-frequency

data are crucial for detecting short and long-term ecosystem

changes, especially in oligotrophic lakes, where metabolism

changes are likely to be subtle and may be sensitive to short-

term changes in precipitation, wind, and thermal stratifica-

tion. Our data suggest that a sensitive, functional, integrative

metric such asmetabolic rates—a sentinel process in lakes—

calculated fromhigh-frequencymeasurementsmay be both a

way to understand the response and resilience of lake

ecosystems to short-term and long-term disturbances as well

as a useful indicator for identifying the early stages of shifts

from oligotrophy to mesotrophy.
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