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Abstract The concepts of randomness and variation are pervasive in science. The
purpose of this study was to document how post-secondary life science students explain
randomness and variation, infer relationships between their explanations, and ability to
describe and identify appropriate and inappropriate variation, and determine if students
can identify sources of variation. An instrument designed to test statistical concepts was
administered to 282 college students from three universities, ranging from introductory
non-science majors to science graduate students. Students readily distinguished be-
tween causes of variation. A naïve no-pattern concept of randomness persisted from
first-year non-science majors to senior-level science majors, contributing to incorrect
responses on the variation instrument. Students’ expressions of randomness were better
predictors of performance on the variation instrument than their expressions of varia-
tion. It is argued that inclusion of everyday language uses of randomness in instruction
can bridge the gap between vernacular and scientific uses of this term.
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Introduction

Science learning requires synthesis of complex ideas across broad disciplines, such as
variation and randomness, which require sophisticated understanding in order to conduct
and understand science. Recognizing and understanding variation and randomness is
necessary to sample and analyze data and perform statistical analyses, as well as construct
sophisticated conceptions of scientific principles, such as evolution, climate change, and
water quality. Recent Next Generation Science Standards (NGSS Lead States, 2013) in
the USA have stressed patterns of inquiry that span all sciences and convey the nature of
science as a collection of common practices (Scientific and Engineering Practices, SEPs)
and overarching ideas (Crosscutting Concepts, CCCs). The concepts of randomness and
variation are important but implicit components of SEPs and CCCs, namely the practices
of planning and carrying out investigations and analyzing and interpreting data, and the
crosscutting concepts of patterns and scale, proportion, and quantity. Adeptly planning
and carrying out investigations and analyzing and interpreting data requires the scientist to
reason about variation observed across data and decipher patterns in data, given the
frequency of some observations in proportion to others, which allow the scientist to form
a conclusion. Both randomness and variation have frequent vernacular uses, indicating
alternative non-scientific meanings of these terms. For example, a millennial student may
use random to refer to an unexpected event; similarly, the common adage, everything
happens for a reason, indicates a belief that nothing is genuinely random.While the NGSS
movement applies directly to pre-K-12 levels, the SEPs and CCCs apply to all levels of
inquiry and thus still need to be emphasized in post-secondary science education. Little
attention is paid to how the concepts of randomness and variation are addressed in the
post-secondary science classroom, if at all, and there is even less understanding of how
these concepts are brought to bear when engaging in SEPs and CCCs. This manuscript
initiates a new line of inquiry to examine these relationships by documenting aspects of
graduate and undergraduate students’ uses of randomness and variation, demonstrating
how these ideas are brought to bear when solving probability tasks, and discussing the
relevance of these language uses for teaching post-secondary science.

Background

Learning how to adeptly perform investigations and analyze data requires construction
of many scientific concepts that also have everyday meanings. The current line of
inquiry examines randomness and variation; therefore, contextualized examples are
provided across different fields of science to demonstrate how many scientific concepts
rely on good working knowledge of randomness and variation. Additionally, a frame-
work for conceptual development, relationships between everyday language and sci-
entific language, and a literature review of the development of sophisticated concepts of
randomness and variation are presented.

‘Random’ and ‘Variation’ Contextualized

Decontextualized definitions of Brandomness^ and Bvariation^ contribute to their
abstractness and difficulty to understand. Therefore, examples of climate change, soil
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science, water quality, and evolution are provided to demonstrate the pervasive need for
scientific understanding of these concepts. Interpreting current climate conditions while
taking into account long-term trends requires understanding patterns of weather vari-
ation appropriate to a particular climate. When students lack understanding of climate
outliers (an anomalous wet or dry year in a climate record), they are likely to conclude
that a very cold winter disproves current warming trends. Complicating this issue, the
Intergovernmental Panel on Climate Change (2013) predicts increased variability in
precipitation, air temperature, and storm events for many geographic regions as
climates change. Thus, the extreme degree of variability is counterintuitive evidence
in support of climate change—a very cold year is a datum that supports warming
trends. Understandably, students may have difficulty identifying and quantifying in-
creased variability over time in comparison to linear rates of change, as well as
interpreting long-term trends in climate. Visualizing the variation inherent in long-
term time series and summary metrics of variability, such as the standard deviation of
daily precipitation within a year, may help students conceptualize how both long-term
trends and variability change over time.

A basic soil ecology experiment demonstrates pervasiveness of variation and ran-
domness concepts in experimental design. A soil ecologist examines differences in the
amount of organic carbon between grazed and ungrazed grasslands and measures
organic carbon concentrations in both treatments. The goal is to describe differences
that exist between treatments, requiring an analysis of variance. Many students may
reason that to accomplish this goal, they need to examine two samples: one from a
grazed and one from an ungrazed soil. The student may naïvely conclude that grazing
caused the observed difference between samples. However, scientists know that sam-
pling only once from each treatment does not allow the variance to be analyzed, which
furthermore prevents a scientist from determining what variation is due to the treatment
(ungrazed vs. grazed) and what variation is due to the random nature of
sampling and processes not specifically measured in the experiment
(Bennington & Thayne, 1994). Soil, like many natural systems, is spatially
variable (Conant & Paustian, 2002), and this natural variation occurs along a
background of random differences. When studying systems that have variability
due to both natural factors and variation due to random sampling, learners are
called upon to determine reasonably confident attributions of variation. Unfor-
tunately, they are often asked to do so without a thorough exploration of the
different causes of variation in data.

Examining water quality is a unique context in which the concept of variability can
be particularly challenging. Difficulty arises because it is necessary to use observations
of stream chemical composition over time and space to understand causes of pollutant
levels from several factors, such as land management and point source discharges.
Variation may appear random when it is influenced by many environmental factors.
The matters are complicated since average variation in stream contaminant concentra-
tions cannot be determined by a simple mean because the average concentration of a
contaminant depends on the concentration and the volumetric streamflow occurring
over a time period. Students are typically accustomed to using an average (mean) to
convey central tendency of a varied data set, but a mean contaminant concentration
does not take into account volumetric flow, an important factor contributing to variation
observed in water quality. Thus, developing understanding of water quality in flowing
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streams is reliant on a learner’s ability to reason logically about variation in more than
one factor at a time.

Finally, concepts of variability and randomness are also integrated with an under-
standing of evolutionary theory. Basic tenets of evolutionary theory are that all genetic
variation initially arises from mutation, and mutations’ resultant phenotypes are random
regarding the advantage or disadvantage they impart in the particular environment in
which the organism lives. Mutations are not teleological; they do not happen in order to
provide an advantage. They occur due to random errors in DNA replication, and their
effects are random with respect to the environment. Tetrapod ancestors, for example,
could not have experienced mutations in order to disperse onto land; this would have
been nonrandom. Rather, mutations happened in tetrapod ancestors and some were
disadvantageous while others imparted phenotypes that increased fitness in terrestrial
environments. Thus, those individuals were more suited for the terrestrial environment
and thus selected for by in the terrestrial environment, resulting in their genes being
more prevalent in subsequent generations.

When students do not have a scientific concept of random, they may be more likely
to reason that genetic variation arises to provide a particular advantage in a given
environment. Similar to mutation, understanding of genetic drift requires a scientific
concept of randomness. Some biologists argue drift has an equal or greater impact on
evolutionary trajectories than natural selection, because in numerous cases, it has been
identified as a primary cause of divergence (Knowles & Richards, 2005). When drift
occurs in a large population, variation in a gene pool seldom changes from one
generation to the next because all members of the population have an equal chance
of being impacted, but random chance in a small population can yield drastic effects on
alleles represented in the gene pool. Thus, when students make this distinction between
drift’s effects on large vs. small populations, they are called upon to reason about
randomness according to scale.

The examples of climate change, soil science, water quality, and evolution are provided
to demonstrate how sound knowledge of randomness and variation is needed to learn a
range of scientific concepts. While there are many everyday uses of the term Brandom,^
the concept of random referring to events having equal probability is most applicable to
scientific contexts, such as those explored. When understanding random in this way, a
student can reason how random mutations provide new genetic variations that serve as
raw material for evolution. Likewise, she can justify the assumption that a randomly
selected sample is likely to be representative of a population. Similarly, there are many
concepts of variation, but defining Bvariation^ as a mathematical term to describe data
points’ distances from a mean is most advantageous when encountering scientific con-
texts. A student understanding variation in this way can explain how an analysis of
variance allows us to determine if data are likely to have arisen from distinct populations
or the same population. Due to the pervasiveness of these terms in science, educators have
good reason to develop students’ scientific concepts of randomness and variation, which
necessitates considering how these terms are used in everyday vs. scientific contexts.

Scientific and Everyday Language

Defined communities, such as the scientific community, use signs and symbols as
resources to enable communication among its members, and language is such a system
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(Lemke, 1990). Terms such as Brandom^ and Bvariation^ hold different meanings in
scientific communities, compared to the everyday use of the terms. Therefore, com-
municators need to aware of the intended and un-intended audiences when crafting and
sending communications, since terms are conceptualized in relation to other words or
concepts and likely over-generalized from a more familiar context. Here, languages-for-
specific-purposes, or groups of terms that hold different meanings or implications in
various communities, is useful for understanding how individuals within sciences or
from different communities may use the same term to carry different meanings
(Pecman, 2014). For example, when an evolutionary biologist speaks of variation,
what come to mind is likely genetic variation and its central role in evolutionary
processes, whereas magnetic variation may be invoked by a physicist. Likewise,
random may mean equal probability of an occurrence to a statistician, but an unex-
pected occurrence to a millennial student.

Difficulty in instruction regarding randomness and variation arises due to language,
with some terms having distinct scientific meaning used in various ways in everyday
contexts, even in textbooks (Anakkar, 2014). Brown and Kloser (2009a) argue that
students’ everyday language is a potential tool that educators can use to support
conceptual learning in science, because when students use their everyday language to
discuss scientific ideas, educators gain authentic Bwindows into the students’ scientific
understandings of the world^ (Yeo, 2009, p. 913). Students’ use of vernacular to
express their conceptions of scientific phenomena is preferred over students mimicking
text and teachers’ speech without understanding, which offers the educator little
information about students’ conceptions (Yeo, 2009).

Brown and Kloser (2009a, b) argue language cannot be clearly divided between
everyday and scientific language. Rather, they posit a conceptual continuity, or the
existence of varying levels of continuity between science ideas as expressed in multiple
communities, both scientific and non-scientific. This perspective can serve as a frame-
work for understanding how to craft learning opportunities that maximize the relation-
ship between students’ native ways of understanding and science instruction. Concep-
tual continuity appears to be complementary to language-for-specific-purposes model
(Pecman, 2014), in which she claims that learners often overgeneralize from the context
in which the concept was constructed. Drawing upon students’ everyday language has
been successful in teaching scientific concepts to English language learners (Ryoo,
2015). Regardless of students’ English proficiency, students’ everyday understandings
and scientific understandings should not be separate from one another, and the lan-
guage used to develop scientific understandings must begin with students’ everyday
language. Sophisticated understanding of any concept encompasses multiple cognitive
representations of that concept that are both internal and external to science, which
facilitate traversing the conceptual continuities between contexts. Students’ prior
knowledge and experiences plays a critical role in this conceptual development.

Conceptual Development

Development and understanding of scientific concepts like variation and randomness is
not the accumulation or transfer of factual information from teacher to learner
(Hemmerich, Van Voorhis, & Wiley, 2015; Scott, Asoko, & Leach, 2007). Rather, it
involves the construction of conceptual structures that are consistent with the learner’s
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everyday experiences (Hemmerich, et al., 2015; Vosniadou, 2002). The learners’
mental models allow them to develop expectations within, make predictions, and pose
tentative explanations about their lived experiences, and in doing so, prior knowledge
substantially influences further learning (Scott et al., 2007). When these expectations,
predictions, and explanations are confirmed by experiences, the conceptual framework
is reinforced and enriched, but when they are not confirmed by experiences, the
framework is restructured and revised. This view of learning specifies that in order
for instruction to be successful, it must connect prior knowledge, or the conceptual
structures built over a lifetime of lived experience, to the new material being taught
(Limón, 2001). Furthermore, instructors must strategically create experiences for
students that are inconsistent with unscientific aspects of the students’ existing con-
ceptual structures to elicit cognitive conflict; allowing students to make distinctions
between contextualized uses of a given concept or term that differ across communities
(Hemmerich et al., 2015; Limón, 2001). Instructors must understand that conceptual
change is gradual and complete accommodation of conceptual structures is unlikely
after a single instructional intervention. However, Yore and Treagust (2006) suggest
that learners can improve understanding of a concept by using one representation to
constrain interpretation of a second representation. For example, a student who under-
stands random to mean anything is possible can be prompted to use that definition to
specify what anything refers to when a random sample is used to make generalizations
about a population in an experiment. This approach may also help the student appre-
ciate how a single, coherent conception of a term is useful across contexts to explain a
wide range of phenomena (Scott et al., 2007). This example demonstrates how learners’
prior knowledge of many scientific terms, such as variation and randomness, originates
in unscientific contexts, and development of the scientific concept must begin with their
prior knowledge—scientific or unscientific.

Learning the Nature of Randomness and Variation

Mathematics and science educators have long known that students’ concepts of
statistical terms are quite different from scientists’ concepts of those terms. Garfield
and Ahlegren (1988) documented difficulties that students encounter in learning
probability and statistics and found that statistics, as they are used in the scientific
community, are seldom taught prior to college. This is apparent when students are
accustomed to number crunching rather than reasoning about why the mathematical
procedures are needed to understand scientific data. Students often believe that a mean
is a computational item rather than one of several possible ways to represent the middle
of a data distribution (central tendency), which is a logical outcome given the instruc-
tional emphasis on procedural knowledge rather than mathematical reasoning. We
assume that typical methods for teaching statistics do not begin with students’ everyday
experiences and language uses of terms such as average and likelihood, let alone
support students in building a robust conceptual continuity between everyday and
scientific uses of these terms.

Randomness is a concept for which instruction begins at an early developmental
level and is foundational for developing understanding of typical Gaussian statistical
methods (Heinicke & Heering, 2013). Bryant, Nunes, Evans, Gotardis, and Terlektsi
(2014) guided elementary students to comprehend three central ideas while constructing
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a sound concept of randomness: (1) defining and understanding randomness as unpre-
dictable or lacking a pattern; (2) a defined sample space (i.e. within a given situation, what
are possible results?); and (3) The quantification of probability (i.e. performing a propor-
tional calculation of the probability of possible outcomes). The first of these criteria
provides opportunity to build upon students’ everyday language use of random. Bryant
et al. (2014) demonstrated impressive success with elementary students using this strategy,
and conceiving randomness as being unpredictable or lacking a pattern is developmentally
appropriate for elementary students. However, post-secondary students who conceive of
randomness solely as one of these three criteria, such as randomness being anything that
lacks a pattern (i.e. the no-pattern concept of randomness), would be viewed as holding a
misconception from a scientific perspective.

Misconceptions regarding randomness are important to identify. Smith, diSessa and
Roschelle (1993) argued that a misconception should be viewed as a worthwhile
conception, which is constructed from the learner’s experience and should serve as
the starting point for the development of a more sophisticated conception of the target
idea. Batanero, Godino, and Vallecillos (1994) point out that a plausible reason for why
so many students develop distaste for statistics is because it is taught too abstractly and
does not build upon students’ experiences, language, and concepts.

The no-pattern concept of randomness is not sufficient to understand numerous
statistical and scientific principles that students encounter in high school and college.
This is because most scientific analyses and many scientific principles require inter-
pretation of probability and randomness is the starting point to understanding proba-
bility. Learners who do not have a scientific concept of randomness fail to reason about
adequate sample size (Barragués, Guisasola, & Morais, 2006), this inadequacy can be
demonstrated with a hypothetical case in which a learner holding this concept is asked
to solve the following problem modified from Watson, Kelly, Callingham, and
Shaughnessy’s instrument (2003).

A class of 27 students did an activity with a spinner that was half shaded, the
other half unshaded. Each student spun the spinner 50 times and the results for
the number of times it landed on the shaded part were recorded for each student.
Out of 50 spins, what would you predict is the average number of times it landed
on the shaded part? Describe what you would expect the variation around that
average to look like.

Here, the learner is being asked to make a prediction for an experiment involving a
random event. While it is true that there is no way to predict the outcome of each
independent event (one spin of the spinner) because the shaded and unshaded halves of
the spinner have equal probabilities (random), we can predict that approximately half of
the spins will land on the shaded region. We can also predict that if we were to graph
the distribution of results across all 27 students in the class, a normal distribution would
be most likely. Learners who hold the no-pattern concept of randomness would struggle
to make such predictions, particularly if the association between random event and
unpredictable and no pattern is strong. We suggest that such a student would be likely
to claim that a randomly scattered distribution would be most likely, rather than a
normal distribution. This may be due to being unable to differentiate between the result
of one event and a set of results (Barragués et al., 2006).
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Related to but distinct from randomness is the concept of variation, which Wild and
Pfannkuch (1999) identify as Bthe centerpiece of statistical thinking^ (p. 235). Under-
standing variation involves recognizing the different faces of variability, including
Boverall spread in a data set, variability between two data sets, variability as measure-
ment error, etc.^ (Garfield & Ben-Zvi, 2007, p. 386). Watson and Kelly (2004) claim
that there are three aspects of statistical variation that are necessary for analyzing
outcomes of repeated trials: differences from an expected theoretical value, between
the experimental and expected distributions, and between plausible and unrealistic
variation. While scientists employ all three of these aspects of variation when conducting
science, a primary goal in the natural sciences is to understand natural variation or
variation not due to deviance from a mean or prototype but rather the differences
observed in nature, which relates to the third dimension of understanding variation.

Randomness and variation are central, albeit often implicit, ideas in science. These
concepts have numerous facets of meaning across scientific disciplines and everyday
contexts that cannot be overlooked when teaching. Students’ everyday language is
pertinent to the conceptual development of variation and randomness, becomes inte-
grated into how they talk about scientific phenomena, and thus reveals their prior
knowledge at which science instruction ought to begin. The contexts in which students’
understandings of variation and randomness have been examined are largely mathe-
matical, with little attention to how randomness and variation are conceptualized in
science contexts. Furthermore, misconceptions of randomness and variation are com-
mon and can potentially lead to faulty reasoning about scientific sampling, experimen-
tation, and conventional statistical applications.

Purpose

The developmental trajectory of randomness and variation between elementary school and
post-secondary students has not been well documented, despite being potentially informa-
tive for science education research and teaching practices. Thus, we seek to examine post-
secondary students’ understanding of randomness and variation. First, we ask, what are
post-secondary students’ expressions of randomness and variation when they are asked to
define them in a science course? Secondly,what, if any, relationships exist between students’
conceptions of these terms and their performance on a basic probability tasks? Third, are
students able to distinguish between different sources of variation in collected data?

Methods

This study is a large-scale, multiple-site, Web-based survey of university biology or
geology students in the USA. Data were collected in geology or biology courses
spanning the developmental continuum of post-secondary student levels.

Participants

Participating students were from three universities and were samples of convenience.
Some students were at a large Midwestern public doctorate-granting university ranked
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very selective (Barron’s College Division Staff, 2015) and enrolled in an introductory
general education biology course for non-science majors (n = 145), an introductory
biology course for science majors (n = 94), or a graduate biostatistics course (n = 9). A
second group of participating students were enrolled in a mid-level science major
hydrogeology course (n = 21) at a small public master’s-granting university also ranked
very selective (Barron’s College Division Staff, 2015). A third group of students
included an upper-level freshwater biology course (n = 13) at a very large, public,
doctorate-granting university ranked highly selective (Barron’s College Division Staff,
2015). IRB approval was granted by the first author’s institution and then approved by
the other institutions’ IRBs.

Instructors showed students a 4-min video in class at the beginning of the semester
that explained the study to recruit volunteers. Instructors then emailed their students a
link to complete the questionnaire online; the first page of the online questionnaire
reiterated the study explanation that they heard during the recruitment video. Willing
participants then proceeded to complete the online questionnaire in which students
typed their responses into comment boxes, which took about 20 min. Participants were
offered minimal course credit (i.e. less than 2 % of final course grade) for questionnaire
completion.

Instrument

The 9-item instrument was composed of seven items from Watson and Kelly’s (2004)
instrument and two additional items that were created for this study; all items were
open-ended (Table 1). The survey collected data on students’ concepts of randomness,
sampling, and variation. Part 1 of the instrument consisted of the 4-item Distributional
Variation Subscale (DVS), which measures a student’s ability to Bdescribe appropriate
variation … and identify appropriate and inappropriate variation in an established
distribution^ (Watson & Kelly, 2004, p. 125). This scale was chosen because it poses
a basic probability task that is accessible by all levels of students being sampled, and
thus serves as a performance indicator for distinguishing appropriate and unlikely
variation in data. Watson et al. (2003) determined reasonable validity for the original
DVS. The first three authors developed the scoring rubric to differentiate subtle
differences between student responses while still capturing all responses in the data set.

An exploratory factor analysis was used to establish validity of this scale, using
principal axis factoring as the extraction method, which is preferred when assumptions
of normality are disrupted (Costello & Osborne, 2005). Bartlett’s test of sphericity was
significant (χ2 (36) = 172.0, p < 0.0001), indicating significant correlated factors among
the DVS items. Initial eigenvalues showed that the first factor explained 23.5 % of the
variance, the second factor 16.2 % of the variance. The second, third, and fourth DVS
items, each asking students to determine if a different data distribution is likely to be real,
contributed to the factor structure. The third and fourth DVS items loaded onto the first
factor, with 0.63 and 0.52 loadings, respectively. The second DVS item loaded on the
second factor with a loading of 0.78. The first item did not contribute to the factor
structure and variance explained by items 2–4, so it was not included in analyses.

This analysis indicates that the DVS measures two aspects of a student’s ability to
distinguish likely and unlikely variation. The first aspect (items #3 and #4) corresponds
to the ability to recognize realistic range or spread of a data set. The second aspect (item
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#2) corresponds to the ability to recognize the unlikelihood of a perfectly Gaussian
distribution. Due to two aspects of variability understanding being measured by the
DVS, aggregated items #3 and #4 (Cronbach’s α = 0.51) and item #2 will be used
separately as performance indicators for variability understanding, referred to hereafter
as variation factors 1 and 2.

Part II of the instrument consisted of three separate items, which asked students to
define Bvariation,^ Brandom,^ and Bsample,^ and then to give an example of each. The

Table 1 Questionnaire items and scoring rubric

Questionnaire Items and Scoring Rubric

Part I Rubric
Distributional Variation Subscale (Watson & Kelly, 2004)
Three classes of 27 students each did an activity with this 
spinner (see image); each student spun the spinner 50 times 
and the results for the number of times it landed on the shaded 
part were recorded for each student. 

1. Out of 50 spins, what would you predict is the average number of 
times it landed on the shaded part? Describe what you would expect the 
variation around that average to look like.

i. A whole-number score (0-4) was determined by giving one point for 
responses that included each of the following:

The average would be 25.
Distribution would likely be bell-shaped.
There would be about the same number of spins above and below the 
mean (i.e., equal frequency).
There would be about an equal spread of data on either side of the 
mean (i.e., equal range).

2. In some cases, the 
class just made up 
the data without 
actually doing the 
experiment. Class 
A’s data is shown below, which is a symmetrical distribution with an 
average of 25 spins landing on the shaded part of the spinner. State 
whether or not you think the data are real or made up. Then explain why 
you think this. 

ii. A whole-number score (0-3) was determined by giving one point for 
responses that included each of the following:

These data are likely made-up.
Real data are not likely to be exactly symmetrical.
Perfect symmetry is not likely due to the randomness of the spinner, 
which is likely to produce some deviation from what is expected.

3. Class B’s data is 
shown below, which 
also has an average of 
25 spins landing on 
the shaded part of the 
spinner. State whether or not you think the data are real or made up. 
Then explain why you think this.

iii. A whole-number score (0-3) was determined by giving one point for 
responses that included each of the following:

These data are likely made-up.
The data are too varied; the distribution is too broad; the range is too 
large.
The data contain too many unlikely data points, such as the data point 
that indicates a student landed on the shaded part of the spinner all 50 
times.

4. Class C’s data is 
shown below, which 
also has an average of 
25 spins landing on 
the shaded part of the 
spinner. State whether or not you think the data are real or made up. 
Then explain why you think this.

iv. A whole-number score (0-3) was determined by giving one point for 
responses that included each of the following:

These data are likely real.
These data have a realistic range.
These data have a realistic distribution that is roughly bell-shaped but 
not perfectly symmetrical.

Part II Rubric
1. Sample
What does “sample” mean? Please give an example of a “sample.”

A whole-number score (0-4) was determined by giving one point for responses 
that included the following:

A plausible example
A statement that explained how a sample is representative of a larger 
whole.
A sample is a piece of something.
A sample is used to predict or generalize about the larger whole.

2. Random
What does “random” mean? Please give an example of something that 
happens in a “random” way.

A whole-number score (0-2) was determined by giving one point for responses 
that included the following: 

A plausible example
A statement that explained that all the possible outcomes have an 
equal chance, probability, or likelihood.

3. Variation
What does “variation” mean? Please give an example of something that 
varies.

A whole-number score (1-3) was assigned according to the following:
1. Different forms or varieties of something
2. Changing or different outcomes/results across time and/or space
3. Distance or difference from a mean measurement 

Part III Rubric
1. Rocks
A group of geology students on a field survey are instructed to weigh various 
sedimentary rocks. Each student takes turns weighing each rock. Below are a 
group of 10 students’ measurements of the same piece of sandstone.
30.0g 31.2g 30.5g 23.2g 31.0g 31.1g 29.6g 30.3g

30.0g 30.8g
The mean of these values is 29.8g. What do you think accounts for the 
variation seen in this data?

A whole-number score (0-2) was determined by giving one point for responses 
that included the following:

A plausible example
Human or measurement error

2. Squirrels
A group of mammalogy students on a field trip collect five 13-lined ground 
squirrel adult males. One student weighs all the squirrels. Below are the 
weights for each squirrel.
110.5g 124.8g 236.8g 189.5g

144.9g
The average weight of these squirrels is 161.8g. What do you think accounts 
for the variation seen in this data?

A whole-number score (0-2) was determined by giving one point for responses 
that included the following: 

A plausible example of the cause of the variation with an explanation
Natural variation among squirrels
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first two of these terms is the focus of this study, but students’ expressions of sample
potentially elucidates their thinking about randomness and variation, because a sample
must represent the variability in a whole, which is often accomplished through random
selection. While construct validity of these items had previously been established
(Watson et al., 2003), the first three authors developed a scoring rubric (Table 1) to
account for more than one meaning of a term if it was included in a student’s response.

Part III of the instrument consisted of two items created for this study and asked
students to distinguish between variations in data due to methodological error vs.
naturally occurring variation in the phenomenon studied. To establish construct valid-
ity, the first author created drafts of these items, presented them to the research team,
and edits were made collaboratively until all members judged them to be reasonable
indicators of the target features. Items in parts II and III of the instrument were treated
as single-item factors and were analyzed separately.

Scoring Procedures

Initial qualitative analysis of student responses began with category construction for
each item (Merriam, 2009), using a subset of about 30 responses. Three researchers
(first three authors) independently open-coded responses by placing them in emergent
categories that represented scientifically sound but qualitatively different responses.
They then collaboratively collapsed open codes into the categories of responses in the
scoring rubric. For most items, a significant number of students conveyed more than
one category in their responses. For example, in response to part I, item 1 (Table 1),
some students simply stated B25,^ while others stated B25^ and that the distribution
would be bell-shaped. Thus, the decision was made to assign scores to responses, based
on number of correct response categories satisfied. The one exception to this process
was with part II, item 3, for which students did not provide more than one meaning for
variation; rather, responses were placed into one of three mutually exclusive categories,
ranked 1–3 to indicate more preferred responses from a scientific standpoint.

After this scoring rubric was established, the researchers independently recoded the
original subset of data using the rubric. Inter-rater reliability for each item was
measured using Fleiss’s kappa (κ), which calculates the degree of agreement in
classification among three or more coders over that which would be expected by
chance (Geertzen, 2012). Using this measure, κ ≥ 0.61 indicates substantial agreement
among coders (Viera & Garrett, 2005); so, for items in which initial coding attempts
yielded κ ≤ 0.61, the three researchers revisited the scoring rubric and discussed
discrepancies in interpretation, after which rescoring occurred. These processes were
iterated until κ ≥ 0.61 was consistently achieved for all items. Once this was achieved,
researchers scored the remaining data independently or in pairs. In cases when
responses were scored by pairs, researchers came to a consensus on the appropriate
score through discussion with the third researcher.

Generally, the scoring rubric accounted for scientifically acceptable responses and
did not identify misconceptions; wholly incorrect responses from a scientific perspec-
tive were assigned a 0 score. However, the no-pattern concept of randomness occurred
so frequently in part II, item 1 responses (Table 1) that researchers saw the need to
document its frequency; the first author enumerated instances of the no-pattern concept
across all the data.
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Statistical Analyses

RQ#1: How do post-secondary students express randomness and variation? The
scored responses of post-secondary students’ expressions of random, sample and
variation were examined using two methods. First, three Kruskal-Wallis one-way
analyses of variance (ANOVA) were performed on all part II items separately using
educational level (introductory non-science majors, introductory science majors, mid-
level science majors, upper-level science majors, science graduate students) as the
predictor variable and individual item score as the response variable. The nonparamet-
ric ANOVA was chosen due to the ordinal nature of the data and large differences in
sample size. Second, frequencies of the no-pattern concept across education level were
compared using a parametric one-way ANOVA; the parametric analysis was chosen in
this case because data are continuous and did not violate the normality assumption.

RQ#2: Do students’ conceptions of randomness and variation predict perfor-
mance on a basic probability task? Six separate Kruskal-Wallis ANOVAs were
performed using part II items as separate predictors of variation factors 1 and 2 from
part I. Additionally, a correlation was performed to see if those students who expressed
the no-pattern concept in part II, item 1 were more likely to state that the scattered
distribution was the real distribution in part I, item 3.

RQ#3: Are students able to distinguish between different sources of
variation? Students’ abilities to distinguish between different sources of variation
(measurement error vs. natural variation in the phenomenon being studied) were
explored using Kruskal-Wallis ANOVAs. Two ANOVAs were performed for both part
III items separately using educational level as the predictor variable and item score as
the response variable.

Results

RQ #1: How do post-secondary students express randomness and variation?

Kruskal-Wallis one-way ANOVAs revealed statistically significant differences across
educational level in how students defined Brandom^ (H (4) = 29.6, p < 0.0001); sample
(H (4) = 12.4, p = 0.014); and variation (H (4) = 30.6, p < 0.0001). Post hoc pairwise
Mann-Whitney comparisons with a Bonferroni correction revealed that when asked to
define Brandom,^ graduate students scored significantly higher than non-science majors
(U = 956, p = 0.001) and introductory science majors (U = 654, p = 0.007). Post hoc
comparisons indicated that when asked to define Bvariation,^ graduate students
scored significantly higher than mid-level science majors (U = 109, p = 0.001);
introductory science majors (U = 137, p < 0.001); and introductory non-science
majors (U = 121, p < 0.001). Post hoc comparisons indicated that when asked
to define Bsample,^ upper-level science majors scored significantly better than
introductory non-science majors (U = 1220, p = 0.003) and graduate students
(U = 22.5, p = 0.009).
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Students at all levels exhibited the no-pattern concept of randomness in their
definitions of Brandom^ and in item 3 of part I. Twenty-nine of the 281
participants (10.3 %) across all student levels provided a definition that
matched the no-pattern concept. Among introductory non-science majors, 8 %
of responses conveyed the no-pattern concept. Among introductory science
majors, 13.8 % conveyed this concept. Fifteen percent of mid-level science
major students provided the no-pattern concept, and one of each of the upper-
level student and graduate students revealed this naïve concept. There were no
significant differences in the frequency of the no-pattern concept across level of
student. Students at all levels exhibited this concept, exemplified by the fol-
lowing student responses:

This data looks more realistic to me because there are outliers, and there is no
specific pattern. There shouldn’t be a specific pattern in a random spinner
experiment.

- Introductory non-science major

Real, because the data is spread out and random. There is no perfect pattern
created.

- Introductory science major

This data set seems more realistic due to the random outcomes which are
plotted on the graph. This type of data is more common than a perfectly
symmetrical one.

- Mid-level science major

This data seems real because the values are spread out at random.

- Upper-level science major

Real. Data is more widely distributed and looks close to a real scenario.

- Science graduate student

Students’ definitions of Bvariation^ fell into one of three distinct categories,
corresponding to progressively higher scores on this item: Different forms or
varieties of something (scored 1), changing or different outcomes/results across
time and/or space (scored 2), and distance or difference from a mean measure-
ment (scored 3). Forty-four percent of students across all levels provided a
definition of variation that was given a score of 1. Thirty-nine percent of
students provided a definition that was scored as a 2. Only 17 % of students
provided a definition that was scored 3, which is the definition most useful for
understanding statistical variability, and this was the most common definition
provided by science graduate students.
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RQ#2: Do students’ conceptions of randomness and variation predict
performance on a basic probability tasks?

Part II items were tested as predictors of variation factors 1 and 2 from part I, which
measured ability to recognize a realistic range or spread in a real data set and ability to
recognize that a perfect bell curve is not likely in a real data set, respectively. Students’
responses to part II, item 1, asking students to define random, successfully predicted
variation factor 2 (H (2) = 14.1, p < 0.001) but not variation factor 1. Part II, item 2
responses were not good predictors of variation factor 2, but they were good predictors
of variation factor 1 (H (3) = 9.35, p = 0.025). Scores on part II, item 3, asking students
to define variation, did not predict scores on either factors of variability understanding.

Students who demonstrated the no-pattern concept in part II, item 1 were more likely
to say that the scattered distribution was the more realistic distribution in part I, item 3
(r [279] = 0.15, p = 0.01). There were students at all levels that claimed the more
scattered distribution was more likely (51.7 % of introductory non-science majors,
50 % of introductory science majors, 40 % of mid-level majors, 23 % of upper-level
science majors, and 56 % of graduate students), and this claim was made even when the
no-pattern concept was not revealed in their definitions of random.

RQ#3: Are students able to distinguish between different sources of variation?

Part III items asked students to differentiate among causes of variation in data. Part III,
item 1, requires students to recognize naturally occurring variation, no statistically
significant differences across level of students were detected. On part III, item 2, asking
students to recognize variation due to measurement error, many students misunderstood
the question to read it as asking about several different rocks, rather than a single rock
being measured by many students; these responses were eliminated from the analysis.
Among remaining responses (n = 187), a significant difference was detected across
student levels (H (4) = 16.70, p = 0.002), but post hoc comparisons could not detect the
source of this significance.

Discussion

Several limitations of this study prevent far-reaching generalizations about how post-
secondary science students understand randomness and variation. For example, internal
reliability of variation factor 1 remained low, indicating there are aspects of variability
understanding that are not captured by the measure. When variation factor 2 is
included, only 39.7 % of the variability on the DVS was explained. Furthermore, in
this study, it was assumed that when students were asked to define random, sample, and
variation in a science course, the most salient context would be that of science. This is a
risky assumption, given students’ tendencies to extend understanding from non-
scientific contexts into their scientific understanding. These less-than-satisfactory cir-
cumstances highlight a need for a comprehensive measurement of statistical under-
standing, as well as qualitative studies that deeply observe the emergence of these terms
in students’ practices, paying particular attention to how concepts of variation, sam-
pling, and randomness are brought to bear while doing science. Only such a mixed-
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method approach would be able to elucidate causal mechanisms that give rise to the
understandings of randomness and variation observed in this study.

Despite these limitations, this study demonstrates that generally, expressions of
randomness and variation become more sophisticated with higher educational levels.
This finding is not surprising, since we would generally expect students’ reasoning to
become more sophisticated with advanced studies. However, large proportions of
students sampled in this study revealed conceptions of randomness and variation that
are either not helpful or are potentially detrimental in understanding statistical variabil-
ity and randomness’s role in scientific practices. A disturbingly common and naïve
definition of random provided by students at all levels revealed a no-pattern concept of
randomness, or when students understand random to mean anything that lacks a
pattern. Use of this naïve concept was revealed when students claimed that randomly
scattered distributions are more likely than bell-shaped distributions in a basic proba-
bility experiment. Unlike definitions of the terms Brandom,^ Bsample,^ and Bvariation,^
frequency of the no-pattern concept did not change with educational level, indicating a
significant inadequacy of instruction to help novice scientists develop a useful concept
of randomness as it applies to science. Konold and Higgins (2003) argue that students
overcome a conceptual milestone when they begin to see a data set as a whole with its
own emergent properties, rather than a group of individuals with their own distinct
characteristics. It appears as if students who thought the scattered distribution was most
likely focused on individual spins of the spinner, rather than the distribution of
aggregated data. Opportunities to analyze distributions of data, rather than constructing
graphs using individual data points, would be a positive step in helping students to see
data distributions as tools useful toward answering scientific questions, rather than a
collection of individual data points (Garfield & Ben-Zvi, 2007).

Randomness and variation traverse all scientific contexts, influencing a multitude of
scientific practices, including experimental design, sampling, and data analysis. The
natural events that constitute scientists’ investigational foci inherently contain random-
ness and natural variation, thus requiring scientists to grapple with uncertainty. Such
skills are brought to bear when identifying measurement errors, defining the boundaries
of the problem space to be examined, and identifying variations of the occurrences of
objects or events of interest across contexts. While uncertainty has been studied in the
statistics education community (Williams 2012), exploration of scientific uncertainty,
development of the skills scientists have to deal with uncertainty, and potentially
fruitful instructional practices have yet been examined by science educators (Ruggeri,
2012). Epistemological views of measurement influence how students estimate uncer-
tainty in measurements and calculations (Caussarieu & Tiberghien, 2016). Yet, this is
an under-emphasized problem space within the nature of science, demonstrating that
the nature of science is not an exact body of knowledge. Because of the lack of precise
boundaries, epistemological views of measurement and uncertainty are important areas
for further research.

Teaching Implications

When students have multiple experiences that develop appreciation for variation, such
as exploring a single variable across contexts by examining probability sampling,
representing changes in the variable, engaging in inference, discussing the relationship
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between sample and population, and describing variation in multiple ways, a founda-
tion of statistical understanding is established (Watson, Callingham, & Kelly, 2007).
Garfield and Ben-Zvi (2007) point out that allowing students to explore different ways
to represent the same data set becomes increasingly easier for instructors as technology
provides tools to create data representations in a timely fashion. However, non-critical
selection of a graph or display option in a software package without consideration of
the type of data and purpose could reinforce misconceptions about randomness,
variation, and samples. As discussed earlier, prompting students to use one represen-
tation of a concept, such as the no-pattern concept, to constrain interpretation of a more
scientific representation, is likely to promote conceptual development, and such in-
structional strategies can be supported through use of technology.

These findings also demonstrate that even subtle differences in students’ language use
surrounding the concepts of randomness, variation, and sampling lead to important
differences in how these conceptions are brought to bear when solving basic probability
tasks. The teaching of randomness and variation, particularly in the context of science, is a
prime example of how developing educators’ understanding of students’ everyday lan-
guage use could be helpful in supporting students’ construction of more scientific
conceptions of these terms (Brown &Kloser, 2009b). Without understanding of students’
conceptual continuities between their everyday use of the terms Brandom^ and
Bvariation,^ educators are unable to take advantage of students’ conceptual and
linguistic resources. Tang (2011) acknowledges that when two or more discourses about
natural phenomena are directly juxtaposed in the classroom, conflict can arise. This
conflict can lead to cognitive dissonance that creates opportunity for learners to construct
new conceptual knowledge by linking it to their prior knowledge and everyday language.

Brown and Spang (2008) put forth a pedagogical method for facilitating construction
of new conceptual knowledge, based on students’ everyday language. Disaggregate
instruction involves introducing scientific ideas in everyday language, which requires
the teacher to have facility with students’ everyday language, followed later by specific
science language instruction. One strategy employed in disaggregate instruction is double-
talk, in which parenthetical speech patterns allow the teacher to offer both vernacular and
scientific terms and phrases in the same idea (Brown, 2011). While we do not claim that
the use of double-talk when teaching about randomness in the context of science will fix
the naïve no-pattern concept, such instructional strategies would reveal early on in
instruction the inconsistencies between the no-pattern concept and the scientific concept
of random, thereby providing an opportunity for students to differentiate the uses of the
term across different genres. For example, when students provide the no-pattern concept
when asked to explain randomness, instructors might simply ask students to specify what
exactly lacks a pattern, followed by prompts to explicitly distinguish between a single
random event, such as a spin of spinner, and a distribution that summarizes multiple
random events. In short, instructors who are unaware of the everyday language use of
random by their students will ultimately allow conceptions like the naïve no-pattern
concept to continue throughout university science coursework (Brown, 2011).
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