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Abstract

The vertical distribution of chlorophyll in stratified lakes and reservoirs frequently exhibits a maximum

peak deep in the water column, referred to as the deep chlorophyll maximum (DCM). DCMs are ecologically

important hot spots of primary production and nutrient cycling, and their location can determine vertical

habitat gradients for primary consumers. Consequently, the drivers of DCM structure regulate many charac-

teristics of aquatic food webs and biogeochemistry. Previous studies have identified light and thermal stratifi-

cation as important drivers of summer DCM depth, but their relative importance across a broad range of

lakes is not well resolved. We analyzed profiles of chlorophyll fluorescence, temperature, and light during

summer stratification from 100 lakes in the Global Lake Ecological Observatory Network (GLEON) and quan-

tified two characteristics of DCM structure: depth and thickness. While DCMs do form in oligotrophic lakes,

we found that they can also form in eutrophic to dystrophic lakes. Using a random forest algorithm, we

assessed the relative importance of variables associated with light attenuation vs. thermal stratification for

predicting DCM structure in lakes that spanned broad gradients of morphometry and transparency. Our anal-

yses revealed that light attenuation was a more important predictor of DCM depth than thermal stratification

and that DCMs deepen with increasing lake clarity. DCM thickness was best predicted by lake size with larger

lakes having thicker DCMs. Additionally, our analysis demonstrates that the relative importance of light and

thermal stratification on DCM structure is not uniform across a diversity of lake types.

The vertical distribution of phytoplankton chlorophyll in

lakes and oceans frequently exhibits a peak deep in the

water column, referred to as the deep chlorophyll maximum

or DCM (e.g., Fee 1976; Williamson et al. 1996a; Mignot

et al. 2011; Silsbe and Malkin 2016). DCMs can account for

as much as 60% of areal primary production in oligotrophic
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lakes and oceans (Moll et al. 1984; Weston et al. 2005;

Giling et al. 2017) and influence nutrient cycling (Jamart

et al. 1977; Letelier et al. 2004). DCMs create a vertical

resource gradient for primary consumers and thus influence

zooplankton vertical distributions and diel vertical migration

(Williamson et al. 1996a; Winder et al. 2003), as well as

predator aggregations (Tiselius et al. 1993). Additionally,

DCMs are often associated with elevated densities of mixo-

trophic (Bird and Kalff 1989) and heterotrophic (Dolan and

Marras�e 1995) protozoans, and bacterial biomass that can be

10X greater than elsewhere in the water column (Auer and

Powell 2004). Consequently, the presence and characteristics

of DCMs, such as their depth or size, can have important

implications for predator–prey interactions, biogeochemistry,

and energy flow in aquatic ecosystems.

Many characteristics contribute to regulating the depth of

DCM formation in lakes (Durham and Stocker 2012; Cullen

2015). Light availability, the vertical distribution of

nutrients, and the location of thermal gradients in the water

column are frequently identified as the main abiotic drivers

of the depth of DCM formation (e.g., Fee 1976; Abbott et al.

1984). DCMs form because phytoplankton must balance

opposing gradients of light from above with the availability

of nutrients, which often increase with depth under strati-

fied conditions (Abbott et al. 1984; Carney et al. 1988; Clegg

et al. 2007; Descy et al. 2010). Other biological factors can

contribute to DCM formation, including high in situ growth

at depth (Coon et al. 1987; Lande et al. 1989), or behavioral

aggregations to nutrient-replete depths via physiological-

influenced swimming in motile species (Durham and Stocker

2012), or buoyancy-controlled movements in non-motile

species (e.g., Oliver 1994; Villareal et al. 1996). Horizontal

movement of water masses such as intrusions or those that

cause shear may also contribute to DCM formation by later-

ally transporting deep, nutrient- or phytoplankton-replete

waters (Durham and Stocker 2012). Under oligotrophic con-

ditions, DCMs may also form independently of phytoplank-

ton biomass peaks due to increased chlorophyll (Chl) per

unit biomass because in these highly transparent lakes suffi-

cient light may penetrate to depths with relatively higher

nutrient conditions, a process known as photoacclimation or

photoadaptation (Fennel and Boss 2003). These mechanisms

are not mutually exclusive and may act in concert to con-

tribute to the formation of a DCM (Mignot et al. 2014).

Thermal stratification determines DCM depth because it

can regulate nutrients mixing from deep waters into the

euphotic zone (Abbott et al. 1984; Varela et al. 1994; Mellard

et al. 2011; White and Matsumoto 2012) and is an important

factor in determining the depth of strong vertical gradients

in nutrients (i.e., the nutricline). Non-motile phytoplankton

may also settle at depths of neutral density along a vertical

temperature gradient (Alldredge et al. 2002; Durham and

Stocker 2012). Accordingly, DCMs are frequently associated

with both the thermocline and areas of low light, often

reported as 1–3% of incident surface photosynthetically

active radiation (PAR; Fee 1976; Banse 1987, 2004; Perez

et al. 2002; Morel et al. 2007), or as daily integrated PAR val-

ues of 0.1–1.2 mol quanta m22 d21 (Letelier et al. 2004;

Mignot et al. 2014).

Other characteristics of DCM structure, aside from DCM

depth, have received far less attention. Though analytical

definitions have varied, DCM thickness is generally defined

as the depth range over which a Chl peak occurs (Platt et al.

1988; Beckmann and Hense 2007; Hanson et al. 2007; Jobin

and Beisner 2014). DCM thickness can be quantified as the

depth range where Chl values are within a certain percent-

age of the maximum Chl concentration (e.g., Jobin and Beis-

ner 2014), or where a certain percentage of the integrated

Chl occurs (e.g., Platt et al. 1988). Although, when specifi-

cally considering deep biomass layers, the depth range of net

primary production can also be used (Beckmann and Hense

2007).

The few studies that have examined factors controlling

DCM thickness have concluded that DCMs are thinner and

more sharply peaked with stronger stratification at the depth

at which they develop (i.e., where the relative availability of

light vs. nutrients is optimized; Varela et al. 1994; Mellard

et al. 2011). In areas of strong stratification, non-motile cells

are hypothesized to aggregate in thin layers by sinking or ris-

ing to the depths of neutral buoyancy (Alldredge et al. 2002;

Durham and Stocker 2012). Once these cells reach neutral

buoyancy, vertical dispersion is inhibited by the strong den-

sity gradient and in situ growth (Lande et al. 1989) and pho-

toacclimation (Fennel and Boss 2003) may further contribute

to high Chl concentrations over a small vertical depth range.

Theoretical models predict that the exponential decay of

light in the water column, combined with a gradient of

nutrient concentrations below the thermocline, means that

optimal conditions for high phytoplankton growth can exist

over an increasingly broad depth range with increasing lake

transparency, which may also influence DCM thickness

(Beckmann and Hense 2007). However, because our under-

standing of mechanistic controls of DCM thickness primarily

stems from theoretical modeling (e.g., Varela et al. 1994;

Beckmann and Hense 2007; Mellard et al. 2011), not empiri-

cal studies (but see Mignot et al. 2011), the way in which

these mechanisms interact across broad gradients of lake

morphometry and transparency remains an open question.

DCM features (i.e., depth and thickness) are likely con-

trolled by simultaneously operating characteristics that co-

vary with one another. Specifically, the strong co-variation

of light and temperature with depth (Houser 2006; Read and

Rose 2013) complicates our ability to differentiate the rela-

tive importance of each in controlling DCM structure. Both

light attenuation (Read and Rose 2013) and convective vs.

wind-driven mixing (Read et al. 2012) control the distribu-

tion of incident thermal energy throughout the water col-

umn. As a result, both transparency and surface area may
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interact to determine the strength and location of water col-

umn stability, as well as the relative position of light and

nutrient gradients. Moreover, lake surface area and depth

interact to influence transport processes such as mixing, sed-

imentation, resuspension, and diffusion (Håkanson 2005),

and thus may also modulate the influence of light and ther-

mal stratification on DCM structure.

A fundamental challenge in predicting DCM characteris-

tics and identifying the drivers of DCM structure in lakes has

been a lack of data across broad gradients of lake transpar-

ency and morphometry. Most previous work, by necessity,

has focused on DCM depth in one lake (Abbott et al. 1984),

a small set of lakes through time (e.g., Hamilton et al. 2010),

or in a small set of lakes in a constrained geographical region

(Fee 1976; but see Longhi and Beisner 2009). These studies

have provided insight into the roles of lake trophy or clarity

on DCM depth. For example, DCMs deepen with increasing

water transparency (Fee 1976; Longhi and Beisner 2009;

Hamilton et al. 2010). However, the relatively small number

of lakes limits our understanding of generalized patterns in

DCM structure across broad gradients of lake size or transpar-

ency. Fortunately, recent advances in fluorometric sensors

and their widespread use have improved our ability to col-

lect information on the vertical distribution of Chl fluores-

cence across a large number of lake ecosystems (Brentrup

et al. 2016).

We collated a 100-lake dataset of light, temperature, and

Chl fluorescence profiles collected during the summer strati-

fied period from the Global Lake Ecological Observatory Net-

work (GLEON; Weathers et al. 2013; Rose et al. 2016) to

assess the relative importance of variables associated with

light availability vs. those associated with the depth and

strength of thermal stratification to predict DCM depth and

thickness. Additionally, we assessed how light- and

stratification-associated variables scaled across broad gra-

dients of lake morphometry and transparency. To deal with

the analytical challenges of correlated explanatory variables

and non-linear relationships that often occur in large-scale

ecological studies, we used a random forest algorithm (Brei-

man 2001) to contrast the relative importance of predictors

for the two focal DCM characteristics and to examine how

their importance varied across lakes.

Methods

Study sites

In situ Chl fluorescence (ChlF) and temperature profiles

were collated from lakes representing 13 different ecological

regions in 8 countries (Abell et al. 2008, Fig. 1). The lakes

spanned a broad range of lake size, maximum depth, trans-

parency, dissolved organic carbon concentrations, and tro-

phic state (Table 1; Supporting Information Table S1). We

focused on thermally stratified temperate lakes during sum-

mer because the water column must be stratified for a DCM

to form (Durham and Stocker 2012 and references therein;

White and Matsumoto 2012). All data were collected during

mid-summer when surface water temperatures were the

warmest in the water column and greater than 48C, which

are the requirements for thermal stratification (Boehrer and

Schultze 2008). While it is important to recognize that peaks

in ChlF may not necessarily represent a biomass peak (Fen-

nel and Boss 2003), ChlF is a widely used proxy for phyto-

plankton biomass. One ChlF profile collected during the

mid-summer stratification was used for each lake. Although

this is a potential limitation due to temporal variability in

DCMs that have been observed in some lakes (Hamilton

et al. 2010; Brentrup et al. 2016), we chose to focus here on

cross-lake patterns in DCM characteristics, rather than sea-

sonal dynamics, to maximize the number of available lakes

that had at least one ChlF vertical profile.

Chlorophyll fluorescence data processing

We classified lakes as having a DCM if a depth could be

identified below the top 5% of the water column depth,

where ChlF was at least 1.5 times the average fluorescence in

the top 5% of the water column. Our DCM filter was fol-

lowed by visual assessment of each profile to verify DCM

presence and to distinguish whether a lake had a single or

multiple peaks, resulting in a dataset of 100 lakes that exhib-

ited a DCM. Although we could not compare lakes with and

without a DCM, these criteria allowed us to focus specifically

on the drivers of variation in DCM structure within a popu-

lation of lakes that exhibited DCMs. Note that while non-

photochemical quenching (NPQ) can reduce ChlF in high

light areas near the surface of lakes (Serra et al. 2009; Huot

and Babin 2010), we did not correct for NPQ because we are

not aware of appropriate methods, given the diverse data

and sensors used in our dataset. While NPQ may have

caused us to identify a lake as having a DCM when none

was present, this is unlikely because only three lakes fell

close to our 1.5x fluorescence-depth threshold (1.5–1.6) for

DCM classification. The median ratio of average ChlF in the

top 5% of the water column to the ChlF at the DCM was 6

(mean 5 10.9, 1st–3rd quartile 5 3.5–12.0, range 5 1.5–76.2).

Further, Mignot et al. (2011) examined the effects of NPQ

on DCM depth and thickness in marine systems by compar-

ing estimated Chl derived from in situ fluorescence vs. high

performance liquid chromatography. The authors found that

NPQ caused an underestimation of DCM thickness in 24%

of their dataset and that identification of the DCM depth

was generally robust to NPQ.

Fluorometer values were not comparable across lakes due

to differences in the algorithm and calibration procedures

among different sensor models. We therefore normalized all

profiles to a maximum ChlF value of 100 within each lake to

facilitate comparisons among lakes. While normalization

meant that we could not compare the magnitude of the

ChlF peak across lakes differences in ChlF values and ranges
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between fluorometer manufactures would have made that

unfeasible even before the normalization. The depth inter-

vals of the ChlF data within each lake were standardized to

0.1 m using a piecewise cubic hermite polynomial function

(R Package pracma; Borchers 2015), which prevents local

overshooting of data values, and thus preserved the shape of

the ChlF profiles (Moler 2004). Prior to interpolation, the

median vertical resolution of the ChlF profiles across the

Fig. 1. Location of all 100 lakes included in the analysis. Insets are only for North America and Europe; lakes on other continents are shown on the

world map. See Supporting Information Table S1 in the Supporting Information for more detailed information on each lake. Points in North American
and Europe are semi-transparent so more darkly colored points represent overlapping points.

Table 1. Summary of characteristics for lakes in the dataset. Total phosphorus (TP), total nitrogen (TN), and dissolved organic car-
bon (DOC) represent epilimnetic concentrations. Note that TP and TN concentrations were not available for approximately one third
of the study lakes.

Mean Median 1st–3rd quartile Range Sample size

Surface area (km2) 37.97 0.44 0.17–1.43 0.004–1269 100

Max. depth (m) 44.5 20.6 12.7–38.8 4.3–501.0 91

TP (lg L21) 15.71 12.92 6.40–19.82 2.00–77.00 65

TN (mg L21) 0.34 0.29 0.22–0.41 0.03–1.12 63

DOC (mg L21) 4.07 3.45 1.45–5.73 0.18–24.40 91

1% PAR depth (m) 12.71 11.45 7.80–14.90 1.50–54.60 100
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entire dataset was 0.10 m (range: 0.01–0.65 m; 1st–3rd quan-

tile 5 0.05–0.10 m).

We calculated depth and thickness of the ChlF peak for

each profile and used these as derived response variables in

all analyses (Fig. 2). The depth of the DCM corresponded to

the maximum ChlF observation in each lake. The thickness

of the DCM was the depth range over which a ChlF peak

occurred (Fig. 2). We fit a curve to each ChlF profile to char-

acterize DCM thickness. Our approach built on previous

studies that have characterized Chl profiles in a similar man-

ner. Lewis et al. (1983) used a Gaussian distribution to repre-

sent vertical profiles of Chl a, and, Platt et al. (1988) and

Morel and Berthon (1989) superimposed a Gaussian distribu-

tion onto a constant background Chl concentration. Recent

studies have improved the curve fitting by superimposing

the Gaussian profile onto a linearly (Uitz et al. 2006) or

exponentially decreasing background Chl concentration

(Mignot et al. 2011).

We fit an exponential power distribution (Subbotin 1923),

also known as a p-generalized normal distribution (Nadarajah

2006), with a constant background fluorescence to our ChlF

profiles. The exponential power distribution is more flexible

than a Gaussian distribution due to an additional shape

parameter, which improved our characterization of the ChlF

profiles. Our varied dataset prevented quantification of profile

amplitude or magnitude however. For example, expressing the

peak ChlF value as a quotient of the average or median ChlF in

the profile was problematic because some of the profiles in the

dataset did not cover the entire depth of the water column.

Restricting the calculation of median or average ChlF values to

within the euphotic zone (above the 1% PAR depth) did not pro-

vide an accurate or biologically relevant baseline ChlF estimate

as the DCM extended below the 1% PAR depth in some lakes.

We used an optimization procedure (R Developement

Core Team 2015; function optim) to fit Eq. 1 to the normal-

ized and 0.1 m resolution ChlF profile in each lake.

ChlFestimated xð Þ5a1b
p

2rC 1
p

� � e2jx2l
r j

p

0
@

1
A (1)

Equation 1 estimates ChlF at depth x (m), where a (unitless)

is an additive parameter that represents the background

ChlF as implemented by Platt et al. (1988) and Morel and

Berthon (1989). The multiplicative parameter, b (unitless),

adjusts the amplitude of the DCM above the background

ChlF. The remainder of the right-hand term in Eq. 1 is the

exponential power distribution (R package pgnorm; Nadara-

jah 2005; Kalke and Richter 2013; Kalke 2015) where l (m) is

the mean of the distribution. DCM thickness was defined as

the depth range that encompassed 1r (m) on either side of

l. The unitless shape parameter, p, controls the tail region

and thus defines the shape of the distribution (Kalke and

Richter 2013). When p 5 2, the curve is a Gaussian distribu-

tion, p < 2 indicate sharply peaked distributions and when

p > 2 peaks are more broadly distributed (Fig. 2b, Nadarajah

2005). C represents that gamma function.

Optimization was based on minimizing the total sum of

squares between the estimated ChlF values from the curve fit

and the normalized ChlF values for each profile. To provide

more ecologically meaningful descriptive metrics of the

DCM, constraints were placed on the exponential power

Fig. 2. (a) Diagram of the vertical distribution of chlorophyll fluores-
cence (ChlF) as defined by Eq. 1 where the background ChlF is repre-
sented by a, the mean of the exponential power distribution is

represented by l, and the thickness is defined by 2r (i.e., 1r on either
side of l). (b) The shape parameter, p, controls the tail weight and thus

the shape of the profile (see “Methods” section for details), and profiles
with several values of p and (r 5 3) are shown to demonstrate the vari-
ety of shapes that could be characterized with our curve-fitting proce-

dure. (c–f) Example ChlF profiles (green) normalized to 100 and
overlaid with the exponential power distribution (black). The solid point

represents the depth of the ChlF maximum (ZDCM), which is the depth
of the maximum ChlF value and the open circle represents, l. The thick-
ness of the deep chlorophyll maximum (DCM) is shown by the dashed

gray lines and represents 1r on either side of l. Profile (c) is from Emer-
ald Lake (Wyoming, U.S.A.), ZDCM 5 14.1 m, l 5 14.9, r 5 3.29,

p 5 3.300, profile (d) is from Heart Lake (Wyoming, U.S.A.) with
ZDCM 5 12.8 m, l 5 13.0, r 5 3.20, p 5 0.686, (e) is from Pincher Lake
(Ontario, Canada), ZDCM 5 5.8 m, l 5 6.3, r 5 1.86, p 5 2.029 and (f) is

from Lake Truite (Quebec, Canada), ZDCM 5 4.3 m, l 5 4.4, r 5 0.99,
p 5 0.661. The y-axes in (c–f) are consistent to improve comparisons

but note that the depths of the lakes differ.
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distribution parameters including: 0 < l < maximum lake

depth, r < one half of the maximum profile depth and a > -

0.1. In cases where l-r was less than 0 (i.e., the fitted DCM

extended above the lake surface), we defined the top of the

DCM as the lake surface. This scenario occurred only six

times in our dataset and decreased the thickness of the DCM

an average of 3.3 m (median 5 1.9 m). When l1r extended

below the maximum depth of the lake, the DCM bottom

and thus the DCM thickness was not defined (five lakes were

excluded because of this criterion).

Limnological data

Based on mechanistic understanding of the factors that

control DCM structure (e.g., Klausmeier and Litchman 2001;

Mellard et al. 2011; Durham and Stocker 2012; Cullen 2015),

we selected a suite of predictors of DCM depth and thickness

associated with three categories: light attenuation, thermal

stratification, and lake morphometry. Light attenuation vari-

ables included the 1% PAR depth and epilimnetic dissolved

organic carbon (DOC) concentration because DOC is a major

regulator of light attenuation in aquatic ecosystems (Wil-

liamson et al. 1996b; Bukaveckas and Robbins-Forbes 2000).

While DOC and light attenuation are closely related to one

another, we included DOC as a separate predictor in our

model because recent ecological studies have shown that the

effects of DOC on algal biomass can be positive at low DOC

concentrations but negative at high DOC concentrations

(Seekell et al. 2015). Thus the role of DOC in predicting

DCM characteristics likely varies across lakes. Given the

importance of stratification for DCM formation (Cullen

1982, 2015), we included several metrics related to the loca-

tion and strength of thermal density gradients in the water

column including the thermocline depth, thickness of the

metalimnion, and the stratification strength (i.e., buoyancy

frequency) at the thermocline and within the DCM (as

defined by the depths of l6r). These metrics may predict

the relative positions of light and nutrient gradients in the

water column and thus the DCM structure. The strength of

stratification at such depths may also be an important pre-

dictor of DCM thickness by influencing nutrient availability

or the ability of cells to aggregate in the water column

(Klausmeier and Litchman 2001; Durham and Stocker 2012;

Cullen 2015). Lake surface area and maximum depth were

also included in our analysis because they can influence

transport processes in the water column (e.g., mixing, or

circulation-aided diffusion; Håkanson 2005), and modulate

the influence of the light and thermal metrics on DCM

structure. Light, temperature, and DOC data for each lake

were collected on the same day as the ChlF profiles except

for Lake Champlain, where the Secchi measurement was

taken 4 d later.

We determined the light attenuation coefficient of PAR,

Kd (m21), for each lake in the dataset using two methods.

For 49 of the lakes, radiometer data were available and we

estimated Kd, as the slope of the linear regression of the nat-

ural logarithm of downwelling planar irradiance (Ed) vs.

depth. The regression was performed over the entire portion

of the light profile that showed a visibly log-linear relation-

ship between the ln(Ed(z)) vs. depth (Kirk 1994). In some

lakes, the depth range of the regression was altered to avoid

boat shadows or surface waves that cause the light measure-

ments in the near surface to be particularly noisy. In the

remaining 51 lakes, where radiometer data were unavailable,

Kd was estimated by dividing 1.7 by the Secchi depth (Poole

and Atkins 1929; Idso and Gilbert 1974). The depth at which

1% of the surface PAR remained was estimated as:

Z
1%5ln 100ð Þ=Kd (2)

While light levels at the DCM are often reported as a percent

of surface irradiance, daily-integrated light level (mols pho-

tons m22 d21) at a given depth is a better quantitative

descriptor of the amount of light at the DCM (Letelier et al.

2004; Mignot et al. 2014; Cullen 2015). However, in lakes

where light attenuation (Kd) was estimated using a Secchi

disk, irradiance measurements were not available. Because

almost all study lakes were located in temperate latitudes

where surface irradiance during summer is similar, our esti-

mated 1% PAR depths are likely a reasonable proxy for com-

paring the amount of light available in the water column

among lakes.

We estimated multiple metrics of thermal structure for

each lake in the dataset, including the depth of the thermo-

cline, the thickness of the metalimnion, buoyancy frequency

at the thermocline, and the average buoyancy frequency in

the DCM peak or within the metalimnion. Raw temperature

profile data were converted to 0.1 m resolution either by

averaging or linear interpolation, depending on the original

data resolution. The only exception was for Lake Stechlin,

Germany, where we interpolated the temperature data to

0.5 m due to a low spatial sampling resolution (approxi-

mately 1 m). From these temperature profiles, we estimated

the depth of the seasonal thermocline following procedures

outlined in Read et al. (2011) using the rLakeAnalyzer pack-

age (Winslow et al. 2016). To examine the effects of stratifi-

cation strength, we also used the temperature profiles to

estimate profiles of buoyancy frequency (N) in each lake,

which was defined as:

N5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

g

p0

@p

@z

s
(3)

where g is the gravitational constant, p0 is the density at

each depth, and @p=@z is the density gradient (Kalff 2002).

Density gradients were determined by applying finite center

differencing to the density profiles, which were calculated

using the 0.1 m resolution temperature data and thermody-

namic equations specific to freshwater conditions (Chen and
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Millero 1986). The top and bottom depths of the metalimn-

ion were defined as the depths above and below the thermo-

cline where N reached at least 35% of the value of N at the

thermocline; these depths were found by moving away from

the thermocline depth along the profile of N (Pernica et al.

2014) and were verified with visual inspection. Finally, from

the N profiles, we derived three additional metrics of thermal

stratification: (1) the value of N at the thermocline; (2) the

mean buoyancy frequency within the DCM (determined by

averaging all N values from the density profiles that

fell between the top and bottom depths of the DCM peak,

i.e., l6r, see above); and (3) the mean buoyancy frequency

within the metalimnion (determined by averaging all N val-

ues from the density profiles that fell within the

metalimnion).

Last, we collated several other limnological variables for

each lake that may influence light attenuation or thermal

structure including, lake surface area and maximum depth

(both transformed using a logarithm base 10). Depth profiles

and surface data of soluble or total nutrients were not avail-

able for approximately one third of the lakes in our dataset.

Thus, we did not include nutrients as predictors in our ran-

dom forest (RF) analyses because the lakes with nutrient data

did not represent a random subsample of the entire dataset

and were biased toward the low elevation and low transpar-

ency lakes. Results from a separate RF analysis of just the

lakes with nutrient data are included in the supplemental

information (Supporting Information Fig. S4).

Random forest analysis

We used a random forest (RF) algorithm to assess the rela-

tive importance of predictors for each of the two DCM char-

acteristics. RF analyses are robust to overfitting and

insensitive to outliers (Breiman 2001) and are able to handle

datasets with relatively large numbers of candidate predic-

tors. Importantly, RF analyses are able to detect non-linear

relationships without the need to specify them in advance

(Jones and Linder 2015), accurately identify important pre-

dictors of the response when there is high collinearity

among predictors (Archer and Kimes 2008), and provide

accurate predictions of the response (Prasad et al. 2006; Cut-

ler et al. 2007).

A RF algorithm is a machine learning technique based on

classification, or in our case, regression tree analyses (Brei-

man 2001; Cutler et al. 2007). The RF algorithm builds

many regression trees using a unique bootstrapped sample of

the data to construct each individual tree (Liaw and Wiener

2002). Results of each tree are combined to produce a

model-averaged fit (Liaw and Wiener 2002). The method dif-

fers from traditional regression trees in that only a small

number of randomly selected predictor variables are avail-

able for selection at each node, which decreases the correla-

tion between trees and therefore the error rate of the entire

forest (Archer and Kimes 2008).

A measure of importance was calculated for each predic-

tor by cross-validating each tree with data that were not

used when the tree was constructed, referred to as the out-

of-bag data (Breiman 2001). For a given predictor variable

within a single tree, the out-of-bag values were randomly

permuted and the mean square error (MSE) of the tree was

compared between the original out-of-bag and permuted

out-of-bag datasets. A large percent increase in MSE from the

original out-of-bag data to the permuted out-of-bag data

indicated that the predictor variable had high explanatory

power for the response. Increase in percent MSE cannot be

compared across RF with different response variables, so we

calculated a relative increase in percent MSE (Rel. IMSE) for

each RF analysis by dividing the percent MSE for each vari-

able by the highest observed percent MSE for a given

response variable, following Read et al. (2015).

We constructed a RF of 1500 trees for each of the two

response variables using 1% PAR depth (m), DOC concentra-

tion (mg L21), thermocline depth (m), metalimnion thick-

ness (m), buoyancy frequency at the thermocline (s21), lake

surface area (log10(km2)), and maximum depth (log10(m)) as

predictors included in each analysis. For the RF analyses

with DCM thickness as the response variables, only profiles

with a fitted R2 value � 0.8 were used and buoyancy fre-

quency within the DCM (s21) was included as an additional

predictor variable. We also excluded six additional lakes

because the bottom depth of the DCM, as defined by the

curve fitting, extended below the bottom of those lakes.

Because DCM thickness was derived from the curve fitting

procedures, our criteria ensured that only profiles where the

thickness was reasonably well characterized were used in the

analysis (n 5 75 lakes total). All 100 lakes were included

when DCM depth was the response variable because it did

not use outputs from the curve fitting. For lakes where pre-

dictor variables such as maximum depth or DOC concentra-

tion were not available, the lake was excluded from that

individual tree, but not the entire analysis, following recom-

mendations from Liaw and Wiener (2002). Our data exclu-

sion method affected 2.4% of the complete data matrix (700

observations) for the RF when DCM depth was the response

variable and 2.2% for the RF when DCM thickness was the

response (587 observations).

To visualize the direction and nature of the relationship

between the most important predictors and each response,

and thus assess how the influence of each predictor scales

across lakes, we constructed partial dependency plots (PDP)

for the most important predictors from each RF model. Par-

tial dependence is computed by predicting the response

(e.g., DCM depth or thickness) from the RF over a range of

values for the variable of interest, while holding all other

variables in the dataset constant (Friedman 2001; also see

Auret and Aldrich 2012 for an excellent description). In

essence, a PDP represents the relationship between a single

variable and the response, after accounting for the average
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effects or interactions of the other predictors in the model

(Carlisle et al. 2009).

All analyses were completed in R version 3.2.2 (R Devel-

opement Core Team 2015) and the RF analyses were done

with an implementation written by Liaw and Wiener (2002;

R package randomForest).

Results

Cross-lake patterns in DCM characteristics

We found a strong positive relationship between DCM

depth and thickness, and the 1% PAR depth (Fig. 3a,b), ther-

mocline depth (Fig. 3c,d), lake surface area (Fig. 3e,f) and

maximum lake depth (Supporting Information Fig. S1). The

depth of the DCM ranged from 1.0 m to 53.9 m (mean 5

9.2 6 0.8 (1 SE), median 5 6.5; Table 2). In the 75 lakes

where the ChlF distributions were well described by the

curve-fitting procedure, DCM thickness ranged from 0.7 m

to 29.3 m (mean 5 6.8 6 0.8 (1 SE), median 5 4.3; Table 2).

Eleven of the 100 lakes exhibited distinct double ChlF peaks

in the profile, although no profile showed more than two

distinct peaks. Measured limnological variables did not differ

between lakes with a single vs. double peak. DCM depth and

thickness were also positively related to each other (Support-

ing Information Fig. S2).

The depth of the DCM was located at, or shallower than,

the 1% PAR depth in 87 of the 100 lakes (Fig. 4a). The

median percent of incoming PAR that was available at the

depth of the DCM across the entire dataset was 4.8%. With

one exception, the percent of PAR at the DCM was less than

23% in all lakes (interquartile range 5 1.6–7.05%, min.–max.

5 0.0001–52.9%). In the majority of the lakes, the depth of

the DCM was at or deeper than the top of the metalimnion

(85 lakes). Of that majority, 33 lakes had a DCM depth that

was located entirely below the metalimnetic layer (Fig. 4b).

The 1% PAR depth was located below the top of the met-

alimnion in 99% of the lakes. In the one exception, Lake

Atitlan (Guatemala), the 1% PAR depth was located 2 m

above the estimated top of the metalimnion, although the

DCM in Lake Atitlan was located below the 1% PAR depth.

The 1% PAR depth was located below the thermocline in 96

of the 100 lakes and below the bottom of the metalimnion

in 71 of the lakes (Fig. 4c).

For a small and geographically biased subset of 37 lakes

(31 located in Quebec and Ontario, Canada, one in Virginia,

U.S.A., five in western Europe), a spectrofluorometer (Fluo-

roprobe: bbe Moldaenke GmbH, Schwentinental, Germany)

was used to collect ChlF. The spectrofluorometer parses the

ChlF of four spectral groups of phytoplankton based upon

differences in accessory pigments and emission spectra (Beu-

tler et al. 2002). These spectral groups represent the follow-

ing broad taxonomic groupings: Browns (diatoms,

dinoflagelletes, and chrysophytes), Greens (chlorophytes),

Cyanobacteria (phycocyanin containing cyanobacteria), and

Cryptophytes (cryptophytes and cyanobacteria containing

phycoerythrin). Browns were the dominant spectral group at

the depth of the DCM in a majority of the lakes (26 of 37

lakes). Cryptophytes largely dominated the spectral composi-

tion of the DCM in the remaining lakes (7 of 37), although

in one lake the DCM was evenly comprised of Browns and

Cryptophytes. Cyanobacteria dominated the DCM in only

three lakes and Greens were never the dominant spectral

group in the DCM (Supporting Information Fig. S3).

Random forest analyses

Across all lakes, variables associated with light attenuation

(i.e., 1% PAR depth and DOC concentration) were more

important than thermal stratification metrics to explain

DCM depth (Fig. 5a). Together, all predictors in the RF

model explained 63% of the variation in DCM depth. The

1% PAR depth was by far the most important variable

explaining DCM depth, followed by DOC concentration,

and the depth of the thermocline (Fig. 5a). The partial

dependency plots (PDP) showed that the predicted DCM

depth increased rapidly with increasing 1% PAR depth until

the 1% PAR depth reached approximately 30 m, after which

the response of the DCM depth to further increases in the

1% PAR depth was weaker (Fig. 6a). There was a weak nega-

tive relationship between DOC concentration and the DCM

depth at very low concentrations of DOC, and a stronger

negative relationship at intermediate DOC levels. At DOC

concentrations above 7–8 mg L21, further increases in DOC

did not predict further decreases in DCM depth (Fig. 6b).

DCM depth increased with increasing depth of the thermo-

cline (Fig. 6c).

Lake surface area and maximum lake depth were the most

important variables explaining DCM thickness, followed

closely by the depth of the thermocline (Fig. 5b). All predic-

tors in the RF model explained 70% of the variation in DCM

thickness. Predicted DCM thickness changed very little with

log-transformed lake surface area for lakes smaller than

approximately 1 km2, but showed a substantial increase in

thickness in lakes larger than approximately 10 km2 (Fig.

7a). Similarly, predicted DCM thickness showed only moder-

ate increases when maximum lake depth was shallower than

30 m, but a steeper positive relationship when maximum

lake depth was greater than 30 m (Fig. 7b). The DCM also

thickened with increasing thermocline depth, and this rela-

tionship was strongest when the thermocline depth ranged

from approximately 5–15 m (Fig. 7c,d).

Discussion

Across a diverse and globally distributed set of lakes, we

identified strong but markedly different patterns in the rela-

tive importance of light vs. thermal stratification in explain-

ing DCM depth and thickness. Light and thermal

stratification are important predictors of DCMs (e.g., Fee

1976; Cullen 1982, 2015). However, their strong covariation
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Fig. 3. Deep chlorophyll maximum depth and thickness as a function of 1% PAR depths (a, b), thermocline depth (c, d), and lake surface area (e,
f). Black lines in (a, c) represent the 1 : 1 line. In (c) Lakes Tahoe and Taupo are shown in black for better visualization of the 1% PAR depths in the

rest of the dataset. Tahoe and Taupo had 1% PAR depths of 54.6 m and 53.8 m, respectively.
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had previously precluded a sufficient evaluation of their rela-

tive importance and influence over the different elements of

DCM structure within and across lake types. We found that

light attenuation and associated variables (e.g., DOC concen-

tration) were more important predictors of DCM depth than

were predictors associated with thermal stratification. In con-

trast, DCM thickness was predicted by lake size, maximum

depth, and other limnological variables related to thermal

stratification. Importantly, our analysis also suggests that the

relative importance of light and thermal stratification on

DCM structure is not uniform across broad gradients of lake

morphometry and transparency, but overall these abiotic

characteristics explain a majority of the variation in DCM

depth or thickness among lakes.

DCM depth

The positive relationship that we observed between DCM

and 1% PAR depths across a diverse set of lake types (Fig. 3a)

is consistent with results from previous studies, which

encompassed a narrower range of lake types (e.g., Fee 1976).

The positive relationship has largely been attributed to phy-

toplankton balancing the need for light from above and

nutrients from hypolimnetic waters below to maximize

growth (Abbott et al. 1984; Durham and Stocker 2012),

although photoacclimation also plays a role (Fennel and

Boss 2003). Our results, from a wider range of lake types,

also show that the relationship between 1% PAR and DCM

depth is not uniform across a gradient of lake transparency

(Fig. 6a). Predicted DCM depths from the RF analysis were

more sensitive to increases in 1% PAR depth between depths

of 10–30 m in the water column (Kd range: 0.46–0.19), but

were less sensitive when 1% PAR was deeper than 30 m (Kd

< 0.19).

Differences in the relative position of the 1% PAR depth

and the nutricline may be responsible for the variability in

the relationship between DCM and 1% PAR depths across

lakes observed in our dataset (Abbott et al. 1984; Barbiero

and McNair 1996). The relative positions of the 1% PAR and

nutricline depths will alter the depth at which light avail-

ability from above and nutrient availability from below are

balanced and thus interact to control the DCM depth. For

example, Barbiero and McNair (1996) observed that the

DCM in a small oligotrophic lake deepened over time as the

depth of the nutricline increased relative to the 1% PAR

depth. Similarly, in a modeling study, Mellard et al. (2011)

demonstrated that when the depth of the nutricline was

held constant, DCM depths were sensitive to small decreases

in light attenuation and thus to the relative position of the

1% PAR and nutricline depths. Nutrient concentrations gen-

erally increase with increasing depth in a stratified water col-

umn (Holm-Hansen et al. 1976; Cullen 1982; Moll et al.

1984) and likely play an important role in regulating DCM

depths. While depth profiles of nutrient data were not avail-

able for all of the lakes in our dataset, these previous studies

strongly suggest the need to examine the role of vertical dis-

tribution of nutrient availability in future empirical studies.

However, we note that our RF model explained a substantial

amount of variation in DCM depth among lakes in the

absence of nutrient predictors, indicating that physical char-

acteristics alone can provide the ability to explain a majority

(63%) of variation in DCM depth across lakes with diverse

characteristics.

DOC is a major regulator of water clarity and light attenu-

ation in aquatic ecosystems due to its light-absorbing proper-

ties (Williamson et al. 1996b; Bukaveckas and Robbins-

Forbes 2000). Therefore, we were not surprised that DOC

emerged as an important explanatory variable of DCM depth

in our analysis. As with 1% PAR depth, the relationship

between predicted DCM depth and DOC concentration was

not uniform across lakes (Fig. 6b), suggesting that the DOC

concentration within a lake will alter the role that DOC

plays in influencing DCM depth. Because the relationship

between DOC concentration and the 1% PAR depth is char-

acterized by a negative power function, a unit increase in

DOC reduces the 1% PAR depth much more in low DOC

lakes compared to high DOC lakes (Morris et al. 1995). Sup-

porting this “diminishing returns” concept, our results show

that the predicted DCM depth became shallower with

increasing DOC until approximately 7–8 mg L21, after which

continued increases in DOC had little influence on the pre-

dicted DCM depth. Williamson et al. (1996b) identified a

similar threshold in DOC concentration (� 8–9 mg L21),

above which the influence of DOC in regulating the 1% PAR

depth decreased substantially.

DCMs are often considered characteristic of highly trans-

parent, oligotrophic lakes (Fee 1976; Moll and Stoermer

Table 2. Descriptive statistics of DCM depth and thickness (quantified in meters). See “Methods” section for complete definition of
each characteristic, and Supporting Information Table S1 for complete information on all study lakes.

Mean

(standard error) Median 1st–3rd quartile Range Sample size

DCM depth (m) 9.2 (0.8) 6.5 4.3–11.0 1.0–53.9 100

DCM thickness (m)* 6.8 (0.8) 4.3 2.3–9.3 0.7–29.3 75

* Only lakes with R2�0.8 from the ChlF curve fitting procedure and for which the DCM bottom depths were defined above the bottom of the lake
were included.
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1982). Our results, while supporting previous findings that

DCMs may be more common in oligotrophic lakes, show

that they are not exclusive to these systems (Williamson

et al. 1996b). We found that DCMs can also be found in

meso- to eutrophic and dystrophic lakes, as was also noted

by two recent studies (Simmonds et al. 2015; Brentrup et al.

2016; Supporting Information Table S1). Previous studies

also indicated that light must penetrate below the surface

mixed layer for a DCM to form (e.g., Hamilton et al. 2010;

Simmonds et al. 2015; Brentrup et al. 2016). Consistent with

this, in all 100 lakes in our dataset, including the most

eutrophic lakes (Trophic State Index, TSI > 50: Supporting

Information Table S1), we observed that the 1% PAR depths

extended below the thermocline.

DCM thickness

Our RF analysis found that larger and deeper lakes have

thicker DCMs. Modeling studies predict that weak thermal

stratification around the depth of the DCM will result in

thicker Chl peaks (Mellard et al. 2011). The importance of

lake size in predicting DCM thickness in our study is likely

due to differences in stratification strength between large

and small lakes. Lake surface area controls several aspects of

thermal stratification and the location of density gradients

in the water column (MacIntyre and Melack 2009). The con-

trols of lake stratification reflect the balance of energy

between solar radiation inputs that enhance stratification

and wind and convective mixing, which serve to weaken

stratification (MacIntyre and Melack 2009; Read et al. 2012).

Larger lakes are less sheltered from the wind (Markfort et al.

2010) and have a longer fetch (Mazumder and Taylor 1994).

Thus, larger lakes are subject to higher levels of wind-mixing

and weaker stratification than smaller lakes (Rueda-Valdivia

and Schladow 2009), creating conditions for a thicker DCM.

Interestingly, our analysis also showed that the effect of lake

surface area on predicted DCM thickness is stronger in lakes

> 1 km2, which is a similar size cutoff identified in previous

studies that examined the importance of lake size on physi-

cal processes (1–10 km2; e.g., Hondzo and Stefan 1993; Read

et al. 2012).

Weaker stratification with increasing lake size may

explain why lake size emerged as an important predictor of

DCM thickness in our model. However, the mechanism

remains unclear because buoyancy frequency within the

DCM, a metric of thermal stratification strength, was not a

particularly important predictor of DCM thickness in our RF

analysis. Previous studies have found that the strength of

stratification around the depth of the DCM was negatively

related to DCM thickness (Varela et al. 1992; Klausmeier and

Litchman 2001; Jobin and Beisner 2014). While our dataset

showed exclusively narrow DCMs when buoyancy frequency

within the DCM was high (i.e., when stratification was

strong), our data showed highly variable DCM thickness in

weakly stratified conditions (i.e., at low buoyancy fre-

quency). The high variability in DCM thickness when buoy-

ancy frequency was low is likely the reason that buoyancy

frequency within the DCM does not appear as an important

predictor of DCM thickness in our RF analysis. This high var-

iability in DCM thickness under weakly stratified conditions

Fig. 4. Frequency polygons of the ratios of (a) DCM depth to 1% PAR

depth, (b) DCM depth, and (c) 1% PAR to metalimnion top, bottom,
and thermocline depth for each lake in the dataset, respectively. Note
that the x-axis scale differs among panels but that the bin size is 0.3 for

all panels. In (b, c), a single lake is not shown that had DCM depth:
thermocline and DCM depth: metalimnion bottom depth ratio of 44
and a PAR: thermocline and PAR: metalimnion top value of 40.
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suggests that other factors unaccounted for in our study

were likely affecting DCM thickness (e.g., behavioral aggre-

gation, (Alldredge et al. 2002), zooplankton grazing, (Pilati

and Wurtsbaugh 2003) or phytoplankton competition (Car-

ney et al. 1988)) while thin DCMs observed under strongly

stratified conditions suggests that stratification strength may

become a more important controller of DCM thickness with

increasing buoyancy frequency at the depth of the DCM

(Fig. 8).

Maximum lake depth was also an important explanatory

variable of DCM thickness. It is likely that lake depth itself is

not a direct causal driver of DCM thickness. Rather, lake

Fig. 5. Relative increase in mean square error from the random forest regression for predicting DCM depth (a) and thickness (b). Higher values indi-
cate higher importance of predictor variables. For analysis shown in (b), only 75 lakes where the ChlF curve fitting procedure yielded R2�0. 8 and

where the DCM bottom depths were defined above the bottom of the lake were included. The DCM thickness was defined by 2r from the DCM
depth (see “Methods” section for full details). Buoyancy frequency in the DCM represents the average buoyancy frequency within that depth range.
Metalimnion is abbreviated as meta., buoyancy frequency as buoy. freq, and thermocline as thermo. The predictors in the random forest model

(a) explained 63% of the variation in DCM depth and 64% of the variation in DCM thickness (b).
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depth and basin shape can influence and are correlated with

many other physical, chemical, and biological characteristics

of lakes (Håkanson 2005; Johansson et al. 2007). For

example, maximum lake depth is negatively correlated with

lake productivity (Carpenter 1983), and in a study of over

1000 lakes in the United States, maximum lake depth was

the most important explanatory variable of epilimnetic lev-

els of total phosphorus, total nitrogen, turbidity, and DOC

(Read et al. 2015). The exact mechanism behind maximum

lake depth as an important predictor of DCM thickness in

our study, and its role in other previous empirical studies,

remains unclear. The influence of lake depth on transport

processes such as mixing, sedimentation, resuspension, or

diffusion (Håkanson 2005), which influence vertical gra-

dients in nutrients and light, and their relative vertical posi-

tions, may be important. In a coupled bio-physical process

model, Håkanson (2005) showed that when lake surface area

is held constant, Secchi disk depths were deeper in a deep

vs. a shallow lake. This occurred because the proportion of

bottom sediment area that is susceptible to turbulent resus-

pension is lower in deeper lakes compared to shallower lakes,

resulting in a greater flux of nutrients from the sediments to

the water column in a shallower lake. The increased nutrient

concentration due to this resuspension fueled an increase in

epilimnetic primary production, and thus a decrease in Sec-

chi disk depths in the shallower lake (Håkanson 2005). Dif-

ferences in maximum lake depth may also contribute to

variation in the vertical distribution of thermal energy in the

water columns of lakes, with important implications for

DCM structure.

Phytoplankton community composition of the DCM

The composition of the DCM from the spectrofluorometer

data are consistent with previous lakes studies that have

shown that DCMs are typically dominated by Browns (dia-

toms, dinoflagelletes, and chrysophytes) (Fee 1976; Abbott

et al. 1984; Barbiero and Tuchman 2004; Saros et al. 2005;

Hamilton et al. 2010; Simmonds et al. 2015), cryptophytes

(Barbiero and Tuchman 2004; Camacho 2006), and less fre-

quently cyanobacteria (Padis�ak et al. 2003; Camacho 2006).

Browns, cryptophytes and cyanobacteria are hypothesized to

dominate DCMs because they can maintain their vertical

position in the water column either through active

Fig. 6. Partial dependency plots for the top three explanatory variables

in the random forest model where DCM depth was the response vari-
able; (a–c) are in descending order of importance. The partial depen-
dency is the dependency of the predicted mean DCM depth, (the mean

response) on each explanatory variable after averaging out the effects of
all other predictors in the model. Tick marks along the x-axis represent
the 10th–90th percentiles of each predictor, in 10 percentile increments,

from the empirical dataset. Inset in (b) shows the full range of DOC
concentrations in the dataset, while the main plot shows a subset of

these data where the majority of empirical values exist for improved
visualization of the relationship. Horizontal relationships indicate values
of the explanatory variables where changes in the variable have little

influence on the response after accounting for all other variables in the
analysis.
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swimming or buoyancy regulation, show decreased settling

rates under nutrient-replete and low light conditions (i.e.,

diatoms, Richardson and Cullen 1995), or because they show

high growth rates under low light conditions due to the

presence of phycoerythrin (Gervais et al. 1997; Camacho

et al. 2001). Our results, however, should be interpreted with

caution as the subset of lakes where spectrofluorometer data

were available represented a geographically constrained sub-

set of our entire dataset (31 of the 37 lakes were located in

southeastern Canada). Future studies that examine species

composition of the DCM across a broad range of lakes may

provide more insights into the generality of the patterns

observed in our data and the relative importance of different

mechanism of DCM formation (e.g., behavioral aggregations

vs. in situ growth).

Additional considerations

While care was taken to collect high-quality, representa-

tive data from across our study systems, some fundamental

data collection challenges warrant consideration. Approxi-

mately half of the light attenuation data for this study was

derived from Secchi depth observations. Differences in atten-

uation controlled by particulate scattering vs. DOC absorp-

tion may lead to variation in 1% PAR depth not explained

by Secchi depth (Koenings and Edmundson 1991). We were

not able to comprehensively compare differences in the esti-

mates of 1% attenuation depths between radiometer and Sec-

chi readings because only six lakes in our dataset had both

radiometer and Secchi readings. Within those six lakes, we

found no consistent pattern in over- or underestimation of 1%

PAR depths based on values derived from Secchi vs.

radiometer-based measurements. The difference in 1% PAR

depth estimates between the Secchi vs. radiometer-based

methods within each lake varied by an average of 20% (6 10%

SD). Despite the added variability in 1% PAR depth estimates

that was introduced in our data, 1% PAR depth was by far the

most important explanatory variable for DCM depth, sugges-

ting that the methods of light measurements were sufficient

to observe this important pattern. Broad-scale use of optical

profiling techniques over Secchi disks will improve our under-

standing of the relationship between DCM depth and the

underwater light environment by providing estimates of irra-

diance or daily radiant exposure throughout the water col-

umn, spectral composition at the depth of the DCM, and

more accurate estimates of light attenuation.

To our knowledge we are the first to incorporate an expo-

nential power distribution into a model to characterize ChlF

profiles (Eq. 1). We found that the additional parameter

improved (based on higher R2) the characterization of the

ChlF profiles compared with a curve fit using a Gaussian distri-

bution. Further, visual inspection did not indicate the model

overfit profiles, rather, the model was more versatile and better

fit the range of DCM shapes observed (Fig. 2c–f). Using the

exponential power distribution allowed us to expand the

Fig. 7. Partial dependency plots for the top three most important pre-

dictors from the random forest model, where DCM thickness was the
response variable; (a–c) are in descending order of importance; all else

as in Fig. 6.
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breadth and diversity of lakes that we were able to include in

our study. For the subset of lakes where R2 >5 0.8 from the

ChlF curve fitting procedure, the median value of the shape

parameter was 1.7 (mean 5 8.0 (3.3 standard error), 1st–3rd

quartile 5 1.0–2.6; note that the mean is driven by a small

number of large values) indicating that the DCMs in our data-

set were similar in shape to a Gaussian distribution but tended

to have heavier tails. Characterizations of DCMs in future

studies may be improved by using the exponential power dis-

tribution with a shape parameter that is less than two.

Conclusions

Our results show that the depth of light attenuation, lake

size, and maximum lake depth explain a substantial amount of

variation in the DCM depth and thickness. Light attenuation

was a more important predictor of DCM depth than was ther-

mal stratification, while DCM thickness was best predicted by

lake size and maximum depth. Long-term increasing or decreas-

ing trends in water clarity (Lottig et al. 2014; Williamson et al.

2015) will alter the depths of light attenuation (Williamson

et al. 1996b) and thermal stratification (Read and Rose 2013)

with important consequences for DCM structure. In an impor-

tant extension of previous studies, our analysis also suggests

that changing environmental conditions (e.g., eutrophication,

oligotrophication, brownification, changing thermal structure)

may affect the depth and thickness of DCMs differently across

broad gradients of lake size, maximum depth, and transpar-

ency. For example, small decreases in the 1% PAR depth may

cause a more dramatic reduction in the DCM depth in high

transparency lakes but have a much smaller influence in low

transparency lakes. The diversity of lakes in our dataset demon-

strates that DCMs occur across many different types of lakes,

not just clear oligotrophic lakes. Future ecosystem studies may

need to consider physical, chemical, and biological processes

that occur in deeper parts of the water column, as well as in the

surface mixed layer of many lake types. Our study demonstrates

that recent advances in high-resolution profiling, in combina-

tion with collaborative, data-sharing networks such as GLEON,

provide excellent opportunities to improve the understanding

of important ecological processes by allowing for studies that

encompass a large number of diverse lakes.
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