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Abstract Ecosystem modeling is a critically important

tool for environmental scientists, yet is rarely taught in

undergraduate and graduate classrooms. To address this

gap, we developed a teaching module that exposes students

to a suite of modeling skills and tools (including computer

programming, numerical simulation modeling, and dis-

tributed computing) that students apply to study how lakes

around the globe are experiencing the effects of climate

change. In the module, students develop hypotheses about

the effects of different climate scenarios on lakes and then

test their hypotheses using hundreds of model simulations.

We taught the module in a 4-hour workshop and found that

participation in the module significantly increased both

undergraduate and graduate students’ understanding about

climate change effects on lakes. Moreover, participation in

the module also significantly increased students’ perceived

experience level in using different software, technologies,

and modeling tools. By embedding modeling in an envi-

ronmental science context, non-computer science students

were able to successfully use and master technologies that

they had previously never been exposed to. Overall, our

findings suggest that modeling is a powerful tool for cat-

alyzing student learning on the effects of climate change.

Keywords Simulation modeling � Climate change

education � Hypothesis-testing

Introduction

Motivation for EDDIE Lake Modeling Module

Environmental scientists are increasingly analyzing large

datasets of observations obtained through sensor networks

and remote sensing, enabling new analyses and models of

ecological phenomena (Hanson 2007; Porter et al. 2005;

Weathers et al. 2013). Conducting these analyses and

modeling as well as interpreting their results requires

advanced skills in data manipulation, experimental design,

quantitative reasoning, and data retrieval (Michener and

Jones 2012; Langen et al. 2014; Schimel and Keller

2015). Despite the increasing importance of these skills,

they are not commonly taught in undergraduate class-

rooms. To address this gap, Environmental Data-Driven

Inquiry & Exploration (EDDIE) is a collaboration among

ecologists and educators to develop stand-alone modular

classroom activities for post-secondary classrooms using

long-term (e.g., [10 years) and high-frequency (e.g.,

minute-scale) data (Carey et al. 2015). The goals of these

modules, which follow the 5E learning cycle (Bybee et al.

2006), are to develop skills required to manipulate large

datasets, conduct authentic investigations, develop rea-

soning about variability in data, engage students in sci-

entific discourse as they explore large datasets, and foster

sound ideas about the nature of environmental science

research.

A primary aim of EDDIE is to teach students to use data

analysis and modeling to investigate how climate change is

altering ecosystems. Modeling is a critical tool for
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environmental scientists because it allows them to study

phenomena occurring at spatial and temporal scales for

which we do not have observational data, as well as fore-

cast the effects of future climate scenarios. Many ecosys-

tem models are computationally intensive and written in

scripting languages, so researchers need familiarity with

different approaches of importing and exporting large

datasets (e.g., using comma-separated values (CSV) or

network common data form (NetCDF) files), different

programming languages (e.g., C, Fortran, MATLAB, R),

and different techniques for high-throughput computing.

While it may be easy to run one model on a laptop com-

puter, it becomes more challenging to run hundreds of

model simulations because of the time-consuming nature

of a high computational workload, requiring distributed

computing approaches. These skills are generally not

taught in most ecology undergraduate or graduate

classrooms.

We developed an EDDIE module to examine how

lakes around the globe are experiencing the effects of

climate change, called ‘‘Modeling Climate Change

Effects on Lakes Using Distributed Computing Module’’

(hereafter, Lake Modeling module; [module url]).

Because it is difficult to predict how lakes will respond to

the many different aspects of climate change (e.g., altered

temperature, precipitation, wind), many aquatic ecologists

are using lake models to manipulate weather scenarios

and simulate lake responses. Lake models provide a

powerful tool for exploring the sensitivity of lake thermal

structure characteristics to weather. In this module, stu-

dents learn how to set up a lake model and ‘‘force’’ the

model with climate scenarios of their own design to

examine how lakes may change in the future and inter-

pret the output. To improve computational efficiency,

students participating in the module also learn how to

submit, retrieve, and analyze hundreds of model simula-

tions through distributed computing technology embedded

in an interface in the R statistical environment (Subratie

et al. 2015).

As a result of this module, students are exposed to a

suite of different computing tools and technologies. These

include different file formats (Microsoft Excel spread-

sheets, text files, and CSV files), a programming language

(R statistical software; R Development Core Team 2015),

an open-source hydrodynamic ecosystem model (GLM, the

General Lake Model; Hipsey et al. 2014), and distributed

computing techniques (overlay networks using peer-to-peer

networking; Figueiredo et al. 2008; Ganguly et al. 2006; St.

Juste et al. 2014). This module teaches students to harness

cyberinfrastructure tools commonly used in computer sci-

ence to improve the speed of computationally intensive

Lake Modeling. The overarching goal of this module is to

develop students’ computing and quantitative skills to

improve their understanding of how climate change is

affecting lake ecosystems.

The Application of Modeling to the Learning

Process

Modeling is integral to science, but engaging students in

modeling also imparts cognitive benefits, allowing them to

develop scientific knowledge that might not otherwise be

realized. Modeling compels students to search for patterns

in data, propose plausible hypotheses for causes of such

patterns, and make evidence-based predictions (Stewart

et al. 2005). When students have the opportunity to assess

the utility of their models, reflection on earlier thinking is

part of the basic process (Stewart et al. 2005). Students are

naturally prompted to practice metacognitive skills, or the

act of ‘‘monitoring, guiding and controlling one’s learning

a problem-solving behavior’’ (Veenman 2011, p. 24),

which profoundly supports conceptual development (Zohar

and Dori 2011). Even young students who repeatedly

engage in modeling practices can construct models that

provide explanatory mechanisms, make predictions based

on their models, and revise their models in light of new

findings (Schwarz et al. 2009). As students gain more

experience with modeling, their assessments of the quality

of models shift from a binary perspective of ‘‘incorrect

versus correct’’ toward a perspective in which they are able

to evaluate a model’s ability to provide explanations for

multiple aspects of the natural phenomenon being exam-

ined (Schwarz et al. 2009). In doing so, students come to

understand how model building can help scientists make

sense of natural processes and generate new scientific

knowledge (Schwarz and White 2005; Schwarz et al.

2009).

The importance of modeling as both a scientific and a

pedagogical tool has led the scientific education commu-

nity to make it a central focus of science education, par-

ticularly through its incorporation into the Next Generation

Science Standards (NGSS Lead States 2013). While the

science education community embraces modeling as a

scientific practice, the modeling typically employed in

science classrooms is not the computer-based modeling

that ecologists use to understand natural phenomena.

Rather, there are domain-specific ideas of modeling among

students; students tend to see the functional of models in

biology as descriptive but predictive in the contexts of

chemistry and physics (Krell et al. 2015). Students in K-12

grades do not conceptualize models in any domain as

mathematical (Krell et al. 2015), which motivates us to

examine additional skills that are needed to maneuver large

sensor-based datasets and perform computer-based mod-

eling that is at the heart of the ‘‘eco-informatics’’ revolution

in ecology.
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Climate Change as a Context for Learning

Climate change is an ideal context in which to engage

students in modeling and exploration of large datasets

gathered by sensor networks. Much of the climate change

education literature focuses on students’ perceptions of

climate change and the plausibility of it being human

induced. For example, Sinatra et al. (2012) examined

relationships between motivational variables and college

students’ willingness to take action to mitigate climate

change’s effects. They identified openness to change and

willingness to think deeply about issues as significant

predictors of attitudinal change and an expressed willing-

ness to change behavior. Others have investigated students’

understanding of climate change mechanisms and conse-

quences, often focusing on identifying misconceptions

(Shepardson et al. 2013). Common misconceptions include

a conflation of climate change with ozone depletion, pol-

lution, and acid rain, in which causal mechanisms for the

greenhouse effect and ozone depletion are often seen as the

same phenomenon (Papadimitriou 2004). Shepardson et al.

(2013) demonstrated how young students tend to perceive

climate systems as unidirectional and linear, and they

overemphasize the atmospheric component of climate

systems. Students are often unable to distinguish climate

and weather, leading them to cite short-term weather

observations as evidence refuting long-term climatic

changes (Lombardi and Sinatra 2012). Evidence suggests

that this misconception can be improved with brief

instruction that develops understanding of deep time,

thereby improving students’ perception of whether human-

induced climate change is plausible (Lombardi and Sinatra

2012).

To our knowledge, only one study has looked at stu-

dents’ understanding of climate change in the context of

lake ecosystems, and this study examined seventh graders’

engagement in a climate change simulation with Lake

Mead, which lead to improved student outcomes on

pre-/post-simulation survey items related to understanding

water conservation, the greenhouse effect, water flow, and

weather versus climate (Nussbaum et al. 2015). Anderson

(2012) provides a thorough review of the climate change

education literature, concluding that comprehensive cli-

mate change education must address content knowledge of

climate change in addition to environmental and social

issues, disaster risk reduction, sustainable lifestyle deci-

sions, and institutional policy. While we do not disagree

with this broad approach, we argue that the climate change

education literature is severely lacking in its exploration of

how advanced content knowledge of climate change

develops in novice scientists, particularly in how students

develop understanding of climate change’s effects on lake

ecosystems. Here, our focus is on the effects of climate

change on lake physics—specifically, temperatures, ther-

mal stratification, and mixing—because these physical

variables provide the basis for all other climate change-

induced effects on lake chemistry and biology.

Learning the Methods of Science

The science education community has diverged from

defining science as ‘‘the scientific method’’ because it fails

to capture the diversity of approaches to scientific inquiry

and contributes to the development of misconceptions

about what science actually is (McComas 1996). Students

nevertheless have been taught and continue to believe the

scientific method to be the hallmark of science (Miller et al.

2009). The Lake Modeling module provides an opportunity

to engage students in more authentic practices of science,

such as by demonstrating how data collection may precede

hypothesis generation and testing and by using modeling to

generate new scientific knowledge. Thus, we might expect

the Lake Modeling module to change how students think

about the methodologies of scientific investigations. Sim-

ilarly, we might expect changes in students’ ideas about

how creativity is employed during science investigations,

because the Lake Modeling module compels students to

conceptualize plausible analyses with a preexisting dataset

that would yield insights into effects of climate change, as

well as generating their own data to force the model with

different climate scenarios of their own creation.

It is noteworthy that EDDIE modules do not explicitly

prompt students to reflect on the scientific inquiry they

engage in during modules and students’ preconceptions

about the nature of scientific methodologies. This approach

to teaching science methods is implicit, which assumes that

by engaging in scientific inquiry, students will come to

understand the methods of science (Khishfe and Abd-EL-

Khalick 2002). Evidence from studies of younger students

indicates that implicit approaches to teaching the methods

of science are ineffective (Khishfe and Abd-El-Khalick

2002; Khishfe and Lederman 2006). The EDDIE Lake

Modeling module is directed toward upper-level science

majors and graduate science students, a population that is

not often examined in the nature of science literature.

The current study seeks to document any improvements

in the understanding of science methods that may occur as

a result of the implicit approach used in EDDIE modules.

We acknowledge greater learning gains may be plausible

through an explicit-reflective approach involving direct

instruction on science methods and guided reflection on

their modeling experiences. However, because a major

emphasis of the module is hypothesis-testing via modeling,

rather than via classical experimentation as is usually

emphasized in science courses, we consider it plausible that
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this contrasting experience may elicit detectable changes in

how students think about scientific methods.

Objectives

This study examined learning gains resulting from

EDDIE’s Lake Modeling module among upper-level biol-

ogy majors and science graduate students. Three areas of

learning were examined in pre-/post-surveys: (1) under-

standing of climate change effects on lakes, specifically

focusing on the effects of altered climate on lake physics

(i.e., temperature, mixing, and stratification), (2) students’

perceptions of experience in using the technological tools

and quantitative methods taught in the module (listed

below), and (3) understanding of the nature of scientific

methods as measured by the Student Understanding of

Science and Scientific Inquiry (SUSSI) scale (Liang et al.

2008). We used the surveys to answer the question: Were

there changes in these three learning areas when we com-

pare pre-module responses with post-module responses,

and if so, how did changes vary between the undergraduate

and graduate students?

Methods

EDDIE’s Lake Modeling module was implemented in two

workshops taught by the first author in September and

October 2015. One workshop was taught to 10 undergradu-

ate junior and senior biology majors interested in freshwater

ecology on the campus of a large, doctorate-granting insti-

tution in the eastern USA. Another workshop was taught to

40 science graduate students interested in freshwater ecology

at the 2015 Global Lakes Ecological Observatory Network

(GLEON) annual conference in Chuncheon, South Korea.

US students represented the majority of participants in both

workshops, although a few students born outside of the USA

participated in both workshops.

As much as possible, the instructor kept instruction con-

sistent between the two workshops, which both lasted

approximately half a day. The same graduate student assisted

the lead instructor in helping students with computer mod-

eling in both workshops, and all students used their own

laptop computers in the workshops. Prior to both workshops,

students received a handout that gave an overview of the

module, instructions on how to download open-source R

programming software (R Core Development Team 2015)

onto their laptops, and R scripts for them to explore.

Module Overview

The Lake Modeling module consisted of five parts. First,

the lead instructor presented an introductory PowerPoint

lecture on climate change effects on the thermal structure

of lakes, an overview of the open-source lake hydrody-

namics numerical simulation model used in the module

(the General Lakes Model, GLM; Hipsey et al. 2014), and

R software (see Supplements). Second, the students divided

into pairs based on their laptop operating system (OS X or

Microsoft Windows) to run the default version of the lake

model in R and explore the output. Third, the student pairs

developed a climate change scenario for their lake model

and discussed hypotheses with their partners on how they

expected their lake to respond in silico. The students then

forced the lake with their climate scenario and analyzed the

output to determine the effects of altered climate on lake

thermal structure. Using figures the students created in R,

each student pair gave short presentations on their model

simulations to the rest of the workshop participants and

discussed how their climate scenario affected their model

lakes, specifically addressing if their original hypotheses

were supported or disproven, and why. Fourth, after the

instructor finished facilitating a discussion of the different

scenarios and output, the instructor gave a demonstration of

distributed computing software run in R to the students.

Finally, the student pairs designed numerical simulation

Lake Modeling experiments using GLM to run hundreds of

model simulations with the same model parameterization

and different climate driver data and analyzed the output.

Throughout the module, the instructor encouraged the

students to develop climate scenarios that were most

interesting to them, instead of following a pre-defined list

of possible scenarios the teacher developed.

In total, it took approximately 4 h for the students to

complete the module activities, with additional time for

breaks. Throughout the workshop, the instructor and

graduate teaching assistant answered questions, debugged

R code, and checked on the student pairs to ensure that

everyone was engaged and able to complete the module

activities. Most of the workshop time was allocated to the

student pairs working together to run R scripts that con-

tained code for setting a working directory, running GLM,

modifying climate driver files, analyzing GLM output, and

running the distributed computing software. We note that

the instructors did not teach all of R programming in the

module, but rather how to use R to run simulation models

with heavily annotated code; the students that participated

in this module did not write their own scripts but edited

already-written ones the instructors prepared.

At the end of the PowerPoint lecture presentation and

just before the students were allowed to begin working

their partners, the instructor stated the six learning objec-

tives of the module, which were referred to again at the end

of the workshop. These learning objectives were (para-

phrased): (1) set up and run GLM in the R programming

environment to simulate lake thermal structure; (2)
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understand the structure and function of GLM configura-

tion files, climate driver data, and output files; (3) modify

the input meteorological data for one GLM model to

simulate the effects of different climate scenarios on lake

thermal structure; (4) interpret model output from GLM

model simulations to understand how changing climate

will alter lake thermal characteristics; (5) use the dis-

tributed computing software in R to set up and run hun-

dreds of model simulations with varying input

meteorological data; and 6) explore the application of

distributed computing for modeling climate change effects

on lakes.

Data Collection

Volunteer participants were emailed a link to the pre-

module survey 1 week prior to the beginning of both

workshops. The first page of the online survey contained

the informed consent document; informed consent was

obtained from all individual participants included in the

study. A similar survey was emailed to participants again

within 1 week following the workshops.

The instruments used in this study measured three

domains of knowledge: climate change effects on lakes,

quantitative skills indicated by perceived experience in

using a list of technological tools used in modeling, and an

understanding of the nature of science. We measured

understanding of climate change effects on lakes using four

items (A–D). Climate Change Item A asked students to

interpret a figure of lake temperatures over time and

hypothesize what factors were responsible for changes in

water temperature. Climate Change Item B asked students

to predict how climate scenarios would affect lake heating.

Climate Change Item C asked students to predict how

climate scenarios would affect thermal stratification, and

Climate Change Item D asked students to predict how lake

responses to climate change would be context dependent

on different lake characteristics. Each climate change item

was multiple choice and contained a single correct

response (see Electronic Supplementary Material). Scores

across these four items were summed, and overall pre-/

post-gains in understanding of climate change effects on

lakes were compared using a split-plot analysis of variance

(ANOVA), with time (pre/post) as a within-subjects factor

and level (undergraduate vs. graduate) as a between-sub-

jects factor. Due to the low sample size and internal reli-

ability (Cronbach’s a = 0.25), a Cochran’s Q test was also

performed on each climate change item to examine dif-

ferences in the probabilities of correct responses to each

item before and after the workshops.

Understanding of the nature of science was measured

using the Student Understanding of Science and Science

Inquiry (SUSSI) instrument (Liang et al. 2008). The SUSSI

is comprised of six subscales that correspond to under-

standing of observation and inference, change of scientific

theories, scientific laws versus theories, social and cultural

influences on science, imagination and creativity in sci-

ence, and methodology of scientific investigation. Students

responded to each statement on a 1–5 agree/disagree Likert

scale. Scores across SUSSI items were summed and overall

pre-/post-gains in understanding of science and scientific

inquiry were compared using a split-plot ANOVA, with

time (pre/post) as a within-subjects factor and level (un-

dergraduate vs. graduate) as a between-subjects factor. Due

to the low sample size and reduced internal reliability

(Cronbach’s a = 0.64) compared to the original reliability

analysis (Liang et al. 2008), Wilcoxon signed-rank tests

were also used to compare responses on individual SUSSI

items before and after the workshop.

To measure students’ perceived experience in various

technological tools used in quantitative methods, students

were asked, ‘‘On a scale from 1 to 5, with 1 indicating no

prior experience whatsoever and 5 being very knowl-

edgeable, how would you rank your experience level with

_______?’’ followed by a list of quantitative tools, soft-

ware, and technologies that included Excel software, CSV

files (comma-separated values files), R software, computer

programming, numerical simulation modeling, General

Lake Model (GLM), distributed computing, and overlay

networks. Students responded on a 1–5 Likert scale for

each item.

We consider this measure a metric of their perceived

experience level, because we know that they actually are

more experienced with several of these technological tools

after being taught the module, but this measure is to

determine whether they feel more experienced with these

tools after the module. This measure demonstrated high

internal reliability (Cronbach’s a = 0.89). Scores across

these items were summed and overall pre-/post-gains in

perceived experience using these quantitative tools were

compared using a split-plot ANOVA, with time (pre/post)

as a within-subjects factor and level (undergraduate vs.

graduate) as a between-subjects factor. Because we wanted

to identify which technological tools drove any significant

gains in perceived experience level, Wilcoxon signed-rank

tests were also used to compare responses on each of these

items before and after workshops.

For all survey instrument analyses, we interpreted sta-

tistical significance at a = 0.10 to maximize our statistical

power to detect whether any changes in pre- and post-

module responses occurred (Quinn and Keough 2002). This

a level was chosen because of our small sampling size

(n = 19 respondents in total across both workshops) and

the short amount of time students spent in the workshops.

All statistical analyses of the survey data were conducted in

R.
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Results

Our results suggest that participation in the module sig-

nificantly increased both undergraduate and graduate stu-

dents’ understanding about climate change effects on lakes

(Fig. 1). In the analysis of variance, the interaction was

nonsignificant, but when graduate and undergraduate

groups were pooled across climate change items, pre–post-

gains (pre-mean = 2.2 ± 0.55, 95 % CI; post-mean =

3.0 ± 0.41, 95 % CI) were statistically significant (F1,17 =

6.55, p = 0.02, partial eta squared (g2) = 0.28, observed

power = 0.67). For two of the four climate change items,

the aggregated student population exhibited a significantly

higher proportion of correct responses post-module than

pre-module (Fig. 1a, b; Table 1). For the other two items,

students either exhibited a nonsignificant increase in cor-

rect responses after the module (Fig. 1d) or no change

(Fig. 1c), but no decreases in correct responses were

observed.

Interestingly, the pattern of undergraduate and graduate

responses differed; undergraduates exhibited a greater

(significant) increase in correct responses after participat-

ing in the module for Climate Change Item A, whereas

graduate students exhibited a greater increase (but not

significant) in correct responses post-module for Items B

and D. Student level did not appear to affect their ability to

correctly answer the questions, as the undergraduates

scored higher on some questions, whereas the graduates

scored higher on others. In general, more than half of the

students in both of the undergraduate and graduate classes

correctly answered the questions in the post-module

assessment.

Participation in the module also significantly increased

students’ perceived experience with different software,

technologies, and modeling tools. In the analysis of vari-

ance, the interaction was significant, with both graduate

(pre-mean = 21.4 ± 3.6, 95 % CI; post-mean = 22.0 ± 4.0,

95 % CI) and undergraduate (pre-mean = 12.6 ± 4.2,

95 % CI; post-mean = 16.9 ± 4.7, 95 % CI) students

improving from pre- to posttest but undergraduates more

so (F1,17 = 4.0, p = 0.06, partial g2 = 0.19, observed

power = 0.47). Wilcoxon signed-rank tests showed that

the aggregated students’ perceived experience level with

CSV files, R software, the General Lake Model (GLM),

distributed computing, and overlay networks was signifi-

cantly higher post-module than pre-module (Table 2);

these differences were largely driven by undergraduate

responses, who reported a greater gain in experience with

these tools than the graduate students.

Finally, participation in the module also affected stu-

dent’s conceptions of the nature of science, as measured by

two individual items. Analysis of variance on the entire

instrument did not detect significant changes. However,

statistically significant improvements were observed on

two items (Table 3): (1) ‘‘Scientists’ observations of the

same event will be the same because observations are

facts,’’ and (2) ‘‘Scientific theories based on accurate

experimentation will not be changed.’’ Both undergradu-

ates and graduates contributed to these gains, although

neither group showed significant changes independently.

Discussion

Our findings and experience in the classroom both indicate

that significant gains in improving students’ understanding

of climate change and perceived level of experience using

modeling tools can occur with participation in this brief

(*4 h) teaching module. Our results are encouraging

because the modular and flexible format of the Lake

Modeling teaching materials enables rapid dissemination

and transfer of the module to other classrooms at both

undergraduate and graduate levels. Overall, our findings

suggest that modeling is a powerful tool for catalyzing

student learning on the effects of climate change.

In both applications of the module, we observed sig-

nificant improvement in undergraduate and graduate stu-

dents’ ability to correctly answer questions regarding

climate change effects on lakes. Our results suggest that the

undergraduate and graduate student populations responded

to different aspects of the module because the two groups

experienced different gains from the pre- to post-module

on the four climate change questions. For example, while

30 % of the undergraduate students answered Climate

Change Item A correctly on the pre-module assessment and

100 % correctly in the post-module assessment, the percent

of graduate students correctly answering question A did not

change before and after the module. The large improve-

ment in the undergraduate students may be because they

were less familiar with time series figures of water tem-

perature before the module than the graduate students.

Correctly answering the climate change questions

required high-order comprehension skills, interpreting data

figures and scenarios, making predictions, and applying

ecological understanding to new situations. The Lake

Modeling module engages students in a variety of activi-

ties, such as exploring an example model, generating

hypotheses, and evaluating concepts in light of modeling

outcomes, explanation, justification, and interactive dis-

cussion. All of these activities provide students the

opportunity to construct new knowledge that can facilitate

sense-making in a transfer situation (Nokes-Malach and

Mestre 2013), such as what students encountered on the

post-module assessment. Interestingly, at the time of the

6 J Sci Educ Technol (2017) 26:1–11
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post-module assessment, undergraduate students showed

higher proficiency than the graduate students on 3 out of 4

questions (Fig. 1), though we note that sample sizes for

both populations were small and both student groups had

varied exposure to these concepts prior to the module,

likely influencing their responses. Regardless, it is

notable that there was no decrease in correctly answering

the questions for either student group.

The students responded favorably to the extension phase

of the module (Bybee et al. 2006), which challenged them

to create a new climate scenario and develop hypotheses

about how their climate scenario would affect their model

lake in GLM. We noted that the students, regardless of

education level, generally followed one of two patterns.

They either explored how extreme conditions affected lake

thermal structure, or they examined how future conditions

predicted for a certain region would alter their model lake.

For example, one group of undergraduate students accessed

historical weather data from the US National Climatic Data

Center (NCDC, http://www.ncdc.noaa.gov) and modified

their climate driver data to compare the effects of severe

hurricanes occurring in different seasons on lake thermal

structure. Another group accessed downscaled climate

predictions from the US National Aeronautics and Space

Administration (NASA) NEX-DCP30 dataset (http://cli

matedata.us) and ran climate scenarios to simulate condi-

tions for regions where they grew up for 2050 and 2100.

In both undergraduate and graduate classrooms, one of

the most valuable components of the module was the dis-

cussion after each of the student teams presented the results

from their climate scenarios to the class, which forced them

to re-examine their earlier hypotheses of the scenario’s

effects. This discussion required the students to articulate

their justification for their initial hypotheses, evaluate

whether the hypotheses were supported, and describe

potential mechanisms for why that may or may not have

occurred for their model lake. In both classroom experi-

ences, this discussion engaged students in authentic sci-

entific discourse, accomplishing one of the major goals of

EDDIE.

Fig. 1 Mean proportion (±1 SE) of correct responses for undergrad-

uate and graduate students on four climate change items. In Item A,

students interpreted a figure and hypothesized factors responsible for

changes in water temperature; in Item B, students predicted how

climate scenarios would affect lake heating; in Item C, students

predicted how climate scenarios would affect thermal stratification;

and in Item D students predicted how lake responses to climate

change would be context dependent on different lake characteristics

Table 1 Statistical results of

Cochran’s Q tests to examine

differences in the probabilities

of students correctly answering

climate change items before and

after the module

Climate change item Population Cochran’s Q p value

A. Changes in water temperature All students 3.57 0.057

Undergraduates 5.00 0.025

Graduates 0.00 1.00

B. Climate effects on lake heating All students 4.50 0.03

Undergraduates 2.00 0.16

Graduates 2.67 0.10

C. Climate effects on stratification All students 0.00 1.00

Undergraduates 0.00 1.00

Graduates 0.00 1.00

D. Lake characteristics All students 1.80 0.18

Undergraduates 0.33 0.56

Graduates 2.00 0.16

Significant differences between pre- and post-module responses are highlighted in bold (a = 0.10);

undergraduate students (n = 8) and graduate students (n = 11) were assessed for Items A–C, although one

graduate student skipped question D (n = 10)
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In addition to improving their understanding of climate

effects on lake ecosystems, the module also resulted in

significant learning gains in students’ perceived experience

level with modeling and several different computational

and analytical tools. Participation in the module signifi-

cantly increased undergraduates and graduate students’

Table 2 Statistical results from Wilcoxon signed-rank tests to

measure differences in pre- and post-module responses of undergrad-

uate students (n = 8) and graduate students (n = 11) to the question,

‘‘On a scale from 1 to 5, with 1 indicating no prior experience

whatsoever and 5 being very knowledgeable, how would you rank

your experience level with _______?’’

Tool, software, or technology Population Test

statistic

Two-tailed

p value

Pre-module mean ± 1

S.E.

Post-module mean ± 1

S.E.

Excel software All students 1.0 1.00 3.79 ± 0.22 3.82 ± 0.19

Undergraduates 0.0 1.00 3.38 ± 0.42 3.38 ± 0.32

Graduates 0.5 1.00 4.09 ± 0.21 4.18 ± 0.18

CSV files All students 10.5 0.03 2.68 ± 0.36 3.05 ± 0.35

Undergraduates 5.0 0.13 1.25 ± 0.25 1.88 ± 0.40

Graduates 1.5 0.50 3.73 ± 0.33 3.91 ± 0.34

R software All students 17.5 0.03 2.26 ± 0.31 2.63 ± 0.26

Undergraduates 10.5 0.03 1.25 ± 0.25 2.13 ± 0.35

Graduates 0.0 1.00 3.00 ± 0.38 3.00 ± 0.33

Computer programming All students 3.5 0.69 2.16 ± 0.26 2.26 ± 0.21

Undergraduates 3.0 0.25 1.38 ± 0.38 2.64 ± 0.37

Graduates -1.0 1.00 2.73 ± 0.24 2.64 ± 0.20

Numerical simulation

modeling

All students 7.0 0.36 2.16 ± 0.29 2.37 ± 0.27

Undergraduates 3.0 0.50 1.50 ± 0.38 1.88 ± 0.40

Graduates 1.0 1.00 2.64 ± 0.36 2.73 ± 0.33

General Lake Model (GLM) All students 27.5 0.002 1.68 ± 0.27 2.37 ± 0.27

Undergraduates 10.5 0.03 1.25 ± 0.25 2.25 ± 0.45

Graduates 5.0 0.13 2.00 ± 0.40 2.45 ± 0.34

Distributed computing All students 10.5 0.03 1.42 ± 0.18 1.74 ± 0.18

Undergraduates 3.0 0.25 1.45 ± 0.38 1.73 ± 0.37

Graduates 3.0 0.25 1.38 ± 0.16 1.75 ± 0.19

Overlay networks All students 14.0 0.06 1.21 ± 0.12 1.36 ± 0.19

Undergraduates 5.0 0.13 1.25 ± 0.25 1.36 ± 0.40

Graduates 2.5 0.63 1.18 ± 0.12 1.36 ± 0.15

Significant differences between pre- and post-module responses are highlighted in bold (a = 0.10)

Table 3 Statistical results from Wilcoxon signed-rank tests to assess differences in pre- and post-module responses of undergraduate students

(n = 8) and graduate students (n = 11) to items from the Student Understanding of Science & Scientific Inquiry (SUSSI) instrument

SUSSI Item Population Test

statistic

Two-tailed

p value

Pre-assessment

mean ± 1 S.E.

Post-assessment

mean ± 1 S.E.

Scientists’ observations of the same event will be the same

because observations are facts

All students 14.0 0.06 3.68 ± 0.19 4.06 ± 0.17

Undergraduates 4.5 0.38 3.63 ± 0.18 4.00 ± 0.27

Graduates 3.0 0.25 3.73 ± 0.30 4.10 ± 0.23

Scientific theories based on accurate experimentation will

not be changed

All students 18.0 0.035 3.42 ± 0.19 3.83 ± 0.12

Undergraduates 3.0 0.26 3.63 ± 0.18 4.00 ± 0.00

Graduates 7.5 0.18 3.27 ± 0.30 3.70 ± 0.21

Significant differences between pre- and post-module responses are highlighted in bold; items with nonsignificant differences (p C 0.10) are not

shown
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perceived experience level with CSV files, R software, the

GLM model, distributed computing, and overlay networks.

For most of these tools, the undergraduate students exhib-

ited greater gains than the graduate students, likely because

they had less exposure to these tools prior to participating in

the module, which was reflected in the pretest mean scores.

Given the high internal reliability of these items, it is

plausible that some items could be measuring the same

construct. Upon examination of the inter-item correlation

matrix, we found that measures of students’ perceived

experience level with CSV files and R software were highly

correlated ([0.7), as were the items for distributed com-

puting and overlay networks. Thus, it is plausible that these

correlating items are measuring the same construct from the

students’ point of view, such as if a student is conflating

overlay networks with distributed computing. Nonetheless,

we think that it is noteworthy that a 4-hour module was able

to catalyze significant increases in students’ perceived

experience level, especially for computational tools that are

rarely taught in the classroom at either education level but

germane to the field of ecology.

We posit that workshops or intensive short-term activi-

ties, such as the Lake Modeling module, that use compu-

tational tools framed around environmental science issues

are effective in improving quantitative and computational

literacy of non-computer science students because they

generate intellectual need for the computing. In the context

of such a learning task, a student’s intellectual need results

from his or her realization that the ability to solve a

compelling problem, such as predicting climate change

effects on lakes, requires the development and utilization

of efficient methodologies, such as computational model-

ing (Fuller et al. 2011). In order to generate intellectual

need, the problem posed to students in the task must be

intrinsic to the student (Lim 2009). Since most students in

our study are preparing to be scientists and are thus

inherently interested in climate change and its effects on

ecosystems, the ability to predict how climate scenarios

affect lakes is an intrinsic problem to these students.

Therefore, it sufficiently compels the development and use

of computational modeling. When students are introduced

to new methods and tools out of context, instructors often

fail to help them realize the utility of those methods and

tools in solving problems that are intrinsic to the students,

so they feel intellectually aimless (Fuller et al. 2011). The

Lake Modeling module, however, began with an objective,

understanding the effects of climate change, which students

already held as a personal goal. Thus, they understood the

premise and the purpose of the activity, resulting in their

attentive engagement throughout the entire module.

We note that students exhibited the greatest gains in

their experience level in GLM, a numerical simulation

model. Numerical simulation is a powerful computational

tool for testing the effects of different complex scenarios,

but is rarely taught in most environmental science class-

rooms at either the undergraduate or graduate level. For

students studying the effects of climate change on

ecosystems, numerical simulation provides a way for stu-

dents to both analyze and visualize how different aspects of

climate change (e.g., altered air temperature, wind, pre-

cipitation, humidity; IPCC 2014) may interact over time

series, which would be impossible to do analytically.

Moreover, numerical simulation modeling provides a way

for students to generate hypotheses, create driver data to

test their hypotheses, and easily run a model to test whether

their hypothesis is supported. Our findings suggest that

numerical simulation may be a useful tool for engaging

students in exploration of climate change, which in turn

increased their experience level in GLM. Again, we note

that there was no significant decrease in students’ per-

ceived experience level in any of these computational tools

from the pre- to posttest.

With emphasis on the utility of modeling and effects of

climate change on lakes, there was little instructional

attention paid to how the methods utilized in this module

differ from the canonized scientific method. Nonetheless,

students, particularly undergraduates, experienced gains on

items related to scientific observations and the tentative-

ness of scientific knowledge. While speculative, it is

plausible that engaging in computational modeling

implicitly emphasized the nature of observations and the

inferences that can be drawn from them and how modeling

can produce new scientific knowledge. These marginal

gains further support the notion that the implicit model of

teaching nature of science concepts is not likely to be

effective in teaching the breadth of nature of science

concepts (Khishfe and Abd-EL-Khalick 2002). However,

EDDIE modules, which engage students in science meth-

ods that do not fit cleanly into the scientific method, pro-

vide opportunities to mix integrated and nonintegrated

approaches to the teaching of the nature of science and

scientific methods, which is likely to be more effective in

teaching the nature of science (Khishfe and Lederman

2006). Specific to the Lake Modeling module, one phase of

the lesson compels student pairs to design numerical sim-

ulation Lake Modeling experiments and encourages them

to develop climate scenarios they find most interesting, not

adhering to scenarios they think the instructor is antici-

pating or would have developed himself/herself. Concep-

tualization of such climate scenarios requires much

creativity and imagination, because it involves developing

climate scenarios that have not been directly experienced

before and extrapolating what effects those scenarios might

have on lakes, given what the students have learned about
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how lakes behave in the climate conditions explored thus

far. Further, the entire module is built around the notion of

hypothesis-testing using modeling, which differs from the

hypothesis-testing they are most often confronted with in

typical science coursework (e.g., hypothesis-testing via

classical experimentation). The Lake Modeling module

provides students with an exemplary experience demon-

strating how scientific methods do not adhere to the can-

onized single scientific method and how imagination and

creativity are necessary to conduct productive science. The

module provides instructors opportunity to pose reflective

questions to students on their experience conducting sci-

entific inquiry within the module and confront common

misconceptions about what counts as legitimate scientific

practice.

The goal of EDDIE is to create teaching modules that

are modular in structure and can be easily applied to

classrooms at different student levels. Data from this study,

as well as assessment data from three other EDDIE mod-

ules taught in different classrooms in the USA that spanned

introductory biology majors to graduate students in fresh-

water ecology (Carey et al. 2015), demonstrate that this

pedagogical approach can be successful. While our data

indicate that the undergraduate and graduate students

responded to different aspects of the module, both student

groups showed significant increases in their understanding

of climate change effects on lakes, as well as increases in

their perceived experience in using modeling tools.

Our data also suggest that engaging students in hands-on

modeling may substantially increase their appreciation for

modeling as a science methodology. The three earlier

EDDIE modules focused on exploration and analysis of

long-term lake ice-off data and high-frequency lake-mixing

and metabolism data (Carey et al. 2015). Here, we chal-

lenged students to move beyond analyses of data they were

given a priori from an instructor to create hypotheses, use a

fairly sophisticated model to test their hypotheses, and then

analyze output data they generated themselves to see

whether their hypotheses were supported. While compu-

tational modeling is used in graduate dissertations and

advanced research projects, it is rarely applied in under-

graduate science classrooms, thereby preventing under-

graduates from realizing the potential that modeling could

hold for pursuing graduate work and future careers.

Limitations and Future Research

As noted above, our interpretation of the assessment data is

limited by our small sample size across two workshops. We

strongly recommend that the Lake Modeling module be

taught in multiple classrooms to assess the generalizability

of our findings, as well as determine how initial student

experience level may mediate their gains in perceived

experience level and climate change understanding.

Moreover, it would be useful to examine how students

respond to modeling other effects of climate change on

lakes, such as chemistry and biology, and whether they

yield similar results to models focused on lake physics. All

of the teaching materials used in the module are available

online at [module url], and we encourage other instructors

to adapt them to their classrooms for building both quan-

titative skills and climate change understanding for their

students.

Conclusions

Here, we found that use of computational modeling to

explore the effects of climate change may be a new

instructional strategy that can stimulate learning and

improved comprehension of complex topics that are diffi-

cult to understand from static datasets. Furthermore,

exposing undergraduates to modeling prior to graduate

school lessens any potential intimidation that might prevent

them from using modeling methods in their careers. By

embedding modeling and other computational tools (e.g.,

distributed computing, overlay networks) in an environ-

mental science context, non-computer science students

were able to successfully use and master technologies that

may otherwise be overwhelming. Consequently, using

modular teaching materials such as the Lake Modeling

module in the classroom may equip students with new tools

for better understanding and predicting how complex

environmental challenges, such as climate change, are

altering the ecosystems they live in.
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