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Abstract 

A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated 
UHVSRQVH� WR� WKH� QHHG� IRU� VFLHQWL¿F� XQGHUVWDQGLQJ� RI� ODNH� SURFHVVHV�� XWLOLVLQJ� WHFKQRORJLFDO� DGYDQFHV� DYDLODEOH� IURP�
autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, 
sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency 
lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process-
based ecological models because model simulation time steps are better aligned with sensor measurements than with 
lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, 
New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have 
been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. 
7KH�FDVH�VWXGLHV�GHPRQVWUDWH�VRPH�RI�WKH�GLI¿FXOWLHV�RI�PDSSLQJ�VHQVRU�PHDVXUHPHQWV�GLUHFWO\�WR�PRGHO�VWDWH�YDULDEOH�
outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better 
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Introduction

Major anthropogenic stressors are confronting many lake 
ecosystems across the globe, including altered hydrology, 
invasions of exotic species, eutrophication, pollution, 
unsustainable withdrawal, and climate change (Vitousek 
et al. 1997, Millennium Ecosystem Assessment 2005, 
Carpenter et al. 2011). Lake ecosystems have already been 
highly altered as a result of these human-accelerated 
global changes, and future global change scenarios 
indicate that some aquatic ecosystems will be even more 
severely impacted (Mooney 2010, Carpenter et al. 2011). 
Managing these issues relies on a holistic understanding 
of the complex processes that govern lake dynamics. Con-
YHQWLRQDO�VFLHQWL¿F�DSSURDFKHV��H�J���UHGXFWLRQLVP���ZKLFK�
KDYH�W\SLFDOO\�FRQ¿QHG�WKHVH�LVVXHV�WR�VWXGLHV�E\�GLVSDUDWH�
disciplinary groups and at single sites, are not well suited 
to deal with such complex and interdependent processes 
that are inherent properties of natural ecosystems (e.g., 
Rigler and Peters 1994).

Advances in sensor technology provide the opportunity 
to monitor many key ecological variables at temporal 
scales not possible with conventional sampling techniques. 
For example, our understanding of lake hydrodynamics 
(Wüest and Lorke 2003, Klug et al. 2012), metabolism 
(Van de Bogert et al. 2007, Staehr et al. 2010), effects of 
episodic events (Jones et al. 2008, Shade et al. 2009, 
Jennings et al. 2012), and air–water gas transfers (Read et 
al. 2012) has been strongly driven by the capacity of 
sensor networks to provide high-frequency data. In 
contrast, infrequent manual measurements are often 
unsuitable for detecting rapid changes in variables such as 
dissolved oxygen and chlorophyll that are a central focus 
of limnological studies (e.g., Banas et al. 2005).

A global community of ecologists, engineers, computer 
scientists, and information technologists is studying how 
anthropogenic stressors affect lake ecosystems through the 
Global Lake Ecological Observatory Network (GLEON; 
www.gleon.org; Hanson 2007, Weathers et al. 2013). One 
important objective of the network is to coordinate local 
sensor measurements on the global scale and to advance 
understanding of ecological processes in lakes. The wealth 
of data arising from this network offers new opportunities 
to improve ecological modelling methods (Beck et al. 
2009, Trolle et al. 2011a, Bennett et al. 2012). 

Our objective was 2-fold. First, we demonstrated the 

application of GLEON high-frequency data to test the 
predictive capabilities of a deterministic model (i.e., a 
dynamic model where state variables are determined by 
parameters in the model and values from the previous 
time step). Second, we compared output of different time 
scales from the model with automated and manual 
methods of data collection. Our focus was on a determin-
istic model with widespread application to lake 
ecosystems irrespective of geographical position, which 
allows inclusion of process information without 
“reinventing the wheel” (compare with Mooij et al. 2010). 
While our focus here is on the utility of GLEON data for 
modelling applications, readers should refer to Hanson 
(2007) and Weathers et al. (2013) to learn more on the 
history and background of GLEON.

Methods

As of May 2014, GLEON consisted of 82 lakes in 34 
countries, with 410 members from 40 countries. The 
larger GLEON network represents 3 interrelated networks 
of people, data, and lakes (Weathers et al. 2013). Here, we 
focus on the data. Examples of different lake sensor 
platforms (Fig. 1) illustrate the grassroots nature of 
GLEON buoys in which a variety of sensors, deployment 
settings, and monitoring frequencies are adopted 
according to the data requirements of the local GLEON 
site or the availability of funding. Data are often collated 
across sites by subsampling the high-frequency measure-
ments to adopt a standard time scale for comparative lake 
analyses or alignment with model output frequency (e.g., 
Read et al. 2011, Klug et al. 2012, Solomon et al. 2013). 
While the selected examples of GLEON lake sensor 
platforms (Fig. 1) range in latitude from 38.1°S (Lake 
Rotorua, New Zealand) to 59.8°N (Lake Erken, Sweden), 
GLEON has other platforms in both Antarctica and the 
Arctic and in all continents except Africa. GLEON 
platforms thus span a wide range of climate regimes as 
well as lake sizes and morphologies (Fig. 2). 

DYRESM-CAEDYM is a 1-dimensional (vertically 
resolved) water quality model developed by and available 
from the Centre for Water Research at The University of 
Western Australia. It is a coupled hydrodynamic 
(DYRESM) and ecological model (CAEDYM) that links 
vertical transport and distributions of temperature, salinity, 
DQG�GHQVLW\�ZLWK�ÀX[HV�RI�QXWULHQWV��GLVVROYHG�R[\JHQ��DQG�

inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency 
sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest. 

Key words: DYRESM-CAEDYM, ecological modelling, GLEON, grassroots network, lake metabolism, 
network science, sensors
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ecological state variables (e.g., phytoplankton biomass) at 
hourly time scales (Hamilton and Schladow 1997, Bruce et 
DO��������+LSVH\�HW�DO���������,QSXW�GDWD�DUH�HLWKHU�¿[HG��LQ�
the case of hypsography) biogeochemical rate constants and 
DQ� LQLWLDO� ZDWHU� FROXPQ� SUR¿OH� RI� WKH� VWDWH� YDULDEOHV� WR�
commence a simulation, or dynamic (in the case of meteor-
ological variables such as radiative, conductive and 
FRQYHFWLYH�KHDW�WUDQVIHUV��UDLQIDOO��DQG�ZLQG�VSHHG��LQÀRZV�
�GLVFKDUJH�DQG�FRPSRVLWLRQ�RI�VWDWH�YDULDEOHV��DQG�RXWÀRZV�
(discharge).

In this study, DYRESM-CAEDYM was applied to 2 
lakes: dimictic Trout Bog, Wisconsin, USA (latitude 
46.0°N, area 0.056 km2, maximum depth 7.9 m, oligo-
trophic) and monomictic Lake Rotoehu, North Island, New 
Zealand (latitude 38.0°S, area 7.9 km2, maximum depth 
13.5 m, eutrophic). We chose these 2 lakes on opposing 
ends of gradients of mixing, latitude, trophic state, and 
surface area to highlight the wide range of lakes for which 
the DYRESM-CAEDYM model is applicable. Model input 
data for Trout Bog and measurements at a central lake 
station for comparison with simulation output, including 
details of monitoring instruments and methods, were 
available from the North Temperate Lakes Long Term 
Ecological Research program (www.lternet.edu/sites/ntl/
data) and a sensor data repository (www.lter.limnology.
wisc.edu). Model input data for Lake Rotoehu have 
previously been described by Trolle et al. (2011b) and 
include solar radiation data obtained from Rotorua Airport 
Meteorological Station, 20 km west of Lake Rotoehu. 
High-frequency chlorophyll a and phycocyanin data were 
collected at Lake Rotoehu with a Trios microFlu (Germany) 
sensor deployed at 0.2 m depth from a platform at the 
central monitoring station used by Trolle et al. (2011b).

Fig. 1. Representative lake buoy deployments in (A) Lake Rotorua, 
New Zealand; (B) Lake Erken, Sweden; (C) Trout Bog, Wisconsin, 
USA; and (D) Yuan-Yang Lake, Taiwan.

Fig. 2. Surface area, shape, depth, and absolute latitude for 25 of the instrumented lakes in the GLEON network. Size and location of each lake 
correspond to the centre of area of each lake shape. Southern hemisphere lakes are marked with an asterisk.
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Results

A late-summer (northern hemisphere) cooling phase (23 
Aug to 1 Nov 2006) leading to complete water column 
mixing was chosen to compare model simulation outputs 
of water temperature in Trout Bog with measurements at 
¿[HG� GHSWKV� WDNHQ� ERWK� PDQXDOO\� RQ� D� IRUWQLJKWO\�
resolution and from sensors subsampled to 1 h intervals. 
The pronounced vertical gradients of water temperature in 
Trout Bog make this lake particularly suitable for 
comparisons of measured data against temperature output 
from simulations using DYRESM-CAEDYM. The 
frequency of manual observations is sparse compared with 
sensor data and model output and provides limited 
opportunity for a process-based interpretation of the 
physical drivers of temperature changes. 

Small hour-to-hour variations in observed sensor 
temperature, driven by minute internal waves, were not 
captured with the deterministic 1-dimensional model, 
although model forcing data were derived from hourly 
meteorological sensor measurements on the lake buoy 
(Fig. 3). The major point of difference between model 
simulations and observations was the apparent step-like 
entrainment process as the surface mixed layer (SML) 
cooled and deepened to entrain deeper water layers in the 
model, which contrasted with sensor observations of a 
more progressive warming of deeper waters as they were 
entrained into the SML. For the case of model output 
temperature at a depth of 3 m, this entrainment into the 
SML occurred ~23 days earlier than was indicated by the 
temperature sensor at this depth. Nevertheless, the large 
diurnal changes in water temperature in the SML during 

the period when the thermocline deepened from an initial 
depth of 2 m until turnover on 22 October were mostly 
well captured in the model simulations.

Sensor output is shown at hourly intervals for 
FKORURSK\OO� ÀXRUHVFHQFH� DQG� SK\FRF\DQLQ� DW� D� GHSWK� RI�
0.2 m in Lake Rotoehu during late autumn (14 May) to 
mid-winter (18 Jul) of 2011 (Fig. 4). These data are 
presented as relative chlorophyll (RFU) and phycocyanin 
units (RPU) and have not been corrected to equivalent 
concentrations of chlorophyll a or biomass of phytoplank-
ton or cyanobacteria communities, respectively. Both 
SK\FRF\DQLQ� DQG� FKORURSK\OO� ÀXRUHVFHQFH� DUH� KLJKO\�
variable on diurnal time scales. These sensor data were 
compared with DYRESM-CAEDYM chlorophyll output 
representing the 2 groups of phytoplankton: cyanobacteria 
and the remaining phytoplankton biomass (Fig. 4). 
Temporary increases in phycocyanin corresponding to 
VKRUW�WHUP� VWUDWL¿FDWLRQ� HYHQWV� �GDWD� QRW� VKRZQ�� ZHUH�
generally captured well with the model simulations of cy-
anobacteria chlorophyll using phycocyanin units 
normalised to the initial (14 May) simulated cyanobacteria 
chlorophyll. The observed pattern of decrease in 
phycocyanin during the study period was also reproduced 
in the simulations, including the consistently low values 
later in winter.

7KH�REVHUYHG�FKORURSK\OO�ÀXRUHVFHQFH�DW�����P�GHSWK�
VKRZHG� D� VWURQJ� GLXUQDO� ÀXFWXDWLRQ� DV� ZHOO� DV� �� VPDOO�
peaks over the study period, one near the start and the 
other at the end of the 3-month period. The model 
simulations of phytoplankton chlorophyll (excluding the 
contribution by cyanobacteria) did not show the regular 
GLXUQDO� ÀXFWXDWLRQV� LQ� WKH� REVHUYHG� FKORURSK\OO� ÀXRUHV-

Fig. 3. Temperature sensor readings for Trout Bog at hourly intervals at nominal 1 m depths from the water surface (T0) to 5 m (T5), 
DYRESM-CAEDYM model output at identical depths and times (M0 to M5), and manual biweekly measurements for Trout Bog from the 
water surface (O0) to 5 m (O5), 22 August to 1 November 2006. Offset of measured temperatures (T vs. O) is due to thermistor position and 
model output slightly deeper than the manual measurements.
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cence but reproduced the trend of 2 peaks during the study 
SHULRG��$Q�H[SDQGHG�YLHZ�RI�FKORURSK\OO�ÀXRUHVFHQFH�IRU�
the period 11 July to 20 July 2011 (Fig. 4 and 5) includes 
solar radiation to demonstrate the regularity of the reduced 
FKORURSK\OO�ÀXRUHVFHQFH�RQ�GD\V�ZLWK�FOHDU�VN\�LQGLFDWHG�
by a sinusoidal distribution of radiation over the day.

Discussion

Rarely do the temporal scales of observations and models 
intersect, but when they do, there are rich opportunities to 
drive forward hypothesis testing and process representa-
tion of models, enhancing dialogue among modelers, 
engineers, and aquatic scientists. Arguably, not since Vol-
lenweider (1968), when limnological dynamics were 
typically captured by snapshot sampling on a monthly 
scale, has there been such an opportunity to align observa-
tions and model predictions. Today’s autonomous sensors 

provide a new domain of high-frequency data that will 
challenge our capacity to adequately simulate some 
aspects of ecosystem behavior. The resulting improve-
ments in model process representation and performance 
provide opportunities to move beyond observation and 
synthesis of data and into a domain of prediction, a 
fundamental goal for ecologists in a rapidly changing 
environment (Rigler and Peters 1995). Our chosen case 
studies highlight some of the challenges relating to both 
the alignment between sensor readings and model state 
YDULDEOH� RXWSXWV� �H�J��� FKORURSK\OO� ÀXRUHVFHQFH�PHDVXUH-
ments vs. phytoplankton chlorophyll simulations in Lake 
Rotoehu) and process representation (e.g., the mixing 
dynamics of the deep waters in Trout Bog).

The issue of alignment of measured variables with 
model state variable outputs has been highlighted by 
Flynn (2005) but is expected to become more acute for 
many optical sensors that provide only indirect measure-

Fig. 4. 3K\FRF\DQLQ��XSSHU�SDQHO��DQG�FKORURSK\OO�ÀXRUHVFHQFH��ORZHU�SDQHO��PHDVXUHPHQWV��UHODWLYH�XQLWV��538�DQG�5)8��UHVSHFWLYHO\��IURP�
0.2 m depth at 1 h time intervals from 14 May to 20 July 2011 and model simulations of cyanobacteria and remaining phytoplankton biomass 
for Lake Rotoehu. Sensor data have been normalized to modelled data at 14 May. The box with a dashed line (lower panel, right) has an 
exploded view in Fig. 5.

Fig. 5. &KORURSK\OO�ÀXRUHVFHQFH��UHODWLYH�ÀXRUHVFHQFH�XQLWV��5)8��IURP�����P�GHSWK�DW���K�WLPH�LQWHUYDOV��H[SORGHG�YLHZ�IURP�)LJ�����DQG�
shortwave radiation for Lake Rotoehu from 11 to 20 July 2011.
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ments of modelled variables of interest (i.e., model state 
variables). Kara et al. (2012), for example, used wavelet 
DQDO\VLV� WR� VKRZ� WKDW� WLPH�VFDOH±VSHFL¿F� YDULDWLRQV� RI�
FKORURSK\OO� ÀXRUHVFHQFH� ZHUH� QRW� UHSURGXFHG� LQ�
simulations of chlorophyll associated with different 
functional groups of phytoplankton in Lake Mendota (WI, 
USA). While they highlighted apparent shortcomings in 
the process representation in DYRESM-CAEDYM, they 
DOVR�SRLQWHG�WR�WKH�GLI¿FXOWLHV�LQKHUHQW�LQ�WKH�XVH�RI�KLJK�
frequency indirect measures of phytoplankton biomass 
(i.e., in vivo�FKORURSK\OO�ÀXRUHVFHQFH��IRU�ZKLFK�RQO\�ORZ�
frequency validation data (i.e., biovolume measurements) 
ZHUH�DYDLODEOH��$�IXUWKHU�SRWHQWLDO�GLI¿FXOW\�LQ�WKH�XVH�RI�
in vivo� ÀXRUHVFHQFH� WR� LQWHUSUHW� SK\WRSODQNWRQ� ELRPDVV�
arises when there is nonphotochemical solar quenching 
from exposure of phytoplankton to excess light energy, 
UHVXOWLQJ� LQ� D� GHFUHDVH� LQ� ÀXRUHVFHQFH� TXDQWXP� \LHOG�
(Hamilton et al. 2010). Evidence of this effect can be seen 
FOHDUO\�LQ�WKH�VWURQJ�GLXUQDO�RVFLOODWLRQV�LQ�ÀXRUHVFHQFH�LQ�
/DNH� 5RWRHKX� �)LJ�� ��� ZKHUH� WKH� ÀXRUHVFHQFH� VLJQDO� LV�
strongly depressed by the solar radiation on clear days. By 
contrast, the small but regular daily oscillations in 
simulated phytoplankton chlorophyll (Fig. 4B) point to a 
diurnal growth cycle regulated by light availability. 

Another issue is the alignment of time scales of 
measurement of interdependent variables such as nutrients 
or zooplankton, which play a key role in determination of 
phytoplankton biomass at slightly longer time scales. 
Nutrient concentrations and zooplankton biomass are 
generally derived from analyses of grab samples taken 
manually at low frequency and often with limited spatial 
resolution. While optical and acoustic sensors show much 
promise in transposing conventional low-frequency grab 
samples toward high-frequency autonomous measure-
ments (e.g., McDonagh et al. 2008), there remain concerns 
about their accuracy because low-level concentration 
measurements and their uptake have not been widespread 
compared with sensors that measure physical variables 
such as temperature (Rundel et al. 2009).

The ability of the DYRESM-CAEDYM model to 
reproduce variations in phycocyanin sensor measurements 
in Lake Rotoehu suggests that the model has captured the 
GRPLQDQW�SURFHVVHV�LQÀXHQFLQJ�F\DQREDFWHULDO�FRQFHQWUD-
tions over time scales of hours to several days. Vertical 
GLVWULEXWLRQV� RI� F\DQREDFWHULD� DUH� VWURQJO\� LQÀXHQFHG� E\�
both physical mixing events and buoyancy of cells, 
¿ODPHQWV��RU�FRORQLHV��:H�LQWHUSUHW�WKDW�WHPSRUDU\�VWUDWL¿-
cation events allow buoyant cyanobacteria to migrate 
vertically toward the water surface, typically over 
durations >2–3 h (compare with Wallace et al. 2000). 
Because of the accuracy with which DYRESM-CAE-
DYM simulates water temperature (r2 > 0.97; Trolle et al. 
����E�� DQG�� E\� LPSOLFDWLRQ�� VWUDWL¿FDWLRQ� DQG� PL[LQJ�

HYHQWV�� WKHUH� LV� D� FORVH� ¿W� RI� VLPXODWHG� F\DQREDFWHULDO�
biomass to the observed phycocyanin.

High-frequency temperature measurements in Trout 
Bog provided an opportunity to evaluate discrepancies in 
PRGHO�¿W�DW�D�SURFHVV�OHYHO��KHOSLQJ�WR�LGHQWLI\�VRPH�RI�WKH�
mechanisms that may be incompletely represented in the 
model formulation. Some of the high-frequency variations 
of deep-water sensors are likely contributed by propagation 
of internal waves and other disturbances occurring at 
frequencies higher than the model time step and output 
data resolution. Three-dimensional modelling could 
LPSURYH�¿QH�VFDOH� UHSUHVHQWDWLRQ�RI� WKHVH�KLJK�IUHTXHQF\�
disturbances. The deep-water temperature variations were 
small, however, particularly at the location of the deepest 
(5 m) sensor. More attention could be paid to the 
discrepancy between the timing of entrainment of bottom 
waters into the deepening SML, however, which points to 
a more systematic issue, either with the model input data or 
with representation of the SML deepening process prior to 
water column turnover. Capturing these dynamics may be 
particularly important in resolving the duration for which, 
for example, bottom waters are anoxic, and accurate 
simulation is therefore critical to model applications where 
a climate change or nutrient loading scenario is generated 
E\�DOWHULQJ�WKH�GDWD�LQSXW�¿OHV�IRU�WKH�PRGHO�

Obtaining data at high temporal resolution has the 
potential to address a long-term problem for numerical 
modellers: inadequate resolution of boundary forcing or 
in-lake variables to support robust calibration and 
validation of “data-hungry” deterministic models. There 
are currently large disparities between measurement 
frequencies of variables used for model input and in-lake 
comparisons, however. Many “boundary” variables, such 
as air temperature and wind speed, and in situ variables, 
such as water temperature and dissolved oxygen, can be 
resolved autonomously at high frequency in comparison 
with commonly used manual sampling for chemistry or 
biological variables. Automated methods such as real-time 
polymerase chain reaction (PCR) to monitor changes in 
microbial populations or optical methods for chemical 
variables are advancing rapidly (e.g., Rasmussen et al. 
2008, Shade et al. 2009), however, and could ultimately 
align biological and chemical variable monitoring 
frequencies with physical variables to better address key 
issues of changes in aquatic biodiversity or biogeochemi-
cal cycles. For 3-dimensional deterministic models, the 
requirements for spatial validation may still fall short of 
what is desired, and other monitoring techniques such as 
autonomous underwater vehicles or remote sensing may 
be valuable for ensuring robust spatial validation of these 
models (Wynne et al. 2011).

Ecologists are increasingly being challenged to model, 
predict, and forecast future ecosystem state and dynamics 
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at a variety of spatial and temporal scales (e.g., Biggs et 
al. 2009). Cause and effect relationships between environ-
mental pressures and ecological responses are unlikely to 
be linear or intuitive and may exhibit indirect or lagged 
effects. They are often denoted by complex and interacting 
factors pertaining to multiple environmental stressors as 
well as system resilience, hysteresis, and existence of 
alternate ecological states (Carpenter 2003). Process-
based models will be used increasingly to test our under-
standing of ecological processes and generate scenarios 
for how lake ecosystems will respond to a changing 
climate, land use, or an altered hydrological regime. There 
is also likely to be an increased level of scrutiny and inter-
rogation of the process representation and accuracy of 
these models, similar to models used to predict future 
climate change, as they are increasingly integrated into 
mainstream management and economic considerations for 
freshwater and watershed protection. Thus, the use of high 
frequency is critical to advancing ecological modelling as 
ZHOO� DV� WR� EHWWHU� UHVROYH� DQG� XQGHUVWDQG� ¿QH�VFDOH�
temporal dynamics in lake ecosystems. 
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