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are often located in different geographic locations. For 
example, the conterminous United States has ~6 million 
enclosed inland waterbodies (Winslow et al. 2014), of 
which at least 2.6 million are constructed (Smith et al. 
2002). In the United States, these reservoirs dominate at 
southern latitudes while natural lakes dominate at north-
ern latitudes (Fig. 1; Thornton 1990). Consequently, given 
that approximately half of US waterbodies are reservoirs, 
it is important to determine if reservoir differences from 
natural lakes are primarily due to their latitude or if they 
stem from other factors, such as lakeshore land use and 
morphometric characteristics. Because many waterbody 
characteristics, including water temperature, waterbody 
size and shape, nutrient concentrations, phytoplankton 
abundance, and zooplankton community characteristics, 
vary on a latitudinal gradient as a result of differences in 
geology, glaciation history, solar radiation, temperature, 
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ABSTRACT
Constructed lakes and impoundments (reservoirs) likely exhibit substantial differences in their 
physics, chemistry, and biology from naturally formed lakes; however, because reservoirs and natural 
lakes generally have different latitudinal distributions, less is known about quantitative, generalized 
differences between the 2 waterbody types. We compared a suite of limnological variables among 
1033 reservoirs and natural lakes across multiple size classes on a latitudinal gradient in the 
conterminous United States. In general, reservoirs had significantly greater perimeters, catchment 
areas, and catchment area:surface area ratios than natural lakes. Interestingly, several lakeshore land 
use, morphometric, and water quality response variables exhibited significant interactions between 
waterbody type and latitude. Southern reservoirs were deeper and had higher proportions of 
forested land and less agriculture and developed land use in their lakeshore than southern natural 
lakes, whereas northern reservoirs were shallower and had less forest and more agriculture and 
developed land in their lakeshore than northern natural lakes. Following the waterbody depth and 
land use data, natural lakes also had greater total phosphorus (TP) concentrations and shallower 
Secchi disk depths at lower latitudes, whereas reservoirs had greater TP concentrations and 
shallower Secchi disk depths at higher latitudes. Overall, natural lakes were more eutrophic than 
reservoirs, having greater total nitrogen and chlorophyll a concentrations, regardless of latitude. Our 
findings indicate that many physical, chemical, and lakeshore land use characteristics of reservoirs 
and natural lakes vary on a latitudinal gradient, which has implications for the water quality, ecology, 
and management of these waterbodies.
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Introduction

Constructed lakes and impoundments (hereafter, reser-
voirs) provide critically important ecosystem services, 
including drinking water, fisheries, recreation, and irri-
gation (Rosenberg et al. 2000, Tundisi et al. 2008). In 
response to a growing human population and altered 
water availability, reservoir construction is increasing in 
many regions globally (Rosenberg et al. 2000, Downing 
et al. 2006). Despite their ubiquity and importance, how-
ever, reservoirs are generally less studied than naturally 
formed lakes.

Regional-scale studies indicate that reservoirs can 
exhibit substantial differences in their physics, chemistry, 
and biology from natural lakes (e.g., Jones and Bachmann 
1978, Thornton et al. 1981, Whittier et al. 2002, Jones 
et al. 2008), but less is known about generalized differ-
ences across regions because reservoirs and natural lakes 
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Jones and Knowlton 2005, Beaulieu et al. 2013, Beaver  
et al. 2014a, Rigosi et al. 2014, Yuan and Pollard 2014, 
Yuan et al. 2014) may depend on which waterbody has 
greater lakeshore anthropogenic land use (Carpenter et 
al. 1998, Hall et al. 1999, Arbuckle and Downing 2001, 
Fraterrigo and Downing 2008, Gémesi et al. 2011, Knoll  
et al. 2003, 2015) or catchment and waterbody morpho-
metric differences (e.g., Prepas et al. 2001, Jones et al. 
2004, 2008, Bremigan et al. 2008). Two previous studies 
that compared the trophic status of natural lakes and res-
ervoirs at the conterminous US scale found contrasting 
results. One study found that reservoirs were less eutrophic 
than natural lakes in terms of TP, but because latitude or 
region was not taken into account in that study (Canfield 
and Bachmann 1981), the generalizability of this result 
remains unknown. The US Environmental Protection 
Agency (US EPA 2009) found no differences in trophic 
status (TN and TP) between natural lakes and reservoirs 
in their 2007 National Lakes Assessment (NLA). The US 
EPA (2009) examined differences among waterbodies at 
the conterminous US scale but did not report analyses that 
specifically accounted for geographic region or latitude. As 
a result, there is currently contrasting evidence on baseline 
differences that may exist between reservoirs and natural 
lakes, which warrants further evaluation.

Here, we used data collected from the US EPA’s 2007 
NLA to expand on previous studies and quantify and con-
trast multiple physical, lakeshore land use, and water qual-
ity characteristics between natural lakes and reservoirs 
in the conterminous United States while accounting for 
latitude. Because the NLA used a randomized stratified 
design that randomly selected waterbodies within multi-
ple size classes, we were able to compare and generalize 
waterbody and water quality characteristics across natural 
lakes and reservoirs of different sizes. The overarching 
goal of this study was to examine if generalizable, baseline 

precipitation, and historical land use (e.g., Vincent et al. 
1986, Lewis 1996, Stomp et al. 2011, Abell et al. 2012, 
Beaver et al. 2014b, Winslow et al. 2014), extrapolating 
studies across the United States may be challenging. 
Therefore, quantifying these waterbody type differences 
while explicitly controlling for the effects of latitude is 
necessary.

 Reservoirs likely exhibit many catchment, morphomet-
ric, and physical differences from natural lakes. Because 
many reservoirs are created from impounding rivers, res-
ervoirs are generally expected to have greater catchment 
areas, catchment area:surface area ratios, and perimeters 
than natural lakes (Thornton et al. 1981, Kimmel et al. 
1990, Whittier et al. 2002, Knoll et al. 2015). Additionally, 
reservoirs are generally noted to be warmer than natural 
lakes in the United States because of their geographical 
differences (Thornton 1990, Wetzel 1990), and reservoirs 
can have more variable thermal stratification than natural 
lakes because of active management, such as hydropower 
production or dam withdrawals at multiple depths (Ford 
1990, Harris and Baxter 1996, Han 2000). Because these 
catchment and waterbody characteristics can potentially 
influence water quality and ecosystem processing (e.g., 
Jones et al. 2004, 2008, Bremigan et al. 2008), it is impor-
tant to examine if these catchment and physical waterbody 
differences still exist after accounting for waterbody geo-
graphical differences.

Previous waterbody type comparisons have found con-
flicting or no evidence as to whether reservoirs or natu-
ral lakes are more eutrophic in the United States (e.g., 
Jones and Bachmann 1978, Canfield and Bachmann 
1981, Wetzel 1990, 2001, Whittier et al. 2002, Cooke et 
al. 2005, US EPA 2009). Whether reservoirs or natural 
lakes have higher concentrations of total nitrogen (TN), 
total phosphorus (TP), and, subsequently, chlorophyll a 
(Chl-a) concentrations (e.g., Jones and Bachmann 1976, 

Figure 1.   Geographical location of the natural lakes (white circles; n = 441) and reservoirs (black circles; n = 592) sampled as part of 
the 2007 Us ePa national lakes assessment (nla) and included in our analyses. latitude was included as a covariate in all regression 
analyses because of the higher frequency of reservoirs at lower latitudes than natural lakes.
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differences exist in catchment, morphometric, and water 
quality characteristics between natural lakes and reser-
voirs after accounting for latitude, which has implications 
for their ecology and management.

Methods

EPA National Lakes Assessment sampling

As part of the EPA NLA, >1000 waterbodies in the con-
terminous United States were sampled once or twice 
during spring or summer 2007. Waterbodies with at least 
1 m depth and a minimum surface area of 0.04 km2 were 
chosen in a randomized stratified design based on size 
classes (termed probabilistic waterbodies; US EPA 2009, 
Peck et al. 2013). Natural lakes and reservoirs were sam-
pled across 5 designated surface area size classes: 0.04–0.1, 
>0.1–0.2, >0.2–0.5, >0.5–1, and >1 km2. Our goal was to 
compare natural lakes and reservoirs across these different 
size classes, not just small waterbodies, which numeri-
cally dominate the US waterbody population. Thus, our 
comparisons were not weighted to represent the entire 
waterbody population of the US, but rather be represent-
ative of the entire range of waterbody sizes across the con-
terminous US. The NLA weights were calculated solely 
from waterbody surface areas (Peck et al. 2013) and do not 
reflect any other waterbody characteristics (e.g., nutrient 
concentrations, catchment characteristics, and land use). 
Some lake characteristics, but certainly not all, scale by 
surface area, and therefore weighting would dispropor-
tionally emphasize the characteristics associated with the 
small waterbodies in the NLA. Consequently, because this 
study focused on a suite of limnological characteristics 
beyond surface area, we conducted our analyses across 
the size classes in the NLA without weighting. The EPA 
classified the waterbodies as either natural lakes (n = 441) 
or reservoirs (n = 592), defined as naturally formed or 
constructed, respectively.

Researchers followed standardized protocols at each 
waterbody to sample physical, chemical, and biological 
conditions. Integrated samples were collected from 2 m 
depth to the surface for water chemistry analyses and for 
Chl-a concentrations. Phytoplankton genera biovolumes 
were also enumerated for each lake; however, because 
some biovolume data were missing, we did not examine 
waterbody type differences of phytoplankton groups in 
this study. Some waterbodies in the NLA were resampled 
later in the season or had replicate samples taken. We only 
analyzed data collected from the first visit and first repli-
cate to maintain consistency across waterbodies. All data 
from the EPA NLA survey and comprehensive field and 
laboratory methods are publicly available (http://water.
epa.gov/type/lakes/lakessurvey_index.cfm).

Statistical analyses

We assessed many catchment, lakeshore land use, water-
body morphometric, and water quality variables between 
natural lakes and reservoirs. Our response variables 
were waterbody maximum depth; waterbody surface 
area; waterbody perimeter; watershed basin area around 
the waterbody (hereafter referred to as catchment area); 
catchment area:surface area; elevation; surface water 
temperature (temperature at 0 m); mean water  column 
temperature; surface water temperature minus the 
water  temperature just above the sediments from NLA 
profile data (hereafter, termed water column temperature 
differential); surface dissolved oxygen (DO) concentration 
(DO percent saturation was not provided); mean water 
column DO; Secchi disk depth; turbidity; water color; pro-
portion of forested, wetland, pasture, crop, agriculture, 
developed, and anthropogenic (the sum of agriculture 
and developed) lakeshore land use, where lakeshore land 
use was defined as land use within a 200 m buffer around 
each waterbody, as quantified by the National Land Cover 
Dataset (NLCD) and reported by the EPA; nutrient con-
centrations of TN, TP, TN:TP molar ratio, total organic 
carbon (TOC), dissolved organic carbon (DOC), and 
total silica; and Chl-a concentrations. In lieu of having 
the bathymetry or wind speed data needed to calculate 
some water column stratification metrics (Read et al. 
2011), we used the water column temperature differen-
tial as a proxy for the strength of thermal stratification of 
a waterbody (i.e., the lower the temperature differential, 
the weaker the stratification; Wetzel 2001). We compared 
only the proportion of land use categories (e.g., forested, 
agriculture) in the 200 m buffer around each lake (stand-
ardized by the size of the lake to enable comparison among 
waterbodies) to account for land use in closest proximity 
to each waterbody (e.g., Tufford et al. 1998, Tran et al. 
2010, Howell et al. 2012). No information on the number 
of inflows, outflows, or landscape position was provided 
for each waterbody, so we were unable to directly assess 
hydrological regimes for the waterbodies.

We analyzed the effects of waterbody type (reservoirs 
or natural lakes), latitude, and their interaction on our 
response variables using multiple linear regression mod-
els with waterbody type as an indicator variable (Kutner 
et al. 2005), coded 0 for natural lakes and 1 for reservoirs. 
Our primary multiple linear regression model for each 
analysis was:

where Y represents the response variable of interest; B0 
is the intercept term; B1, B2, and B3 are model parame-
ters for the waterbody type term, latitude term, and their 

Y = B
0
+ B

1
Xwaterbody_type + B

2
Xlatitude

+ B
3
Xwaterbody_type×latitude + �,
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waterbody morphometry, and water quality characteris-
tics between reservoirs and natural lakes when controlling 
for the effect of latitude (Table 1 and 2), indicating that res-
ervoirs and natural lakes have baseline differences separate 
from the latitude-driven effects. If the interaction between 
waterbody type and latitude was significant in addition to 
the individual waterbody type effect, the waterbody type 
effect was interpreted in the context of latitude.

Reservoirs had significantly greater waterbody perim-
eters, catchment areas, and catchment area:surface area 
ratios and were higher in elevation than natural lakes 
(Table 1 and 2; Fig. 2a and 2b; all F1,1029 ≥ 18.40, P < 0.0001); 
however, the differences in elevation between waterbody 
types started to converge with increased latitude, result-
ing in a significant interaction between waterbody type 
and latitude for elevation (F1,1029 = 14.12, P = 0.0002). 
Reservoirs had, on average, 2 times larger waterbody 
perimeters (41 ± 7 vs. 18 ± 8 km, 1 SE), 12 times larger 
catchment areas (5000 ± 1300 vs. 400 ± 1600 km2), and 
7 times larger catchment area:surface area ratios (530 ±  
130 vs. 72 ± 160) compared to natural lakes. Although 

interaction, respectively; and ε is a stochastic error term. 
To meet the assumptions of normality and equal vari-
ances, waterbody maximum depth, surface area, water-
body perimeter, catchment area, catchment area:surface 
area, elevation, Secchi disk depth, turbidity, water color, 
TN, TP, molar TN:TP ratios, TOC, DOC, total silica, 
and Chl-a were ln-transformed. The land use categories 
expressed as proportions were logit-transformed prior to 
analyses (Warton and Hui 2011). If the proportions had 
zero values, the minimum observed value was added as a 
constant prior to logit-transformation so those data could 
be included (Warton and Hui 2011), which did not change 
the significance of the predictor variables. The P-values for 
statistical tests were considered significant at α ≤ 0.05, and 
all analyses were performed in JMP Pro 12 (SAS Institute, 
Cary, NC, USA).

Results

Across the conterminous US, we observed many sig-
nificant differences in catchment, lakeshore land use, 

Table 1. Multiple linear regression model statistics and results for the effects of waterbody type as an indicator variable (with natural 
lakes coded as 0 and reservoirs coded as 1; positive indicates greater values in reservoirs), latitude, and the interaction of waterbody type 
and latitude on physical, lakeshore land use, and water quality response variables. the parameter values and their standard error (se) are 
given for the waterbody type, latitude, and interaction terms in the regression model. the lakeshore land use data were calculated for a 
200 m buffer around the perimeter of each waterbody. statistically significant results are highlighted in bold, and n is the sample size of 
waterbodies in each analysis.

Response variable nlakes nreservoirs

Intercept 
parameter 

± SE

Waterbody type Latitude Interaction

value ± SE P value ± SE P value ± SE P
Physical variables

ln(maximum depth) 441 591 1.04 ± 0.28 0.06 ± 0.03 0.08 0.02 ± 0.01 0.01 −0.02 ± 0.01 0.02
ln(surface area) 441 592 1.32 ± 0.56 0.06 ± 0.07 0.39 −0.03 ± 0.01 0.02 0.01 ± 0.01 0.51
ln(waterbody perimeter) 441 592 3.15 ± 0.40 0.21 ± 0.05 <0.0001 −0.03 ± 0.01 0.003 −0.005 ± 0.01 0.64
ln(catchment area) 441 592 4.40 ± 0.78 0.65 ± 0.10 <0.0001 −0.02 ± 0.02 0.27 −0.005 ± 0.02 0.80
ln(catchment area:surface area) 441 592 3.08 ± 0.48 0.59 ± 0.06 <0.0001 0.01 ± 0.01 0.34 −0.01 ± 0.01 0.25
ln(elevation) 441 592 −0.15 ± 0.39 0.42 ± 0.05 <0.0001 0.14 ± 0.01 <0.0001 −0.04 ± 0.01 0.0002
surface temperature 439 586 43.83 ± 1.01 −0.32 ± 0.13 0.01 −0.48 ± 0.02 <0.0001 −0.04 ± 0.02 0.12
Mean water temperature 439 586 43.03 ± 1.34 −0.05 ± 0.16 0.77 −0.53 ± 0.03 <0.0001 0.01 ± 0.03 0.67
Water column temperature 

differential
439 586 2.57 ± 1.87 −0.40 ± 0.23 0.08 0.08 ± 0.05 0.07 −0.11 ± 0.05 0.02

ln(secchi disk depth) 408 571 −1.70 ± 0.31 −0.01 ± 0.04 0.88 0.05 ± 0.01 <0.0001 −0.02 ± 0.01 0.03
ln(turbidity) 441 592 3.24 ± 0.40 0.08 ± 0.05 0.11 −0.04 ± 0.01 <0.0001 0.02 ± 0.01 0.06
ln(water color) 441 592 3.11 ± 0.26 −0.10 ± 0.03 0.003 −0.02 ± 0.01 0.01 0.01 ± 0.01 0.18

Land use

logit(% forested) 441 592 −0.39 ± 1.01 −0.06 ± 0.12 0.63 −0.05 ± 0.02 0.06 −0.14 ± 0.02 <0.0001
logit(% wetland) 441 592 −0.76 ± 0.82 −1.07 ± 0.10 <0.0001 −0.06 ± 0.02 0.003 0.10 ± 0.02 <0.0001
logit(% pasture) 441 592 −4.07 ± 0.90 0.32 ± 0.11 0.004 −0.04 ± 0.02 0.07 −0.01 ± 0.02 0.59
logit(% crop) 441 592 −6.07 ± 0.91 −0.24 ± 0.11 0.03 0.01 ± 0.02 0.71 0.06 ± 0.02 0.005
logit(% agriculture) 441 592 −2.92 ± 0.98 0.12 ± 0.12 0.33 −0.04 ± 0.02 0.13 0.03 ± 0.02 0.17
logit(% developed) 441 592 0.70 ± 0.69 −0.33 ± 0.08 0.0001 −0.09 ± 0.02 <0.0001 0.03 ± 0.02 0.04
logit(% agriculture + developed) 441 592 0.90 ± 0.70 −0.22 ± 0.09 0.01 −0.07 ± 0.02 <0.0001 0.05 ± 0.02 0.007

Chemical variables

surface dO 435 547 5.37 ± 0.66 −0.004 ± 0.08 0.96 0.07 ± 0.02 <0.0001 0.01 ± 0.02 0.44
Mean dO 435 547 2.13 ± 0.63 0.04 ± 0.08 0.57 0.10 ± 0.02 <0.0001 0.05 ± 0.02 0.001
ln(tn) 441 592 6.81 ± 0.31 −0.16 ± 0.04 <0.0001 −0.01 ± 0.01 0.31 0.01 ± 0.01 0.14
ln(tP) 441 592 4.07 ± 0.46 0.09 ± 0.06 0.12 −0.01 ± 0.01 0.20 0.02 ± 0.01 0.03
ln(tn:tP) 441 592 3.53 ± 0.27 −0.25 ± 0.03 <0.0001 0.01 ± 0.01 0.31 −0.01 ± 0.01 0.05
ln(tOC) 441 592 1.99 ± 0.25 −0.22 ± 0.03 <0.0001 −0.003 ± 0.01 0.57 −0.001 ± 0.01 0.86
ln(dOC) 441 592 1.77 ± 0.24 −0.21 ± 0.03 <0.0001 −0.0001 ± 0.01 0.99 −0.002 ± 0.01 0.68
ln(total silica) 441 592 0.97 ± 0.39 0.09 ± 0.05 0.08 0.01 ± 0.01 0.23 −0.02 ± 0.01 0.04
ln(Chl-a) 439 589 5.64 ± 0.43 −0.15 ± 0.05 0.006 −0.08 ± 0.01 <0.0001 0.02 ± 0.01 0.06
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mean DO concentrations at lower latitudes. There was 
also a significant waterbody and latitude interaction effect 
for the water column temperature differential, a proxy for 
thermal stratification (Fig. 2c; F1,1021 = 5.79, P = 0.02). 
Reservoirs had a lower water column temperature dif-
ferential than natural lakes at latitudes higher than 36°N, 
and natural lakes had a lower water column temperature 
differential at lower latitudes.

We observed systematic differences in reservoir versus 
natural lake lakeshore land use that varied on a latitudi-
nal gradient. Natural lakes (19 ± 1%, 1 SE) had greater 
developed lakeshore land use than reservoirs (13 ± 1%) 
at all latitudes (Table 1 and 2; F1,1029 = 14.89, P = 0.0001), 
but this difference converged at higher latitudes (F1,1029 = 
4.09, P = 0.04). Crop and agriculture + developed lake-
shore land use were also significantly greater in natural 
lakes than in reservoirs (F1,1029 ≥ 4.50, P ≤ 0.03); however, 
there were also significant interactions between water-
body type and latitude (Fig. 2d; P ≤ 0.008). Natural lakes 
had greater crop and agriculture + developed land use at 
latitudes lower than 45°N, whereas reservoirs exhibited 
greater proportions of these 2 land use types at higher 
latitudes. Reservoirs had significantly greater pasture 

there was no significant waterbody type effect for maxi-
mum depth (P = 0.08), there was a significant interaction 
effect of latitude and waterbody type with depth (F1,1028 = 
5.77; P = 0.02). Reservoirs were deeper at latitudes lower 
than 44°N, and natural lakes were deeper at higher lati-
tudes. There were no significant main waterbody or inter-
action effects for waterbody surface area (P > 0.38).

As expected, surface and mean water column tem-
peratures across both types of waterbodies significantly 
decreased with increasing latitude (Table 1; F1,1021 ≥ 
265.14, P < 0.0001), and surface and mean DO concen-
trations increased with increasing latitude (F1,978 ≥ 23.09, 
P < 0.0001). Natural lakes (24.7 ± 0.2 °C) had significantly 
greater surface temperatures than reservoirs (24.1 ±  
0.2 °C; F1,1021 = 6.68, P = 0.01) across all latitudes, but 
there was no difference in mean water column tempera-
tures between waterbody types (P = 0.77). There were no 
significant differences in surface and mean DO concen-
trations between waterbodies (P > 0.56); however, there 
was a significant waterbody and latitude interaction effect 
for mean DO concentrations (F1,978 = 10.39, P = 0.001). 
Reservoirs had greater mean DO concentrations at lat-
itudes higher than 40°N, and natural lakes had greater 

Table 2. all response variables compared between natural lakes and reservoirs, with each variable’s untransformed mean values, with 
standard errors (se). significant waterbody type effect or the interaction between waterbody type and latitude effect denoted by * =  
P ≤ 0.05, ** = P < 0.01, or *** = P < 0.001.

Variable Waterbody effect? Interaction effect? Natural lakes mean ± SE Reservoirs mean ± SE
Physical variables

Maximum depth * 8.9 ± 0.6 m 9.1 ± 0.5 m
surface area 21.4 ± 4.7 km2 12.0 ± 3.9 km2

Waterbody perimeter *** 17.5 ± 8.1 km 40.9 ± 6.6 km
Catchment area *** 413 ± 1560 km2 4950 ± 1280 km2

Catchment area:surface area *** 71.5 ± 159 527 ± 131
elevation *** ***  478 ± 37.7 m 768 ± 31.0 m
surface temperature ** 24.7 ± 0.2 °C 24.1 ± 0.2 °C
Mean water column temperature 21.6 ± 0.3 °C 21.5 ± 0.2 °C
Water column temperature differential * 6.3 ± 0.4 °C 5.5 ± 0.3 °C
secchi disk depth * 2.2 ± 0.1 m 1.9 ± 0.1 m
turbidity 13.4 ± 2.0 ntU 15.4 ± 1.6 ntU
Water color ** 19.6 ± 0.9 PCU 14.8 ± 0.7 PCU

Land use

Forested *** 28.1 ± 1.7% 32.8 ± 1.4%
Wetland *** *** 23.9 ± 0.9% 9.3 ± 0.7%
Pasture ** 4.7 ± 0.7% 6.8 ± 0.6%
Crop * ** 8.7 ± 0.7% 5.2 ± 0.6%
agriculture 13.4 ± 1.1% 12.0 ± 0.9%
developed *** * 18.6 ± 1.1% 12.9 ± 0.9%
agriculture + developed * ** 32.0 ± 1.5% 24.9 ± 1.2%

Chemical variables

surface dO 8.4 ± 0.1 mg/l 8.4 ± 0.1 mg/l
Mean dO ** 6.2 ± 0.1 mg/l 6.2 ± 0.1 mg/l
tn *** 1560 ± 115 μg/l 904 ± 94.3 μg/l
tP * 108 ± 15.1 μg/l 122 ± 12.4 μg/l
tn:tP molar ratio *** * 88.7 ± 7.4 59.3 ± 6.1
tOC *** 13.4 ± 1.0 mg/l 7.0 ± 0.8 mg/l
dOC *** 11.6 ± 0.9 mg/l 6.4 ± 0.7 mg/l
total silica * 8.8 ± 0.6 mg/l 8.4 ± 0.5 mg/l
Chl-a ** 42.8 ± 3.9 μg/l 24.2 ± 3.2 μg/l
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TP, reservoirs had significantly lower mean TN:TP molar 
ratios (59 ± 6, 1 SE) than natural lakes (89 ± 7; Fig. 3c; 
F1,1029 = 54.09, P < 0.0001), with a convergence of TN:TP 
ratios at lower latitudes (F1,1029 = 3.97, P = 0.05). Natural 
lakes also had significantly greater concentrations of TOC 
(13 ± 1 mg/L) and DOC (12 ± 1 mg/L) than reservoirs 
(7 ± 1 and 6 ± 1 mg/L, respectively; F1,1029 ≥ 51.08, P < 
0.0001). Although there was no waterbody effect on sil-
ica concentrations (P = 0.08), reservoirs had greater silica 
concentrations at latitudes lower than 45°N, and natural 
lakes had greater silica concentrations at higher latitudes 
(F1,1029 = 4.35, P = 0.04).

Following the land use and nutrient data, natural lakes 
had almost double the concentration of Chl-a (43 ± 4 μg/L) 
than reservoirs (24 ± 3 μg/L) across all latitudes (Table 
1 and 2, Fig. 3d; F1,1024 = 7.72, P = 0.006). Natural lakes  
(20 ± 1 PCU) also had greater water color than reser-
voirs (15 ± 1 PCU; F1,1029 = 9.06, P = 0.003). Likewise, 
reservoirs had deeper Secchi disk depths at lower latitudes  
(<40°N), and natural lakes had deeper Secchi disk depths 
at higher latitudes (F1,975 = 4.47, P = 0.03). There were no 
significant waterbody or interaction effects for turbidity 
(P > 0.06).

lakeshore land use at all latitudes (F1,1029 = 8.15, P = 0.004), 
and there were no significant waterbody or interaction 
effects for total agriculture (P > 0.17). Following those 
results, we observed an opposite interaction for forested 
land use (Fig. 2e; F1,1029 = 31.75, P < 0.0001), with res-
ervoirs being more forested in lower latitudes (<40°N), 
and natural lakes were more forested at higher latitudes. 
Natural lakes had significantly greater wetland lakeshore 
land use (24 ± 1%) than reservoirs (9 ± 1%) at all latitudes 
(F1,1029 = 111.17, P < 0.0001), and the differences between 
waterbody types converged at higher latitudes (F1,1029 = 
24.25, P < 0.0001).

Across the conterminous US, we observed that natu-
ral lakes were generally more eutrophic than reservoirs. 
On average, natural lakes had almost 2 times larger con-
centrations of TN (Table 1 and 2, Fig. 3a; F1,1029 = 16.92,  
P < 0.0001). Although there was no significant waterbody 
effect for TP (Fig. 3b; P = 0.12), we observed a significant 
interaction effect; natural lakes had higher TP concen-
trations at lower latitudes (<37°N) and lower TP concen-
trations than reservoirs at higher latitudes (F1,1029 = 4.75, 
P = 0.03). Because the difference in TN concentrations 
between the 2 waterbody types was greater than that of 

Figure 2.  Conterminous Us relationships of latitude and (a) catchment area:surface area, (b) elevation, (c) water column temperature 
differential, (d) the proportion of agriculture + developed lakeshore land use, and (e) the proportion of forested lakeshore land use of 
natural lakes (dotted grey line, white circles) and reservoirs (solid grey line, black circles).
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much greater catchment areas, catchment area:surface area 
ratios, and perimeters than natural lakes, likely a result of 
their formation from impounding lotic systems (Thornton 
et al. 1981). After accounting for latitude, natural lakes had 
greater surface water temperatures than reservoirs, despite 
no overall significant waterbody effect of surface area and 
maximum depth, which are generally important factors 
determining water temperature (Gorham 1964, Gorham 
and Boyce 1989). This waterbody temperature difference 
was only observed for surface water temperature, not 
mean water column temperature, suggesting that natural 
lakes may have warmer surface water because of their sig-
nificantly greater developed lakeshore land use. Increasing 
impervious surface area along lakeshores is often associ-
ated with warmer surface temperatures in waterbodies 
(Thompson et al. 2008a, 2008b, Doubek et al. 2015).

Overall, our analysis supports observations from pre-
vious studies (Jones and Bachmann 1978, Canfield and 
Bachmann 1981) that natural lakes were generally more 
eutrophic than reservoirs, as defined here by significantly 
higher TN, TN:TP ratios, and Chl-a concentrations, 
which may be due to several reasons. First, reservoirs gen-
erally had lower agriculture + developed lakeshore land 
use and higher forested lakeshore land use than natural 
lakes, especially at lower latitudes. Human-dominated 
lakeshore land use corresponds to increased nutrient 
and phytoplankton concentrations (Jones and Bachmann 
1976, Carpenter et al. 1998, Arbuckle and Downing 2001, 
Hall et al. 1999, Jones and Knowlton 2005, Schindler 2006, 
Fraterrigo and Downing 2008, Gémesi et al. 2011), and 

Discussion

This study expands our current knowledge of reservoir 
and natural lake comparisons by examining a suite of 
limnological variables across waterbodies of different size 
classes while accounting for latitude. Previous compari-
sons of reservoirs and natural lakes were conducted either 
at local to regional levels (e.g., Jones and Bachmann 1978, 
Whittier et al. 2002), were qualitative (e.g., Wetzel 1990, 
2001, Cooke et al. 2005), or did not specifically account 
for geographic differences of waterbodies in analyses at 
the conterminous US scale (e.g., Canfield and Bachmann 
1981, US EPA 2009). Because of the large geographical 
differences between reservoirs and natural lakes in the US 
(Canfield and Bachmann 1981, Thornton 1990; Fig. 1), 
accounting for latitude is important to statistically quan-
tify waterbody type differences because many physical and 
water quality parameters vary on a latitudinal gradient as 
a result of baseline differences in multiple factors, such as 
solar radiation, temperature, and geology (Vincent et al. 
1986, Lewis 1996, Abell et al. 2012, Winslow et al. 2014). 
Although some parameters did not vary with latitude (e.g., 
some catchment characteristics, TN, and Chl-a concen-
trations), several differences between the waterbody types 
were dependent on local land use and other geographic 
factors that vary regionally across the US. Consequently, 
our results emphasize the importance of accounting for 
latitude in waterbody type comparisons.

As observed in previous waterbody type comparisons 
(Wetzel 1990, 2001, Knoll et al. 2015), reservoirs exhibited 

Figure 3.   Conterminous Us relationships of latitude and (a) total nitrogen (tn), (b) total phosphorus (tP), (c) molar tn:tP ratio, and  
(d) chlorophyll a of natural lakes (dotted grey line, white circles) and reservoirs (solid grey line, black circles).
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and epilimnetic–hypolimnetic water column mixing than 
natural lakes because of water withdrawals at different dam 
outflow depths (Ford 1990, Harris and Baxter 1996, Han 
2000), which may also account for some this interaction.

We observed that many of our response variables var-
ied on a latitudinal gradient or exhibited significant latitu-
dinal interaction effects, as have many other studies (e.g., 
Vincent et al. 1986, Lewis 1996, Stomp et al. 2011, Abell 
et al. 2012, Beaver et al. 2014b, Winslow et al. 2014), and 
thus it was important to include latitude in our analyses, 
as advocated by Canfield and Bachmann (1981). Notably, 
although natural lakes were overall more eutrophic than 
reservoirs, this waterbody difference converged at higher 
latitudes (>45°N), likely related to lakeshore land use 
and maximum depth differences. These latitudinal dif-
ferences emphasize the importance of local land use and 
other geographic factors that vary regionally in the US. 
Overall, these differences between reservoirs and natural 
lakes may have implications for the ecology and man-
agement of freshwater ecosystem services they provide 
(Bartram and Chorus 1999, Falconer 1999, Hudnell 2010). 
Because both reservoirs and natural lakes are increasingly 
experiencing anthropogenic stress, identifying baseline 
differences between the 2 types of ecosystems is a first 
step in predicting how these waterbodies may respond 
to future change.
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