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Summary

The GLEON Research And PRAGMA Lake Expedition—GRAPLE—is a collaborative effort

between computer science and lake ecology researchers. It aims to improve our understand-

ing and predictive capacity of the threats to the water quality of our freshwater resources,

including climate change. This paper presents GRAPLEr, a distributed computing system used to

address the modeling needs of GRAPLE researchers. GRAPLEr integrates and applies overlay vir-

tual network, high-throughput computing, and WEB service technologies in a novel way. First,

its user-level IP-over-P2P overlay network allows compute and storage resources distributed

across independently administered institutions (including private and public clouds) to be aggre-

gated into a common virtual network, despite the presence of firewalls and network address

translators. Second, resources aggregated by the IP-over-P2P virtual network run unmodified

high-throughput-computing middleware to enable large numbers of model simulations to be exe-

cuted concurrently across the distributed computing resources. Third, a WEB service interface

allows end users to submit job requests to the system using client libraries that integrate with the

R statistical computing environment. The paper presents the GRAPLEr architecture, describes

its implementation and reports on its performance for batches of general lake model simulations

across 3 cloud infrastructures (University of Florida, CloudLab, and Microsoft Azure).
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1 INTRODUCTION

The GLEON Research And PRAGMA Lake Expedition—GRAPLE—aims

to improve our understanding and predictive capacity of water qual-

ity threats to our freshwater resources, including climate change. It

is predicted that climate change will increase water temperatures

in many freshwater ecosystems, potentially increasing toxic phyto-

plankton blooms.1,2 Consequently, understanding how altered climate

will affect phytoplankton dynamics is paramount for ensuring the

long-term sustainability of our freshwater resources. Underlying these

consequences is complex physical-biological interactions, such as phy-

toplankton community structure and biomass responses to short-term

weather patterns, multiyear climate cycles, and long-term climate

trends.3,4 New data from high-frequency sensor networks (eg, GLEON)

provide easily measured indicators of phytoplankton communities,

such as in situ pigment fluorescence and show promise for improv-

ing predictions of ecosystem-scale wax and wane of phytoplankton

blooms.5 However, translating sensor data to an improved understand-

ing of coupled climate-water quality dynamics requires additional data

sources, model development, and synthesis, and it is this type of com-

plex challenge that requires increasing computational capacity for lake

modeling.

Searching through the complex response surface associated with

multiple environmental starting conditions and phytoplankton traits

(model parameters) requires executing and interpreting thousands of

simulations, and thus substantial compute resources. Furthermore,
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the configuration, setup, management, and execution of such large

batches of simulations is time-consuming, both in terms of computing

and human resources.

This puts the computational requirements well beyond the capa-

bilities of any single desktop computer system, and to meet the

demands imposed by these simulations, it becomes necessary to tap

into distributed computing resources. However, distributed comput-

ing resources and technologies are typically outside the realm of most

freshwater science projects. Designing, assembling, and programming

these systems are not trivial and require the level of skill typically

available to experienced system and software engineers. Consequently,

this imposes a barrier to scientists outside information technology and

computer science disciplines and presents challenges to the accep-

tance of distributed computing as a solution to most lake ecosystem

modelers.

GRAPLE is a collaboration between lake ecologists and computer

scientists that aims to address this challenge. Through this interdisci-

plinary collaboration, we have designed and implemented a distributed

system platform that supports compute-intensive model simulations,

aggregates resources across an overlay network spanning collaborat-

ing institutions, and presents intuitive WEB service-based interfaces

that integrate with existing programming environments that lake ecol-

ogists are familiar with, such as R.6

This paper describes GRAPLEr, a cyberinfrastructure that is unique

in how it integrates a collection of distributed hardware resources

through the IP-over-P2P (IPOP)7,8 overlay virtual network, sup-

ports existing models and the high-throughput-computing middle-

ware (HTCondor) distributed computing middleware,9 and exposes a

user-friendly interface that integrates with R-based desktop environ-

ments through a WEB service. As a multitiered distributed solution,

GRAPLEr incorporates several components into an application-specific

solution. Some of these components are preexisting solutions, which

are deployed and configured for our specific uses, while others are

specifically developed to address unique needs.

The rest of this paper is organized as follows: Section 2 describes

driving science use cases and motivates the need for the GRAPLEr

cyberinfrastructure. Section 3 describes the architecture, design, and

implementation of GRAPLEr. Section 4 describes a deployment of

GRAPLEr and summarizes results from an experiment that evaluates

its capabilities and performance. Section 5 discusses related work, and

Section 6 concludes the paper.

2 SCIENCE USE CASES

Simulation modeling is a powerful tool for examining the effects of

many different climate change scenarios on water quality in lakes. Here,

we are specifically focusing on scenarios that look at both linear and

stochastic changes in climate drivers to predict changes in harmful algal

blooms. Algal community dynamics can be highly nonlinear because

of the large diversity of algae and their functional traits in lakes, as

well as the dynamic physical-chemical environment in which the algae

live.10,11 Consequently, small incremental changes in different climate

drivers could potentially reveal threshold effects that result in dispro-

portionately large changes in responses. Thus, it could be possible that

a small change in climate drivers creates an ideal set of environmental

conditions for blooms to occur in silico.

How do algae and lake ecosystem processes respond to small

changes in the timing, frequency, and magnitude of air temperature,

precipitation, and wind? Can our models simulate the algal growth

that is observed in lakes with high-frequency sensors in the field? To

answer these questions, we use the simulation software, General Lake

Model—Aquatic Eco Dynamics (GLM-AED).12,13 GLM-AED simulates

the vertical dimension (ie, 1-dimensional [1D]) of lake hydrodynamics in

response to meteorological and hydrologic forcing and lake chemistry

in response to external loading and physical and biological fluxes. The

2 biological trophic levels modeled here, phytoplankton (4 functional

groups) and zooplankton (3 functional groups), are modeled according

to a set of functional traits that govern growth and death in response

to the physical and chemical environment. All 3 components—physical,

chemical, and biological—interact to form a highly dynamic and verti-

cally heterogeneous environment. To study phytoplankton blooms, we

adjust the model parameters representing functional traits in the phy-

toplankton and zooplankton. There are thousands of viable trait combi-

nations, and therefore, thousands of simulations needed to determine

the outcomes from these hypothetical communities. To study climate

change effects on phytoplankton, we adjust meteorological forcing

driver data to represent future climate scenarios.

We explored 2 use cases of the GRAPLEr cyberinfrastructure to

address the questions above. In the first use case, we ran hundreds of

thousands of GLM-AED simulations in which we incrementally altered

air temperature driver data by ±0.1◦C (in a range between −3◦C to

+3◦C from observed data), wind speed by ±0.1 m/s (in a range between

0 to +5 m/s), and precipitation by ±0.1 mm in precipitation (in a range

between 0 to 5 mm) at each hourly time step throughout a year. Analyz-

ing all possible combinations of these climate drivers necessitated run-

ning many thousand simulations to determine where threshold effects

in algal growth exist in the model. This information was critical for

identifying which meteorological conditions would best promote algal

blooms. In the second use case, we defined distributions of potential

parameter values for different phytoplankton functional traits gov-

erning nutrient uptake, light and temperature sensitivity, and growth

rates and then randomly pulled different parameter values from the

distributions. Analyzing all possible combinations of the parameter val-

ues allowed us to determine which parameter values best recreated

observed field data of algal abundance in the lake. Having this informa-

tion consequently allowed us to improve the parameterization of the

model to predict future algal blooms and water quality.

3 ARCHITECTURE AND DESIGN

3.1 System architecture (GRAPLEr)

The system architecture of GRAPLEr is illustrated in Figure 1. Users

interact with the system via a client-side library that is invoked from

an R development environment (eg, R Studio) running on their personal

computer. User requests are created using the R language and mapped

to the GRAPLEr application programming interface (API) calls, which

in turn transforms and transmits them to the GRAPLEr WEB Service
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FIGURE 1 System Architecture (GRAPLEr). Users interact with GRAPLEr using R environments in their desktop (right). The client connects to a
WEB service tier that exposes an endpoint to the public Internet. Job batches are prepared using GEMT and are scheduled to execute in
distributed HTCondor resources across an IPOP virtual private network. HTCondor, high-throughput-computing middleware; GEMT, GRAPLEr
experiment management tools; GWS, GRAPLEr WEB Service; IPOP, IP-over-P2P

(GWS). The GWS tier is responsible for interpreting the user requests,

invoking the GRAPLEr experiment management tools (GEMT) to set up

and prepare the simulations, and queuing jobs for submission to the

HTCondor pool. The HTCondor workload management tier is respon-

sible for scheduling and dispatching model simulations across the com-

pute resources, which are interconnected through the IPOP virtual

network overlay. All the GRAPLEr components are described in the

following sections.

3.2 Overlay virtual network (IPOP)

Rather than investing significant effort in development, porting,

and testing new applications and distributed computing middleware,

GRAPLEr has focused on an approach in which computing envi-

ronments are virtualized and can be deployed on-demand on cloud

resources. While virtual machines (VMs) available in cloud infrastruc-

tures provide a basis to address the need for a user-provided software

environment, another challenge remains: how to interconnect VMs

deployed across multiple institutions (including private and commer-

cial cloud providers) such that HTCondor and the simulation models

work seamlessly? The approach to address this problem is to apply

virtualization at the network layer.

The IPOP7 network overlay is a flexible and dynamic virtual private

network (VPN). It frees the administrator to define the virtual net-

work by simply specifying relationships among the participating nodes.

IP-over-P2P then transparently builds logical communication links to

facilitate seamless and secure communication within this ad hoc group.

Additionally, the IPOP overlay is self-healing as it automatically adjusts

to changes in the underlying network—the hosts continue to function

without user intervention and with minimal disruption.

This dynamic function of IPOP is essential for addressing the com-

plexities associated with the intranetworking within the hybrid cloud

system composed of local and public cloud resources. By using tunnel-

ing protocols to extend discrete network segments between hosts, a

virtual LAN is created. A virtual LAN simplifies the design and layout of

the network by grouping hosts with common requirements regardless

of their actual location. For example, HTCondor hosts can be config-

ured to communicate over public internet infrastructure. However, the

deployment of such a cluster has considerable more complexities than

a corresponding cluster deployed within a LAN.

IP-over-P2P allows GRAPLEr to define and deploy its own VPN that

can span physical and VMs distributed across multiple collaborating

institutions and commercial clouds. To accomplish this, IPOP captures

and injects network traffic via a virtual network interface or “TAP”

device. The TAP device is configured within an isolated virtual private

address subnet space. IP-over-P2P then encrypts and tunnels virtual

network packets through the public Internet. The “TinCan”8 tunnels

used by IPOP to carry network traffic use facilities from WEB real-time

computing to create end-to-end links that carry virtual IP traffic instead

of audio or video.

To discover and notify peers that are connected to the GRAPLEr

“group VPN”, IPOP uses the eXtensible messaging and presence pro-

tocol (XMPP). XMPP messages carry information used to create pri-

vate tunnels (the fingerprint of an endpoint’s public key), as well as

network endpoint information (IP address: port pairs that the device

is reachable). For nodes behind network address translators (NATs),

public-facing address:port endpoints can be discovered using the ses-

sion traversal utilities for NAT protocol, and devices behind symmet-

ric NATs can use traversal using relays around NAT to communicate

through a relay in the public Internet. Put together, these techniques

handle firewalls and NATs transparently to users and applications and

allow for simple configuration of VPN groups via an XMPP server.

By using IPOP’s network virtualization technologies, unmodified dis-

tributed computing resources can be integrated to implement a work-

load services cluster.

3.3 Workload management (HTCondor)

A key motivation for the use of virtualization technologies, including

IPOP, is the ability to integrate existing, unmodified distributed comput-

ing middleware. In particular, GRAPLEr integrates HTCondor,9 a spe-

cialized workload management system for compute-intensive jobs. Like

other full-featured batch systems, HTCondor provides a job queueing

mechanism, scheduling policy, priority scheme, resource monitoring,

and resource management. Users submit their serial or parallel jobs

to HTCondor, HTCondor places them into a queue, chooses when and
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FIGURE 2 Workload Management (HTCondor). GRAPLEr supports
unmodified HTCondor software and configuration to work across
multiple sites (eg, a private cloud at UF and a commercial cloud at
Azure). HTCondor, high-throughput-computing middleware; IPOP,
IP-over-P2P

where to run the jobs based upon a policy, carefully monitors their

progress, and ultimately informs the user upon completion. Figure 2

illustrates how HTCondor has been deployed for implementing the

GRAPLEr workload execution and management tier.

An HTCondor resource pool, running across distributed resources

and connected by an IPOP network, provides a general-purpose capa-

bility where it is possible to run a variety of applications from different

domains. Furthermore, application-tailored middleware can be layered

upon this general-purpose environment to enhance the performance

and streamline the configuration, of user simulations.

3.4 Experiment management tools (GEMT)

GRAPLEr experiment management tool provides a suite of scripts for

designing and automating the tasks associated with running general

lake model (GLM)–based experiments on a very large scale. Here, we

use the term “experiment” to refer to a collection of simulations that

address a science use case question, such as determining the effects

of climate change on water quality metrics. GRAPLEr experiment man-

agement tool is both the guidelines for the design and the layout of

individual simulations in the experiment, as well as a library of exe-

cutable code for creating and managing an experiment over its lifetime

in the system. The primary responsibility of GEMT is to identify and

target the task-level parallelism inherent in the experiment by generat-

ing proper packaging of executables, inputs, and outputs; furthermore,

GEMT seeks to effectively exploit the distributed compute resources

across the HTCondor pool by performing operations such as aggrega-

tion of multiple simulations into a single HTCondor job, compression

of input and output files, and the extraction of selected features from

output files.

For the simulations in an experiment, GEMT defines the naming con-

vention used by the files and directories as well as their layout. The

user may interact with GEMT in 2 possible ways: (1) directly, by using

a desktop computer configured with the IPOP overlay software and

HTCondor job submission software or (2) indirectly, by issuing requests

against the GRAPLEr WEB service. In the former case, once the user

has followed the GEMT specification for creating their experiment, exe-

cuting it and collecting the results becomes a simple matter of invoking

2 GEMT scripts. However, the user is left the responsibility of deploy-

ing and configuring both IPOP and HTCondor locally. Additionally, the

user is now a trusted endpoint on the VPN that carries its own secu-

rity implications. A breach of the user’s system is a potential vulner-

able point to accessing the VPN. The latter case alleviates the user

from both these concerns. This paper focuses on the latter approach,

where GEMT scripts are invoked indirectly by the user through the

WEB service.

There are 3 distinct functional modes for GEMT, which pertain to

the different phases of the experiment’s lifetime. Starting with its invo-

cation, on the submit node, GEMT selects a configurable number of

simulations to be grouped as a single HTCondor job. Multiple simu-

lations are grouped into a single HTCondor job as the costs of job

scheduling and network transfer of short-running simulations can be

significant. By grouping simulations into a single HTCondor job, redun-

dant copies of the input can be eliminated to reduce the bandwidth

transfer cost and only a single scheduling decision is needed to dispatch

all the simulations in the job. The inputs and executables pertaining to

a group of simulations are then compressed and submitted as a job to

the HTCondor scheduler for execution. When this job becomes sched-

uled, GEMT is invoked in its second phase, this time on the HTCondor

execute node. The execute-side GEMT script coordinates running each

simulation within the job, and preparing the output so it can be returned

to the originator. Finally, in its third phase, back on the submit node

side, GEMT collates the results of all the jobs that were successful and

presents them in a standard format to the end user.

GRAPLEr experiment management tool implements user config-

urable optimizations to fine tune its operations for individual prefer-

ences. It can limit how many simulations are placed in a job, and it will

compress these files for transfer. GRAPLEr experiment management

tool can also overlap the client side job creation with the server side

execution to further minimize the user’s wait time for results. These

features can be set via a configuration file, and together they com-

bine to provide a simplified mechanism to execute large numbers of

simulations.

3.5 GRAPLEr web service

The GWS module, as illustrated in Figure 3, is a publicly addressable

WEB service available on the Internet and serves as a gateway for users

to submit requests to run experiments. GRAPLEr WEB service is a mid-

dleware service-tier that provides a WEB API, implemented over the

HTTP protocol, to its remote users. This API encompasses the server

side functionality of GRAPLEr; each method of this API represents

a discrete unit of computation capability, which is to be executed on

the distributed cluster. GRAPLEr WEB service accepts and interprets

user requests, configure and queues jobs, and consolidate and prepares
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FIGURE 3 GRAPLEr WEB Service (GWS). The GWS is responsible for
taking WEB service requests from users, interpreting them, and
creating tasks for remote execution using GRAPLEr experiment
management tool. IPOP, IP-over-P2P; VPN, virtual private network

results for retrieval. For example, create and execute an experiment

consisting of N simulations by varying air temperature according to a

statistical distribution for a climate change scenario. GRAPLEr WEB

service extensively uses the functionality of GEMT for simulation pro-

cessing and is collocated in the same host as the GEMT library. This host

acts as the submit node to the HTCondor pool, where it monitors job

submission and execution.

Representational state transfer, or REST, is an architectural style

for networked hypermedia applications that is primarily used to build

lightweight and scalable WEB services. Such a WEB service, referred

to as RESTful, is stateless with a uniform interface and representation

of entities and communicates with clients via messages and address

resources using URIs. GRAPLEr WEB service implements the REST-

ful paradigm and is designed to treat every job submission indepen-

dently from any other. Note that there is per-experiment state that

is managed by GWS, such as the status of each HTCondor job sub-

mitted by the GWS. The state of the experiment is maintained on

disk, within the local filesytem, leaving the service itself stateless.

GRAPLEr WEB service implements the public-facing interface using a

combination of open-source middleware for WEB service processing—

Python Flask14—and an asynchronous task queue—Python Celery.15

The application is hosted using uWSGi (an application deployment solu-

tion) and supplemented by a Nginx reverse proxy server to offload the

task of serving static files from the application. The used technology

stack facilitates rapid service development and robust deployment.

The GWS workflow begins when a request is received from an R

client by the service interface, which is handled by Flask. The request

to evaluate a series of simulations can be provided in one of several

ways, as discussed in detail in Section 3.6. However, only data files

are accepted as input—no user provided executable binaries, or scripts

are executed as part of the experiment. A single client-side request

can potentially unfold into large numbers (eg, thousands) of jobs, and

GWS places these requests into a Celery task queue for asynchronous

processing. Provisioning a task queue allows GWS to decouple the

time-consuming processing of the input and task submission to HTCon-

dor, from the response.

A 40-character unique identifier (UID) is randomly generated for

each simulation request received by GWS; it is used as an identifier

to reference the state of an experiment and is thus used for any fur-

ther interactions with the service for a given experiment. Using the

UID returned by GRAPLEr, an R client can not only configure the

job but also monitor its status, download outputs, and terminate the

job. Once the input file has been uploaded to the service, GWS puts

the task into the task queue and responds promptly with the UID.

Therefore, the latency that the R developer experiences, from the

moment the job is submitted to when the UID is received, is mini-

mized. A GWS worker thread then dequeues GEMT tasks from the

task queue and processes the request according to the parameters

defined by the user. Figure 3 shows the internal architecture and setup

of GWS.

3.6 GRAPLE R language package (GRAPLEr)

The user-facing component of GRAPLEr is an R package that serves

as a thin layer of software between the WEB service and the R pro-

gramming language. It provides an R language application programming

interface that can be programmatically consumed by client programs

wanting to utilize the GRAPLEr functionality. It acts as a proxy to trans-

late user commands written in R into WEB service requests that are

sent to GWS. It also transfers data between the client and WEB service

as necessary.

The following examples illustrates the sequence of R calls to program

a GRAPLEr experiment. In the first example, a new GRAPLEr instance is

created, and the GWS IP address, the length of time the results should

remain available for download, and the local directories for storing var-

ious experiment files are specified. The availability of the service is

checked to make sure it is running, and finally, the list of post processing

filters is retrieved.

The second example executes a batch type experiment of 1 or more

simulations, which have previously been created and placed in the

directory ExpRootDir. A human readable experiment name is set, and

the command to run them on the cluster is issued. The experiment com-

pletion status is checked and then the results are downloaded when it

becomes available.
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The third example shows how a user can specify a parameter-sweep

experiment with simulations, which are derived from a baseline set.

A new experiment instance is again created, and the friendly name

and post processing filter are assigned. Both the baseline simulation

and the experiment description have been created and stored in the

ExpRootDir directory at the client. However, the filter specified by Filter-

name is stored remotely in the service. The command to run the sweep

experiment is invoked, and the progress is checked periodically until it

indicates 100% completion. The results are then retrieved to be used

locally.

To prevent the use of the WEB service interface to execute arbi-

trary code, we find that custom code—whether binary executables or

R scripts—cannot be sent as part of the simulation requests; instead,

users only provide input files and parameters for the GLM simulations.

The scenarios that can be run are currently restricted to using GLM

tools and our own scripts.

The GRAPLEr source code can be found at https://github.com/graple

and is made available under the MIT Software License. The project

website, along with tutorials and usage guides, is available at

http://graple.org/.

4 USE CASE WORKFLOW

A key feature of GRAPLEr is to automatically create and configure an

experiment by generating a range of simulation scenarios, see Figures 4

and 5. This is accomplished by varying simulation inputs, based on

the user’s request and application-specific knowledge. In particular,

the service uses application-specific information to identify data in

the input file (such as air temperature or precipitation), and apply

transformations to them to generate multiple discrete simulation sce-

narios. This removes the onus from the user to generate, schedule,

FIGURE 4 GRAPLEr top level workflow chart

http://graple.org/
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FIGURE 5 GRAPLEr sweep job workflow chart

TABLE 1 GRAPLEr WEB service API

Endpoint Input Response

ServiceStatus N/A WEB service availability

GrapleRun Simulations to execute Job UID

GrapleRunStatus UID of a previously submitted job Job status message (completed/processing)

GrapleRunResults UID of a previously submitted job URI of job results

GrapleRunLinearSweep The base simulation and job definition file Job UID

GrapleRunMetSample The base simulation and job definition file Job UID

GrapleEnd UID of previously submitted job Status message (success/retry)

GrapleListFilters N/A The list of available post processing filters

and collate the outputs of thousands of simulations within their desk-

tops and allows them to quickly create expressive experiment scenar-

ios from a high-level description that simply enumerates which input

variables to consider, what function to apply to vary them, and how

many simulations to create. The user also has the flexibility to spec-

ify a postprocessing operation for each simulation, and to retrieve

and download only a selected subset of the results back to their

desktops, thereby minimizing local storage requirements and data

transfer times.

On the basis of the science use case introduced and discussed in

section 2, and our understanding of the GRAPLEr infrastructure and

APIs described in section 3, we can now concretely illustrate how

GRAPLEr would be used to solve this problem. In the second use case,

we defined distributions of potential parameter values for different

phytoplankton functional traits governing nutrient uptake, light and

temperature sensitivity, and growth rates, and then randomly pulled

different parameter values from the distributions.

Within the R programming environment, the GRAPLEr function

GrapleRunSweepExperiment is used to set the stage for creating an

experiment derived from a baseline simulation, which was created

from actual senor data. The coding pattern is exactly as previously

described in subsection 3.6 “GRAPLE R Language Package.” In addition

to the baseline simulation, an experiment description file and optional

postprocessing filter name is specified. The experiment description

file specifies which distribution (linear, random, uniform, binomial, or

Poisson) to choose samples from, the number of samples, the variable(s)

to be modified, and the operation applied to a variable for each ran-

domly generated value (add, subtract, multiply, or divide). The postpro-

cessing filter name specifies a selection from a collection of operations,

which is stored within the GEMT library, to run after the successful

completion of each individual simulation.

The invocation of GrapleRunSweepExperiment results in a request

being sent to the WEB service API method GrapleRunMetSample in

Table 1, which goes about generating the previously described experi-

ment consisting of ‘N’ simulations. From this single input and descrip-

tion, GWS utilizes GEMT to generates a detailed description of the

experiment along with a partitioning of how the of jobs should be dis-

tributed to the “M” worker nodes in the cluster. Each worker node then

creates N∕M simulations, which comprises its respective subset of the

experiment and executes them sequentially in turn.
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5 EVALUATION

In this section, we present a quantitative evaluation of a

proof-of-concept deployment of GRAPLEr. The goal of this evaluation

is to demonstrate the functionality and capabilities of the framework

by deploying a large number of simulations to an HTCondor pool. The

HTCondor pool is distributed across multiple clouds and connected by

the IPOP virtual network overlay. Rather than focusing solely on the

reduction in execution times, we evaluate a setup that is representa-

tive of an actual deployment composed of execute nodes with varying

capabilities.

A GLM simulation is specified by a set of input files, which describe

model parameters and time-series data that drive inputs to the simula-

tion, such as air temperature over time, derived from sensor data. The

resulting output at the completion of a model run is a netCDF file con-

taining time series of the simulated lake, with many lake variables, such

as water temperatures at different lake depths. In our experiments,

we use the 1-D GLM Aquatic Eco-Dynamics (AED) model with a single

GLM-AED simulation of a moderately deep lake, run for 8 months at

an hourly time step. The test experiment was designed to run reason-

ably quickly, yet of sufficiently long duration where the timing results

would not be skewed by extraneous timing factors. The input folder

size was approximately 3 MB, whereas the size of the resulting netCDF

file after successful completion of the simulation was 90 MB. We note

that simulations run over decades and with more frequent time steps

may increase simulation run time and result output by an order of

magnitude.

We conducted simulation runs on different systems to obtain a range

of simulation runtimes. With the baseline parameters, GLM-AED sim-

ulation times ranged from the best case of 6 seconds (on a Cloud-

Lab system with Intel Xeon CPU E5-2450 with 2.10 GHz clock rate

and 20 MB cache) to 57 seconds (on a University of Florida sys-

tem with virtualized Intel Xeon CPU X565 with 2.60 GHz clock rate

and 12MB cache). Note that individual 1-D GLM-AED simulations

can be short-running; the GEMT feature of grouping multiple indi-

vidual simulations into a single HTCondor job leads to increased effi-

ciency by reducing the overhead time incurred from job scheduling and

placement.

Description of experiment setup: The GRAPLEr system deployed for

this evaluation was distributed across 3 sites: University of Florida, NSF

CloudLab, and Microsoft Azure. The GWS/GEMT service front-end,

HTCondor submit node, and HTC-Central Manager were hosted on

VMs running in Microsoft’s Azure cloud. We deployed 3 HTCondor

worker nodes, each with 16 cores and 16 GB of RAM. Two nodes were

hosted in VMs on a VMware ESX server at the University of Florida

and one on a physical machine in the CloudLab Apt cluster at University

of Utah. All the nodes in this experiment ran Ubuntu-14.04, HTCondor

version 8.2.8, and IPOP GroupVPN version 15.01.

To conduct the evaluation, we conducted executions of 3 differ-

ent experiments containing 3000, 5000, and 10 000 simulations of an

example lake with varying meteorological input data. Figure 6 summa-

rizes the results from this evaluation. As a reference, we also present

the estimated best-case sequential execution time on a single, local

machine, taken the CloudLab, and UF machines as a reference. For

10 000 simulations, we achieved a speedup of 2.5 (with respect to

FIGURE 6 Job runtimes for GRAPLEr high-throughput-computing
middleware pool, compared to sequential execution times on
CloudLab (SEQ Fast) and UF (SEQ Slow) slots

sequential execution time of the fast workstation) and 23x speedup

(with respect to the sequential execution time at a UF-VM).

It is observed that the time taken to complete the experiment

depended greatly on how the jobs were executed by the HTCondor

scheduler; as the GRAPLEr cluster is comprised of heterogeneous

nodes with varying capabilities. It therefore follows, the achieved

speedup is smaller when compared to the best-case baseline on

the fastest node as opposed to that on the slower nodes. Further-

more, because HTCondor is best suited for long running jobs, the

user-perceived speedup of GRAPLEr over local stand-alone systems

will increase as longer-running experiments are executed through the

service. We expect that as demand for modeling tools by the lake ecol-

ogy community increases, so will the complexity, time series resolution,

and simulated epochs of climate change scenarios, further motivating

users to move from a local processing workflow to distributed execu-

tion through GRAPLEr.

Submission of a job to the HTCondor pool involves processing of

input (for sweep requests) and packaging of generated simulations into

GEMT. To evaluate this step, we conducted experiments to account for

the time taken by GRAPLEr to respond to a request to generate a given

number of simulations and submit them for execution. The results are

presented in Table 2. The column service response time captures the

time taken by GRAPLEr to respond to a request with a UID, which is

slightly more than the time required to upload the baseline input. The

column input processing time captures the time taken to generate and

compress all “N” inputs for job submission.

Though not fully explored yet in the design of GRAPLEr, another

benefit of remote execution through a WEB service interface is the

leveraging of storage and data sharing capabilities of the collaborative

infrastructure aggregated by distributed resources connected through

the IPOP virtual network. For instance, this experiment resulted in

unfiltered result output of 900 GB. By keeping the results on the

GRAPLEr cloud and allowing users to share simulation outputs and

download selected subsets of the raw data, the service can provide a

powerful capability to its end users in enabling large-scale, exploratory

scenarios, by both reducing computational time and relaxing local stor-

age requirements at the client side.
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TABLE 2 Input handling times

Job size (# of simulations) Service response time, sec Input processing time, sec

3000 0.72 1790

5000 0.88 3039

10 000 0.59 6854

6 RELATED WORK

Several HTCondor-based high-throughput computing systems have

been deployed in support of scientific applications. One representative

example is the open science grid,16 which features a distributed set of

HTCondor clusters. In contrast to open science grid, which expects each

site to run and manage its own HTCondor pool, GRAPLEr allows sites

to join a collaborative, distributed cluster by joining its virtual HTCon-

dor pool via the IPOP virtual network overlay. This reduces the barrier

to entry for participants to contribute nodes to the network—eg, by

simply deploying one or more VMs on a private or public cloud. Further-

more, GRAPLEr exposes a domain-tailored WEB service interface that

lowers the barrier to entry for end users.

WS-PGRADE17 is a workflow design and execution tool that has a

broad scope of functionalities geared at p̈arameter sweepäpplications.

Users can design workflows, specify how input is combined and on what

type of resources job execution takes place. Workflows can also be

hosted in a repository and shared with other end users.

A designer selects a workflow node that matches his algorithm char-

acteristics and attaches to it data ports, which determine how the input

is combined for execution as well as generated for output. These work-

flow nodes can be combined and nested to create more complex ones

and the desired application. Depending on the workflow node, execu-

tion can be mapped onto the local system, a desktop grid, or service

grid. According to the WS-PGRADE workflow and parameter set classi-

fication, GRAPLEr would be a combination of single regular node, single

parameter style node, and a generator output port. The generator port

produces multiple output files derived from its input and a user speci-

fied algorithm. A GRAPLEr job, which consists of multiple simulations,

is mapped to a single parameter style workflow and each executing

simulation a single regular workflow node.

However, the highly generalized approach used by WS-PGRADE,

which provides extensive flexibility, introduces 2 of the very problems

GRAPLEr was designed to solve the need to redesign and reimplement

existing applications, and learn new technologies outside the user’s

knowledge domain.

GRAPLEr provides an intuitive and easy to learn workflow and user

interface. Through a collaboration between a core group of domain

scientists and cyberinfrastructure experts, GRAPLEr codifies typi-

cal usage patterns into workflows that are exposed through simple

interfaces to the broader set of target end users, including students.

Furthermore, rather than a WEB-based presentation layer, domain sci-

entists can quickly become productive as GRAPLEr’s client API inte-

grates directly into their existing R/Rstudio development environment.

The GRAPLEr workflows are built around the existing processes, and

instead leverage the existing opportunities for concurrency.

The NEWT18 project also provides a RESTful-based WEB service

interface to High-Performance Computing (HPC) systems. IT is a gate-

way to access HPC computing and data resources at the National

Energy Research Scientific Computing Center and is designed to make

these resources highly usable via a WEB browser. The NEWT WEB ser-

vice provides an API over HTTP, which are used by client side browser

technologies to WEB applications. Newt, however, does not describe

any mechanism for incorporating a heterogeneous set of distributed

computing resources within its HPC cluster. GRAPLEr differentiates

itself with this ability to leverage virtualized cloud resources that are

interconnected by virtual networks.

7 CONCLUSION

GRAPLEr, a distributed computing system that integrates and applies

overlay virtual network, high-throughput computing, and WEB service

technologies, is a novel way to address the modeling needs of interdis-

ciplinary GRAPLE researchers. The system’s contribution is its combi-

nation of power, flexibility, and simplicity for users who are not software

engineering experts but who need to leverage extensive computational

resources for scientific research. We have illustrated the system’s abil-

ity to identify and exploit parallelism inherent in GRAPLE experiments.

Additionally, the system scales out, by simply adding additional worker

nodes to the pool, to manage both increasingly complex experiments

as well as larger number of concurrent users. GRAPLEr is best suited

for large numbers of long-running simulations as the distribution and

scheduling overhead will increase the running time for such experi-

ments. As lake models demand increased resolution and longer time

scales to address climate change scenarios, GRAPLEr provides a plat-

form for the next generation of modeling tools and simulations to better

assess and predict the impact to our planet’s water systems.

The GRAPLE endeavor additionally includes an active involvement

in training its end users, as this is perceived as a critical aspect of the

penetration and impact of its software infrastructure on its community.

This training and inclusion extends beyond the collaboration between

the working group’s engineers and domain scientists, to undergrad-

uate and graduate students, and postdoctoral researchers. This sets

the stage for an iterative process of learning and refinement of the

cyberinfrastructure—where each subsequent iteration facilitates tack-

ling problems of a much larger scale, and scientists trust and reply on

the tool and methodologies to address broader water research issues.
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