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Abstract. In the era of big data, ecologists are increasingly relying on computational approaches and
tools to answer existing questions and pose new research questions. These include both software applica-
tions (e.g., simulation models, databases and machine learning algorithms) and hardware systems
(e.g., wireless sensor networks, supercomputing, drones and satellites), motivating the need for greater col-
laboration between computer scientists and ecologists. Here, we outline some synergistic opportunities for
scientists in both disciplines that can be gained by building collaborations between the computer science
and ecology research communities, with a focus on the benefits to ecology specifically. We also identify
past contributions of computer science to ecology, including high-frequency environmental sensor technol-
ogy, advanced supercomputing capacity for ecological modeling, databases for long-term and high-fre-
quency datasets, and software programs for ecological analyses, to anticipate future potential
contributions. These examples highlight the power and potential for further integration of computer
science technology and ideas into the ecological research community. Finally, we translate our own
experiences working together as a team of computer scientists and ecologists over the past decade into a
conceptual framework with recommendations for supporting productive collaborations at the interface of
the two disciplines. We specifically focus on how to apply best practices of team science for bridging
computer science and ecology, which we advocate will substantially benefit ecology long-term.
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THE RISE OF COMPUTATIONALLY INTENSIVE
ECOLOGICAL RESEARCH REQUIRES
COLLABORATIONS WITH COMPUTER SCIENTISTS

Ecologists are increasingly using computa-
tional approaches to tackle research questions in
the era of big data (Soranno and Schimel 2014,
Durden et al. 2017). These techniques require
both software applications and hardware sys-
tems that extend beyond the desktop environ-
ment, and thus expertise in computer science.
For example, ecologists are increasingly archiv-
ing and sharing their data via curated reposito-
ries that enable data discovery, reuse, and
citation (e.g., via the Dryad Digital Repository;
Environmental Data Initiative, EDI; and Knowl-
edge Network for Biocomplexity, KNB); using
computer programming in R, Python, C, FOR-
TRAN, and other languages to conduct data
management and visualization (Valle and Ber-
danier 2012, Hampton et al. 2015); deploying
high-frequency wireless sensors for environmen-
tal monitoring (e.g., the Global Lake Ecological
Observatory Network, GLEON and National
Ecological Observatory Network, NEON); and
analyzing datasets with computationally inten-
sive software programs and models (Lai et al.
2019).

While many ecologists today regularly use
computational tools in their research workflows,
we anticipate that the increasing size and com-
plexity of ecological datasets will require an even
greater and more widespread integration of com-
putational approaches into ecology in the near
future. Given the growing collection of long-term
monitoring data, high-frequency sensor data,
bioinformatics and molecular data, remote sens-
ing data, Earth system model output data, and
many other big datasets, ecologists are increas-
ingly conducting data-driven computational
science (Hampton et al. 2013, 2017). As an exam-
ple, a recent survey found that the number of
papers published in ecological journals that
reported the use of the R statistical language
increased fivefold from 2007 to 2018 (Lai et al.
2019).

The accelerating pace of accumulation from
new data streams is accompanied by the need for
new approaches and tools to store, manage, ana-
lyze, and visualize data (Hampton et al. 2013,

2015, 2017), necessitating a greater integration of
computer, computational, and information science
and engineering (subsequently referred to as
computer science) into the common practice of
ecology. Moreover, we expect that the demand
for both computer science expertise and new
hardware and software tools for ecological appli-
cations will continue to grow rapidly, given the
environmental challenges ecologists are tackling.
For example, climate change, biodiversity loss,
and habitat fragmentation are complex issues
that require intensive modeling and data analy-
ses at multiple spatial and temporal scales (Evans
2012).
Given these research needs, we propose that

increasing collaboration between ecologists and
computer scientists has the potential to substan-
tially accelerate the advancement of both disci-
plines, with particularly important benefits for
ecology. Similar to the genomic revolution in
molecular biology that occurred in the 1990s
with the integration of computer science algo-
rithms to query and sort genetic databases,
thereby enabling previously impossible genome
mapping and subsequent discoveries in intra-
cellular processes and protein structural orga-
nization (Mitchell et al. 1990, Fickett 1996,
Landweber and Kari 1999, Mac D�onaill 2006), we
expect that groundbreaking innovation similarly
likely lies ahead with future integration of com-
puter science into ecology. Below, we identify
potential mutual benefits of greater collaboration
between ecologists and computer scientists,
provide recommendations for how to develop
productive collaborations among researchers
from these two disciplines, and finally share sug-
gestions for how to advance computer science–
ecology collaboration.

INCREASING COLLABORATION BETWEEN
COMPUTER SCIENTISTS AND ECOLOGISTS WILL
BENEFIT BOTH DISCIPLINES

Benefits to ecology
As a result of both recent innovations in com-

puter science and increasing access to new tech-
nologies, ecologists are broadening their data
acquisition methods to include in situ sensors,
satellites, crowdsourcing, and citizen science.
These diverse data streams are rapidly

 ❖ www.esajournals.org 2 May 2019 ❖ Volume 10(5) ❖ Article e02753

INNOVATIVE VIEWPOINT CAREY ET AL.



expanding the landscape of information avail-
able to understand ecological phenomena
because they cross traditional ecosystem bound-
aries, span multiple time scales, and represent
fundamentally new kinds of observations. While
these new data hold much promise for accelerat-
ing the pace of discovery in ecology, they will
remain largely untapped without further inte-
grating the expertise of computer scientists to
help translate these data into ecological
understanding.

While big data and computational challenges
are widespread throughout ecology (Hampton
et al. 2015), the study of lake water clarity pro-
vides a useful example to illustrate how com-
puter science technologies and approaches can
overcome these challenges and generate new
ways to collect, process, and analyze ecological
data. Historically, water clarity was measured by
manually sampling a lake with a Secchi disk on
the weekly to yearly scale, resulting in thousands
of observations being collected annually in the
United States (e.g., Lottig et al. 2014). Now, new
optical sensors developed by computer and elec-
trical engineers provide highly sensitive mea-
sures of water quality every second, equating to
over 30 million observations per year from one
sensor and potentially billions of observations
per year collected by multiple sensors on a single
lake (Carey et al. 2012, Weathers et al. 2013).
Consequently, the volume and variety of data on
lake water clarity and other water spectral char-
acteristics are growing exponentially, as these
data are indicator metrics of water quality
(Watras et al. 2015, Birgand et al. 2016). Water
clarity can also be observed from sensing tech-
nologies via aircraft and satellites, which greatly
expand the geographic coverage of lakes that can
be studied globally (Lee et al. 2018). Citizen sci-
entists are further increasing the spatial coverage
of observations by measuring water clarity with
mobile devices (e.g., the Lake Observer smart-
phone app; lakeobserver.org, Graham et al.
2011). All of these aforementioned technologies
—new optical sensors, satellite sensors, smart-
phone apps—are uniquely enabling the collec-
tion of new ecological data.

While technologies informed by computer
science have enabled the rapid accumulation of
water clarity big data (as defined by the 5Vs:
data velocity, volume, value, variety, and

veracity; Demchenko et al. 2014), transforming
those data more rapidly into new ecological
knowledge and understanding of lake ecosys-
tems require further computer science collabora-
tion. In particular, major challenges that remain
include transmitting ecological data from sensors
to discoverable and accessible repositories, con-
verting raw data to meaningful ecological vari-
ables (e.g., translating electrical voltages from
fluorescent sensors into phytoplankton biomass
concentrations; Roesler et al. 2017), extracting
usable information from complex and diverse
data sources, and connecting patterns in the
data to ecological processes (Lee et al. 2018).
These challenges create many opportunities for
collaboration between ecologists and computer
scientists, including the development of cyberin-
frastructure (e.g., virtual private network soft-
ware and cloud computing) that is adaptable to a
variety of data streams from a diversity of envi-
ronmental observatories and facilitates findable,
accessible, interoperable, and re-usable data
(FAIR data; Wilkinson et al. 2016); the adoption
of software techniques and technologies within
the ecological research community (e.g., model-
ing in R); the development of computing power
that scales with the size of the data and the
demands of the models (Subratie et al. 2017,
Turner and Carpenter 2017); and the melding of
data-driven models with theory-based ecological
models that facilitate both data mining and inter-
pretation (Karpatne et al. 2017). These comput-
ing approaches, which all represent significant
breakthroughs in the realm of computer science,
are beginning to be used by ecologists, but are
not yet well-integrated into ecological research
(Porter et al. 2005, Seidl 2017).
There are many other examples of collabora-

tions between computer scientists and ecologists
that highlight the value of integrating computa-
tional tools and methods into ecological research.
Research teams of computer scientists and ecolo-
gists have generated datasets and applications
that track bird migrations at the global scale
(eBird; ebird.org) which would not have been
possible without the co-development of user-
friendly applications and computational infras-
tructure to manage large remote sensing datasets
(Horton et al. 2018). Ecologists and computer
scientists have also teamed up to use artificial
intelligence to optimize wildlife corridors in
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computer-modeled landscapes (St. John et al.
2018). Finally, ecologists and computer scientists
are using new machine learning methods (sensu
Peters et al. 2014) to increase our understanding
of global forest biodiversity and productivity
(Liang et al. 2016). All of these examples high-
light how computer science–ecology collabora-
tions can result in the development of tools that
address ecologically relevant questions that span
multiple spatial and temporal scales.

Benefits to computer science
Collaborating with ecologists can also provide

many benefits to computer scientists. Computer
scientists and engineers, and especially experi-
mental computer system researchers, are moti-
vated by the challenges that arise in the design
and implementation of applications. Fundamen-
tally, computers are problem-solving machines,
and the problems computers are able to solve are
revealed by end users through their interactions
with applications. Ecology as a discipline tackles
many complex challenges that motivate problem-
solving; thus, considering the future application
needs of ecologists can drive computer science
innovation and provide opportunities to tackle
new problems using new approaches, resulting in
novel systems, software, and publications. For
example, ecologists on our team needed to run
lake ecosystem model simulations to predict
water clarity but did not have the computing
infrastructure to do so efficiently. After many dis-
cussions, computer scientists on our team created
a simple user interface for submitting thousands
of simulations of water clarity, which helped to
both improve the ecologists’ modeling efficiency
and develop a novel computing approach for
accessing a Web service through the R statistical
environment (Subratie et al. 2017).

For computer scientists who work at the inter-
face between applications and systems—for
example, on the design and implementation of
the various layers of software that are required
by computer cyberinfrastructure—collaboration
can naturally lead to scientific advances. For
example, by focusing on how to effectively make
computational resources (hardware and soft-
ware) more easily accessible to a new community
of users, a computer scientist can tackle the
design of computer systems from a different per-
spective, inspiring novel ideas.

Finally, in addition to enabling computer
science innovation, tackling ecology questions
can provide inherent motivation for computer
scientists to collaborate with ecologists because
solving environmental problems can profoundly
affect the well-being of individuals and society.
Following the example above, the development
of computing infrastructure for running lake
water clarity simulations has allowed our team
to run more simulations than would have other-
wise been possible to examine the interacting
effects of climate and land use change on lake
ecosystem dynamics. This modeling has revealed
a strong effect of certain weather variables on
water quality, which has substantial implications
for lake management (Snortheim et al. 2017).
Thus, this computer science–ecology collabora-
tion has provided tangible benefits for research-
ers in both disciplines: The ecologists have
gained an improved understanding of lake water
quality, and the computer scientists pioneered
new computing methods, while advancing the
study of a critical ecosystem service upon which
our society depends.

LESSONS LEARNED AND RECOMMENDATIONS
FOR PRODUCTIVE COLLABORATIONS AT THE
COMPUTER SCIENCE–ECOLOGY INTERFACE

When working across any set of different disci-
plines, there will likely be bumps along the road
for computer scientists and ecologists collaborat-
ing together, which may be exacerbated by a
less-established history of collaboration between
these research communities. Recent ecology-
focused papers on interdisciplinary collaboration
(Cheruvelil et al. 2014, Goring et al. 2014, Baker
2015, Read et al. 2016, Cheruvelil and Soranno
2018) and general recommendations for best
practices in the team science literature (Bennett
et al. 2010, Boerner et al. 2010, Disis and Slattery
2010, Falk-Krzesinski et al. 2010, Bennett and
Gadlin 2012, National Research Council 2015)
rarely discuss collaborations between ecologists
and computer scientists, which suggests that
these interdisciplinary collaborations may be less
common.
The science of team science is rooted in the

identification of common challenges and solu-
tions for collaborative teams (National Research
Council 2015). While working together on
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multiple projects as a team of ecologists and
computer scientists over the past decade, we
have seen first-hand how these challenges,
including disciplinary integration, goal align-
ment, and team member interactions (sensu
National Research Council 2015), can apply to
collaboration between the two disciplines.

Here, we collate our experiences into a concep-
tual framework and guide for how to develop
and maintain productive collaborations at the
computer science–ecology interface (Fig. 1). We
mapped these strategies onto a pyramid, with
each tier representing successive stages of com-
puter science–ecology collaboration that build on
each other. Lower tiers must be maintained as
teams move up the pyramid in the pursuit of
achieving novel research outcomes, and should
be revisited throughout the research process to
enhance collaboration. The content of the pyra-
mid emerged from our team’s collaborative expe-
riences and is informed by interdisciplinary
research and team science theory (Mathieu et al.
2000, Repko 2008, Salazar et al. 2012, Morse
2015, National Research Council 2015, Stern and
Coleman 2015); the subsequent subsections
below describe each of the tiers. While these les-
sons learned and recommendations are by no
means limited to computer science–ecology col-
laborations, we think that our experiences pro-
vide a distinct perspective in navigating this
particular type of cross-disciplinary research.

Appreciating disciplinary differences and unique
disciplinary contributions

The underlying foundation to successful com-
munication and alignment of project goals
among all group members in the interdisci-
plinary collaboration pyramid (Fig. 1) is formed
when collaborative computer science–ecology
research groups acknowledge, examine, and
appreciate differences in intellectual tradition,
work culture, and methodological approaches
that may exist due to discipline-specific training
and experience (Repko 2008). As a starting point
for such a discussion, we analyzed a National
Research Council (2005) report that was written
to motivate collaboration between computer sci-
entists and biologists. This report identifies sev-
eral similarities and differences in the theoretical
frameworks and cultural practices of computer
scientists and biologists. For example, the work

of computer scientists is often guided by the
rules of mathematics, leading many computer
scientists to focus on developing abstract, gener-
alizable algorithms (National Research Council
2005). In contrast, the work of ecologists is often
constrained by context- and system-dependent
empirical data, resulting in an emphasis on data-
driven analyses (National Research Council
2005). These fundamentally different approaches
can frame how computer scientists and ecolo-
gists view the use of models and data in their
research.
To develop authentic, productive, and reward-

ing interdisciplinary collaborations, it is essential
that researchers in each discipline fully appreci-
ate the scope of research conducted by members
of the other domain, their expertise in the field,
and the value of their perspective to the collabo-
ration (Fig. 1; Repko 2008). For ecologists, appre-
ciating computer science collaborators as full
members of the project, rather than as technical
support or information technology consultants,
is critical for establishing mutually rewarding
scientific collaborations. In this respect, ecologists
must understand and acknowledge the research
goals of their computer science colleagues, rather
than simply assuming that their expertise is pro-
viding a service to an ecological research team in
the form of increased computing capacity. Specif-
ically, it is inappropriate to view computer
science as merely programming and data man-
agement, which are important skills in computer
science but not the intellectual core of the disci-
pline (National Research Council 2005). Rather, it
is helpful for ecologists to appreciate the hetero-
geneity and breadth of computer science, which
spans theory to experiments, hardware and soft-
ware to networking, computing and algorithms
to data, and systems to components.
Moreover, while the historical contributions of

computer science to the life sciences have already
had profound impacts, the contributions of the
life sciences (including ecology) to computer
science have been narrower in scope (National
Research Council 2005). For example, while com-
puter science contributions to life science have
provided the foundation for new sub-fields such
as bioinformatics and computational biology,
applications of biological phenomena to com-
puter science, such as swarm intelligence and
neural networks, have provided valuable new
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tools but have not (yet) led to new sub-disci-
plines within computer science. Thus, the onus is
on life scientists—here, our focus is on ecologists
—to understand the research goals of their com-
puter scientist colleagues and ensure that com-
puter science–ecology collaborations are of equal
value to both parties.

Creating shared language and understanding
Creating a common language and cross-disci-

plinary understanding is the second tier in com-
puter science–ecology team formation (Fig. 1).
Shared understanding of the research problem
will help teams realize and understand the

mutual benefits for team members from both dis-
ciplines (National Research Council 2005, Repko
2008, Salazar et al. 2012). Consequently, it is criti-
cal that team members know enough about the
other discipline to be able to acknowledge and
more fully appreciate the equal value of contribu-
tions from both fields of study.
Participating in training activities in the other

discipline can build understanding among com-
puter scientists and ecologists. For example, we
found that bringing computer scientists from our
team into the field to collect lake water samples
and troubleshoot water quality sensors helped
improve their understanding of the workflow of

Fig. 1. A conceptual framework for computer science–ecology collaborations, based on the authors’ experi-
ences and informed by interdisciplinary research and team science theory (Mathieu et al. 2000, Repko 2008, Sala-
zar et al. 2012, Morse 2015, National Research Council 2015, Stern and Coleman 2015). Each tier of the pyramid,
from the foundation (appreciate methods and perspectives of the other discipline) to the apex (achieve interdisci-
plinary goals), represents successive stages for enhancing interdisciplinary collaboration. We note that collabora-
tion is not linear, and thus, it is important to continually maintain and revisit lower tiers throughout the research
process. The text in white to the left of the pyramid summarizes the strategy of each tier to enhance collaboration.
The blue and red sections represent examples, activities, descriptions, or actions specific to the individual disci-
plines of computer science and ecology, respectively; purple tiers represent shared interdisciplinary perspectives,
approaches, and outcomes; and the text in gray describes categories for computer science and/or ecology consid-
erations and descriptions. For example, much of the expertise of computer science is in hardware, software, and
networks, whereas much of the expertise of ecology is in environmental structure and function.
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the field aspect of ecological research, and ulti-
mately helped shape the computational tools
used by the group. Likewise, having the ecolo-
gists in our collaborative group attend confer-
ences and workshops centered around computer
science and information technology (e.g., meet-
ings of the Pacific Rim Applications and Grid
Middleware Assembly [PRAGMA] community;
www.pragma-grid.net) provided both critical
insights into how some computer scientists
approach research questions, and an opportunity
to learn discipline-specific language to improve
communication within our team. Building a com-
mon vocabulary while explicitly exploring how
each discipline approaches the research process
can help computer science–ecology teams sur-
mount challenges when they inevitably arise
(O’Rourke and Crowley 2013).

Identifying common ground and shared goals
The third tier to enhancing interdisciplinary

collaboration between computer scientists and
ecologists is identifying shared goals, which
starts by recognizing the important similarities
between the two disciplines (Fig. 1). Finding
common ground is a critical part of this stage of
collaboration (Repko 2008). At a high level, the
disciplines of computer science and ecology are
both focused on exploring and understanding
complex systems (National Research Council
2005). In addition, research from both disciplines
has profound societal implications, whether by
changing the tools we use to live and work (e.g.,
mobile phones and computers) or by informing
our understanding of the planet and environ-
mental policy in an era of global change (e.g.,
developing air pollution standards and climate
change temperature targets; Kiesler et al. 1984,
Nurullah 2009). These similarities could lead to a
shared familiarity in working with complex sys-
tems and the understanding of—and motivation
to do—research that impacts society (Moor 1984,
Alpert et al. 2003), both of which could enable
productive research between computer scientists
and ecologists. Frequently revisiting the initial
goals developed at the onset of a computer
science and ecology collaboration will ultimately
increase the likelihood of mutually beneficial
research outcomes.

Problem concept mapping and shared mental
mapping can help interdisciplinary collaborators

identify shared research goals (Mathieu et al.
2000, Morse 2015, National Research Council
2015). This exercise entails project team members
working together to outline their understanding
of the research problem or question to be
addressed, including all relevant components
and contributing factors. Initially, every team
member’s own mental map will be slightly dif-
ferent, with larger differences usually occurring
between team members from different disci-
plines (Morse 2015). The process of integrating
each team member’s mental map into one shared
conceptual map of the research problem will
increase shared understanding among team
members, and importantly, across disciplines.
Developing new shared goals in computer

science–ecology collaborations can be facilitated
by deliberate efforts to bring computer scientists
and ecologists together, such as workshops and
funding opportunities that support joint projects.
Co-developing research proposals opens new
collaborative avenues in each respective disci-
pline to researchers in the other. In addition to
the obvious benefit of increased access to
research funding, the process of writing these
proposals and participating in joint workshops
has helped us spur closer collaborations by
increasing the breadth and depth of our shared
research vision. For example, this publication
was catalyzed at a joint workshop of computer
scientists in PRAGMA and freshwater ecologists
in GLEON that was held to improve the comput-
ing capacity for lake water quality modeling.
Other opportunities for facilitating collaboration
exist through co-organizing workshops and spe-
cial sessions at Ecological of Society of America
(ESA) conferences and scientific working groups
at the National Center for Ecological Analysis
and Synthesis (NCEAS). In particular, NCEAS is
working actively to enable collaborations
between ecologists and computational scientists
and use innovative computational methods to
improve our understanding of ecology (nceas.uc
sb.edu/data-science).

Building trust
The fourth tier to enhancing interdisciplinary

collaboration in our pyramid is building trust
between interdisciplinary team members (Fig. 1),
which is required for maintaining long-term part-
nerships (National Research Council 2005, Salazar
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et al. 2012, Stern and Coleman 2015). Outside of
the field or laboratory, social interactions among
members of interdisciplinary teams can help
ensure lasting collaborations (Read et al. 2016) by
building trust (Salazar et al. 2012, Stern and Cole-
man 2015). Informal, shared experiences build
social capital among team members and develop
relationships that will help the team overcome
conflicts and disciplinary divides that are bound
to emerge during the process of cross-disciplinary
research (Cheruvelil et al. 2014). In our team, we
have found that a lack of familiarity can initially
lead to communication barriers, whereby individ-
uals may not voluntarily voice their opinion dur-
ing a group discussion when they do not know
the other team members well. However, these
types of challenges are easier to surmount when
informal activities help build camaraderie—
whether through sharing a meal or a laugh. Inter-
personal bonding through informal interactions is
particularly valuable for developing collective
communication competence and trust, which are
both essential for maintaining high-performing
teams (Thompson 2009, Salazar et al. 2012, Cheru-
velil et al. 2014, Read et al. 2016).

Maintaining patience, active listening, and open
communication

The fifth tier of the interdisciplinary collabora-
tion pyramid (Fig. 1)—creating a culture of
patience, listening, and open communication—is
necessary for the maintenance and evolution of
interdisciplinary teams long-term (Brown et al.
2015). While all interdisciplinary research requires
patience, the disciplinary differences and less-
established history of collaboration between
ecology and computer science may necessitate the
cultivation of a particular ethos of patience in
building effective computer science–ecology
teams. Because many ecologists lack familiarity
with the research goals and multiple research
areas of computer scientists, there may be a lack of
understanding of the constraints associated with
computer science–ecology collaborations. For
example, the ecologists in our team were generally
unaware of the financial cost of running many
computationally intensive simulation models
using virtual networks and distributed servers:
there was the initial expectation that an infinite
number of model simulations could be run using
the computer scientists’ infrastructure.

In addition, discipline-specific workflows and
jargon may slow the development of effective
collaborations. However, meeting often and in
person, when feasible, can help overcome these
hurdles, as “just being in the room” can provide
real-time clarification of jargon or discrepancies,
enhancing team effectiveness (National Research
Council 2015). For example, as described above,
we collaborated in developing a Web service
platform (GRAPLEr, www.graple.org) to provide
distributed computing tools for modeling lake
ecological processes (Subratie et al. 2017). At a
recent meeting, we discovered an inconsistency
in how the ecologists and computer scientists
understood the workflow of model output.
Because of this discrepancy, ecological interpreta-
tion of the model output would have been incor-
rect, despite the software performing correctly. If
not for the active listening and open communica-
tion among the team members, the time cost of
identifying and correcting the discrepancy could
have been expensive and may not have been
realized until after the project was completed.
Through all these steps, ecologists must learn

about the research pursuits that are exciting for
their computer science collaborators. Active,
interested listening proves invaluable in building
these authentic connections across disciplines. In
our experience, the most rewarding computer–
ecology collaborations are those in which
researchers in both disciplines are committed to
long-term, deep collaborations that use cutting-
edge computing tools to tackle complex ecologi-
cal challenges. While these collaborations may
take multiple years to produce a product, which
underscores the transactional costs of interdisci-
plinary research (Brown et al. 2015), we believe
they ultimately lead to better science, new and
better tools and methods to conduct that science,
rapid access to constantly evolving data tools
and computational infrastructure, and novel
research outcomes (the top of the interdisci-
plinary collaboration pyramid in Fig. 1).

ENABLING GREATER COLLABORATION AMONG
ECOLOGISTS AND COMPUTER SCIENTISTS
REQUIRES NEW PERSPECTIVES AND TRAINING
INITIATIVES

When forming computer science–ecology col-
laborations, we emphasize the importance of
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engaging with computer scientists early in the
process of technology development, as open
communication among collaborators about what
technical functionality is helpful (for the ecolo-
gist) vs. what advances computer science
research questions and is feasible (for the com-
puter scientist) can accelerate the pace of science
on both ends. Early engagement may also allow,
where practical, for human-centered design
(HCD) of computer science tools with ecologists
as a designated end user (Maguire 2001, Jaimes
et al. 2007). Because development of new com-
puter science tools is inherently an iterative pro-
cess, ecologists need to be patient and willing to
try out technology products that may not be fully
developed, as this end-user testing and feedback
is essential for product refinement in computer
science. Finally, it is important that all collabora-
tors receive credit appropriate to their discipline
for participating in the project (Goring et al.
2014). For example, ecologists are often assessed
on the number of peer-reviewed journal articles
they have published, whereas papers published
in prestigious peer-reviewed conferences or
patents are also relevant metrics of academic suc-
cess for computer scientists.

A solid computational skill set among ecolo-
gists—such as programming and math skills—
will enhance collaborative productivity between
ecologists and computer scientists by improving
communication (Rentsch et al. 2010, 2014). In
our experience, computer code or community
standards such as FAIR for datasets provide a
common language for communicating our
research across the two disciplines. For example,
our team has encountered multiple situations in
which collaboratively going through each other’s
code was far more effective for communicating
our research objectives than trying to explain
them verbally. Well-developed quantitative skills
and computational literacy not only allow ecolo-
gists to better understand computer science
research, but also help ecologists communicate
their own research goals to improve collabora-
tion with computer scientists.

While we are certainly not the first group to
underscore the importance of computational and
quantitative training for students in ecology (e.g.,
Barraquand et al. 2014, Carey et al. 2015, Tou-
chon and McCoy 2016, Klug et al. 2017, Farrell
and Carey 2018), we suggest that one previously

overlooked benefit to such training is that com-
putational ecologists are more likely to recognize
the benefits of, and successfully engage in, col-
laborations with computer scientists. Conse-
quently, in addition to a strong curriculum in
mathematics, we recommend that undergradu-
ate ecology students learn basic skills in a pro-
gramming language (e.g., R, Python, C++, and
Java). Furthermore, in our experience, integrating
training modules that analyze big data into
undergraduate ecology courses has successfully
built students’ computational literacy at a range
of experience levels (www.MacrosystemsEDDIE.
org; Carey et al. 2015, Carey and Gougis 2017,
Klug et al. 2017, O’Reilly et al. 2017), especially
because the modules can be easily adapted for a
wide range of classrooms. Ecology undergradu-
ate and graduate students who become familiar
with computing techniques early in their careers
will not only be able to tackle new ecology
research questions, but also be able to gain
increasingly essential skills in data science, pro-
gramming, and computing. These computational
skills will benefit them in their future careers,
regardless of whether they are in academia,
industry, or government (Mellody 2014).

CONCLUSIONS

There is a clear need with multitudinous bene-
fits for closer interaction among computer
science and ecology. For the ecologists in our
group, collaborating with computer scientists
has provided some of the most fruitful and excit-
ing research opportunities experienced through-
out our careers. While we cannot claim that our
experience will be universal, we advocate that
developing collaborative relationships with com-
puter scientists has the potential to greatly
advance ecology as a discipline.
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