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Abstract Integrated modeling is a critical tool to evaluate

the behavior of coupled human–freshwater systems.

However, models that do not consider both fast and slow

processes may not accurately reflect the feedbacks that

define complex systems. We evaluated current coupled

human–freshwater system modeling approaches in the

literature with a focus on categorizing feedback loops as

including economic and/or socio-cultural processes and

identifying the simulation of fast and slow processes in

human and biophysical systems. Fast human and fast

biophysical processes are well represented in the literature,

but very few studies incorporate slow human and slow

biophysical system processes. Challenges in simulating

coupled human–freshwater systems can be overcome by

quantifying various monetary and non-monetary ecosystem

values and by using data aggregation techniques. Studies

that incorporate both fast and slow processes have the

potential to improve complex system understanding and

inform more sustainable decision-making that targets

effective leverage points for system change.
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INTRODUCTION

Coupled natural and human system (CNHS) models are a

critical tool to improve system understanding and to inform

sustainable decision-making. Importantly, modeling

enables experimentation and prediction in complex sys-

tems. Here, prediction is not intended to ‘‘see the future,’’

but rather to assist decision-makers in understanding

potential futures or system trajectories based on today’s

decisions (Srinivasan et al. 2017). For CNHS models to

illustrate potential futures, they must simulate feedback

loops, or the two-way interaction between human and

biophysical system components (Box 1, Troy et al. 2015).

Feedback loops are important to include in CNHS models

because they may give rise to complex system behavior,

such as non-linearities, time lags, and surprises (Hull et al.

2015). Environmental management decisions are often

made in response to short-term dynamics, while ignoring

complex system behavior over the long term, resulting in

unintended consequences (Chapin et al. 2009). Thus, for

CNHS models to effectively inform management deci-

sions, it is critically important to incorporate the interaction

of processes occurring over different time scales. We argue

that incorporating both fast and slow feedbacks is critical

for simulating CNHS dynamics in human–freshwater sys-

tems, yet this coupling is rarely represented in CNHS

models.

Incorporating feedback loops that operate over short and

long time scales into system models will improve the

simulation of CNHS dynamics. A feedback loop occurs

when a change in one part of the system elicits a response

elsewhere in the system, causing further change that

compounds or mediates the original change (Hull et al.

2015). Feedback loops in CNHS are made up of ‘‘fast’’

processes occurring over days and years and ‘‘slow’’ pro-

cesses occurring over decades and centuries. Fast and slow

processes alter fast and slow state variables, respectively

(Box 1 and Fig. 1, see discussion of fast and slow variables

in CNHS in Chapin et al. 2009). Fast state variables

include, for example, water clarity, algal concentration, or
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Box 1 Glossary of terms used

Coupled modeling The linkage of multiple stand-alone disciplinary models to represent a coupled natural–human system (e.g., linking

an economic decision-making model and a hydrologic model)

Feedback loop The two-way interaction between human and biophysical system components in a coupled natural–human system

(i.e., the human system affects the biophysical system and the biophysical system affects the human system). The

diagram below depicts a feedback loop between biophysical and human systems in which each system may be

characterized by interactions between potentially nested internal processes (e.g., between terrestrial and aquatic

processes in the biophysical system and between economic and socio-cultural processes in the human system)

Model Computer-based algorithm and simulation representing coupled natural–human system dynamics

Process A series of reactions or operations that act on one or more variables. Processes may interact with other

processes, creating linkages between variables (e.g., terrestrial and aquatic processes interact to drive

changes in the variables that describe the biophysical state of the ecosystem, as depicted in the definition

of a feedback loop, above)

Aquatic process A series of reactions or operations acting on aquatic variables. Examples include eutrophication, phytoplankton

productivity, decomposition, and nutrient cycling

Economic process A series of reactions or operations that act on economic variables. Examples include market development and

human decision-making in response to markets and policy incentives

Socio-cultural

process

A series of reactions or operations that act on social, cultural, and institutional variables. Examples include

preference formation, cultural and institutional change, and human decision-making in response to shared values

or behavioral norms

Terrestrial

process

A series of reactions or operations acting on terrestrial variables. Examples include crop nitrogen uptake, nitrogen

leaching, decomposition, and nutrient cycling

Variable A metric of the state of a system, e.g., soil nitrogen, crop price, behavioral norms, soil organic matter (Fig. 1);

Variables may be either fast or slow, as depicted in the diagram below

Fast variable Variables changed through fast processes acting over a relatively short time frame, such as days to years (e.g.,

crop yield and crop price, Fig. 1)

Slow variable Variables that remain relatively constant over a short time frame, but may change through slow processes

acting over a relatively long time frame, such as decades to centuries (e.g., soil organic matter and

behavioral norms, Fig. 1)
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crop yield in biophysical systems, and land management or

crop price in human systems. Since fast processes operate

on a time scale of days to years, fast variables often change

from day to day or year to year. Fast processes occur within

the context of slow processes, such as ecosystem regime

shifts in biophysical systems or the emergence of new

markets or cultural change in human systems (Fig. 1). Slow

state variables include, for example, lake trophic state in

biophysical systems and behavioral norms in human sys-

tems (Fig. 1). Slow variables are often stable from year to

year, but may change over the course of decades or cen-

turies. The change in a slow variable may occur incre-

mentally over time or abruptly at threshold points (Chapin

et al. 2009).

Environmental policy and management decisions are

often short-term ‘‘quick-fixes’’ (Stroh 2015) made in

response to fast variables that ignore the non-linearities and

time lags inherent in complex systems (Levin et al. 2012)

and cause unintended consequences (Chapin et al. 2009).

Such quick-fix management decisions are among the least

effective tools to initiate change in a system (Meadows

1999; Abson et al. 2017). In contrast to quick-fixes,

effective policy and management decisions over the long

term initiate deeper systemic change by considering overall

system dynamics, including the interaction of fast and slow

variables (Meadows 1999; Matson et al. 2016). Thus, for

CNHS models to effectively inform management deci-

sions, they must incorporate the interaction of variables

changing over different time scales within system feedback

loops. We argue that incorporating both fast and slow

processes is critical for simulating CNHS dynamics in

human–freshwater systems, yet this coupling is rarely

represented in CNHS models.

We examined the current state of the scientific literature

to determine whether and how fast and slow processes are

represented in coupled models of human–freshwater sys-

tems. We found that the representation of slow processes is

a rarity in coupled human–freshwater modeling, and that

feedback loops with slow human system processes are most

often simulated with socio-cultural modeling approaches.

We present strategies to improve the representation of

feedback loops in models of freshwater CNHS and high-

light novel insights gleaned from studies that incorporate

both fast and slow processes.

LITERATURE REVIEW

Methods

There are many different types of modeling in CNHS.

Here, we focus on coupled component modeling (or

‘‘coupled modeling’’) in human–freshwater systems. Cou-

pled modeling is the linkage of multiple (two or more)

stand-along disciplinary models to represent a CNHS, for

example, linking an economic decision-making model and

Fig. 1 Examples of fast and slow variable and process interactions in terrestrial, aquatic, economic, and socio-cultural subsystems within a

CNHS. Within biophysical systems, aquatic subsystem processes and variables operate within the context of the terrestrial subsystems. Similarly,

within human systems, economic subsystem processes and variables operate within the context of the socio-cultural subsystem. Within each

subsystem, fast processes and variables, such as algal production (process) and chlorophyll-a (chl-a; variable) change within the context of slow

processes and variables, such as eutrophication (process) and trophic state (variable). Fast variables (e.g., crop yield) may contribute to abrupt

change in slow variables (e.g., soil organic matter) if a threshold is crossed
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a hydrologic model (Box 1). Coupled modeling maintains

disciplinary rigor and enables the representation of pro-

cesses at different hierarchical scales (Kelly et al. 2013).

Throughout the paper, we use ‘‘model’’ to refer to com-

puter-based algorithm and simulation models (Box 1). We

chose to focus on human–freshwater systems as exemplary

CNHS due to strong interdependencies in these systems

(Cobourn et al. 2018). For example, freshwaters (lakes,

rivers, wetlands, and groundwater) provide high-value

ecosystem services (e.g., MEA 2005; de Groot et al. 2012),

yet the services they provide are often affected by human

activities such as land-use practices (Carpenter et al. 2011).

We reviewed the scientific literature related to coupled

modeling in human–freshwater systems for all papers

available on abstract index databases on the topic before 15

August 2017. We identified 601 peer-reviewed papers

through keyword searches in Web of ScienceTM Core

Collection by Thomson Reuters, SocINDEX by EBSCO

host, and Water Resources Abstracts by ProQuest. We also

included relevant citations identified in references cited

within the 601 papers. We screened all abstracts and nar-

rowed our pool of modeling papers to those that focused on

freshwater systems and those that used a coupled modeling

approach combining at least one process-based biophysical

system model and one human system model. We focused

on process-based biophysical models due to the need to

represent complex biophysical interactions (Kelly et al.

2013) and because of the challenges of coupling highly

detailed, spatially distributed biophysical models with

human system models. For a detailed description of liter-

ature review methods and the keyword search terms used,

see supplemental material (S1).

In total, we identified 26 papers meeting our selection

criteria (Fig. 2). To compare papers across different model

platforms and conceptual representations, we mapped

modeling approaches on a generalizable ‘‘impact-service

feedback’’ conceptual diagram (Fig. 3, adapted from Col-

lins et al. (2011)). The impact-service conceptual model

frames the connection from the human system to the bio-

physical system as ‘‘impacts’’ (e.g., water use, conservation

practice), and the connection from the biophysical system

to the human system as ‘‘services’’ provided (e.g.,

ecosystem services such as water availability and erosion

control). The impact-service conceptual framework

explicitly highlights the variables passed between human

system models and biophysical systems models.

We classified these 26 papers based on the type of

feedback represented and the types of processes simulated

in the coupled model: no feedback loop, a feedback loop

with economic processes, and a feedback loop with eco-

nomic and socio-cultural processes (Box 1). We define

an economic process as a series of reactions or operations

that act on economic variables. Examples of economic

processes include market development and human deci-

sion-making in response to markets and policy incentives

(Box 1). We define a socio-cultural process as a series of

reactions or operations that act on social, cultural, and

institutional variables. Examples of socio-cultural pro-

cesses include preference formation, cultural and institu-

tional change, and human decision-making in response to

shared values or behavioral norms (Box 1). Economic and

socio-cultural processes interact to form human prefer-

ences and drive human decision-making. Additionally, we

identified whether studies represented terrestrial and/or

aquatic processes (see Box 1 for definitions) and identified

whether each study simulated fast and/or slow processes in

the human system and biophysical system.

Results

Of the 26 studies, 13 were categorized as having no feed-

back loops (Table 1). Of these 13 studies without feedback

loops, ten simulated the slow biophysical process of water

supply change (e.g., groundwater depletion), and no papers

simulated slow human processes (Table 1). These coupled

models without feedback loops were composed of unidi-

rectional impacts; for example, output variables from a

human system model were used as input variables to a

biophysical system model, but not back to the human

system. These studies often used a suite of scenario sim-

ulations based on previous simulation outcomes (i.e., the

model output at the end of the first simulation, such as

water supply, was then used as input for the next scenario),

creating a model-user mediated form of feedback loop. For

example, Yaeger et al. (2014) ran a human system opti-

mization model to determine land-use inputs for a hydro-

logic model. The hydrologic outcomes were then used as

inputs to the human decision-making model in the next

simulation. This is a ‘‘no feedback loop’’ example because

the hydrologic outcomes are not automatically fed back to

the human decision-making model within one simulation.

Alternatively, ‘‘no feedback loop’’ scenarios may be

determined separately from baseline simulation outcomes.

For example, Daloğlu et al. (2014) used scenarios to test

the effect of different agricultural policies and non-operator

(absentee) landowner involvement on water quality out-

comes. They used an agent-based model (ABM) to simu-

late producer adoption of conservation practices under

policy and non-operator involvement scenarios. Producer

decisions were based on net farm income, land manage-

ment preferences, and influence from neighbors. Output of

the ABM (e.g., adoption of conservation practices) was

converted to a land-use map, which was then used as input

to the Soil and Water Assessment Tool (SWAT). Daloğlu

et al. (2014) then used SWAT to assess the amount of

sediment and phosphorus loss associated with each
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scenario (Fig. 4a). ‘‘No feedback loop’’ coupled models

such as described in these two studies can increase

understanding of the current state of the system and are

appropriate for short time scale questions, but may be

limited in application to longer time scales because they do

not simulate feedback loops that give rise to potential

complex system dynamics. However, applying different

scenarios to models with no feedback loops can improve

applicability of the results to longer time scales.

Twenty-eight percent (n = 10) of the papers simulated

feedback loops with economic processes, but did not sim-

ulate socio-cultural processes. These coupled models pas-

sed variables both from a human decision-making model to

a biophysical system model and from a biophysical system

model to a human decision-making model. Of these ten

studies, seven simulated the slow biophysical process of

water supply change (e.g., groundwater depletion), one

simulated the slow biophysical processes of soil fertility

Fig. 2 Coupled modeling literature review search and categorization methods, see S1 for full methods description including identification of

papers from Kelly et al. (2013). All 26 selected studies passed variables from human to biophysical system models; 13 of the 26 studies simulated

a feedback loop from the biophysical system to the economic subsystem (and back into the biophysical system); 3 of the 26 studies simulated a

feedback loop from the biophysical system to both the economic and cultural subsystems (and back into the biophysical system)

Fig. 3 Impact-service feedback loop, modified from Collins et al. (2011). Human actions impact the natural system through pulse and press

disturbances, and the state of the ecosystem determines the ecosystem services that are available to the human system. Therefore, human and

natural system models are connected through human impact and ecosystem services via the impact-service feedback loop
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Table 1 Example feedback loop types, processes simulated, variables passed between models, and years of simulation for each of the studies we

reviewed. Econ is an abbreviation for Economic processes; SC is an abbreviation for Socio-Cultural processes. Fast variables are italicized and

slow variables are underlined

Feedback loop type Processes simulated Example variable(s) passed between models Years

simulated

Citation

No feedback loop Econ ? SC ? Aquatic Land management (conservation practices) 41 Daloğlu et al. (2014)

Econ ? Aquatic Land use (crop and fertilizer) 15 Gandolfi et al. (2014)

Econ ? Aquatic Impervious surface area (ha) 30 Hong et al. (2012)

Aquatic ? Econ Water supply (m3); Stream discharge (m3/s) NA Kokkinos et al. (2014)

Aquatic ? Terrestrial ?
Econ

Groundwater (m); Soil moisture (m3/m3); Crop

yield (t/ha)

50 Krol et al. (2001)

Aquatic ? Terrestrial ?
Econ

Groundwater (m); Stream discharge (m3/s);

Crop yield (t/ha)

20 Magombeyi and

Taigbenu (2011)

Econ ? Aquatic Water use (m3/month) 40 Sato et al. (2009)

Aquatic ? Econ Water availability (m3/s) 50 Skoulikaris et al. (2009)

Econ ? Aquatic Water demand (m3/yr); Groundwater (m) 3–17 Varela-Ortega et al.

(2011)

Aquatic ? Econ Concentration of algae (lg/L) 30 van der Veeren and

Lorenz (2002)

Econ ? Aquatic Land use (crop); Water quality (concentration of

N); Water supply (m3)

45 Yaeger et al. (2014)

Aquatic ? Econ Water supply (m3); Water availability (m3/s) 14 Xiang and Jun (2009)

Econ ? SC ? Terrestrial ?
Aquatic

Landowner benefit; Land use (fertilizer rate);

Runoff (mm); Groundwater (m)

40 Zia et al. (2016)

Feedback loop with

Econ processes

Econ ? Terrestrial ?
Aquatic ? Econ

Total income (€); Land use (ha); Surface water

availability (Hm3/yr); Groundwater (Hm);

Water use (Hm3/yr)

8 Cabello et al. (2015)

Econ ? Aquatic ? Econ Water use (m3); Groundwater (m3); Water

transport (km)

4–20 Grundmann et al. (2012)

Aquatic ? Econ ? Aquatic Stream discharge (m3/s); Water shortage degree;

Water use (m3)

50 Jia et al. (2009)

Econ ? Aquatic ?
Terrestrial ? Econ

Municipal income ($/yr); Water supply (m3);

Crop yield (t/ha); Farm income ($/yr)

100 Krol and Bronstert

(2007)

Econ ? Terrestrial ?
Aquatic ? Econ

Crop management (crop type and fertilizer use);

Crop yield (t/ha); Crop water demand (mm);

Surface water availability (m3/10 days)

5 Letcher et al. (2006)

Aquatic ? Econ ? Aquatic Land use (crop and management); Water quality

(nitrogen conc.)

12 Rutledge et al. (2008)

Aquatic ? Econ ? Aquatic Water use (m3/yr); Water supply (m);

Technology adoption

40 Srinivasan (2015)

Terrestrial ? Econ ?
Aquatic ? Terrestrial

Crop yield (t/ha); Water demand (m3/day);

Water supply (m3); Water availability

(m3/day); Crop growth (leaf area index);

Fertile soil depth (m)

30 van Delden et al. (2007)

Econ ? Aquatic ? Econ Land value ($/ha); Land cover (forested);

Groundwater (m)

5 Voinov et al. (2007)

Aquatic ? Econ ? Aquatic Water supply (m3); Water availability (m3/yr);

Water demand (m3/yr)

18 Zeng et al. 2012

Feedback Loop with

Econ and SC

processes

Terrestrial ? Aquatic ? SC

? Econ ? Terrestrial

Land cover (agriculture); Groundwater (m3);

Water quality (cyanobacteria: lg/L);
Community sensitivity; land clearing (ha/yr)

100 Elshafei et al. (2014)

Econ ? Aquatic ? SC ?
Econ

Water demand (m3/yr); Water availability (m3/

yr); pluralistic stakeholder preferences

NA Fedra (2007)

Econ ? Aquatic ? SC ?
Econ

Phosphorus load (kg/yr); Water clarity (# of

clear water days); Environmental satisfaction

(# of clear water days: desired); Level of

engagement (0–1)

50 Roy et al. (2011)
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Fig. 4 Example coupled modeling studies mapped onto the impact-service feedback loop. a No feedback loop is represented because no linkage

is made from the biophysical system to the human system (Daloğlu et al. 2014); b A feedback loop is represented with the human system

consisting exclusively of economic processes (Krol and Bronstert 2007); c A feedback loop is represented with the human system consisting of

both economic and socio-cultural processes (Elshafei et al. 2014). Studies with or without a feedback loop differ in the biophysical and human

process interactions that are represented. For example, a and c illustrate cases in which aquatic systems affect terrestrial systems and vice versa;

in b the aquatic system influences the terrestrial system. Similarly, a illustrates a study that includes economic and socio-cultural processes but no

interaction between them; b illustrates a study with only economic processes; and c illustrates a study with both economic and socio-cultural

processes as well as their bi-directional interactions. The processes modeled as part of the biophysical system and human system shapes the

nature of CNHS connections in the impact-service feedback loop
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change, and one paper simulated a slow human system

process (Table 1). Srinivasan (2015) simulated the slow

human system process of technological innovation emer-

gence and adoption of new technology as a result of market

drivers. Srinivasan (2015) presents a simplified (‘‘styl-

ized’’) coupled model, where distinct algorithms represent

key biophysical system and human system variables (e.g.,

water quantity and price) based on a previously used

coupled component model.

Krol and Bronstert (2007) provide an example of linking

disciplinary models in the full impact-service feedback

loop with economic human system processes. They used a

water-balance model (WASA) and an agricultural yield

model (YES) to represent the biophysical system. Outputs

of water balance and yield were used to determine the

ecosystem services of water supply and food production,

which were then used as inputs to a water-use model

(NoWUM) and a regional agricultural economy model

(RASMO). Outputs from the economic model drove

changes in population dynamics (MigFLOW), which were

used as input to the water-use model. Finally, the water-use

model outputs were used to drive human impact on the

water-balance model, completing the impact-service feed-

back loop (Fig. 4b).

Only twelve percent (n = 3) of the papers simulated

feedback loops with socio-cultural processes in addition to

economic processes (Table 1). One paper simulated the

slow biophysical system process of water supply change

(Elshafei et al. 2014). Two of these three papers simulated

slow human system processes (Roy et al. 2011; Elshafei

et al. 2014). For example, Elshafei et al. (2014), simulated

water availability, quality, and agricultural production (fast

processes) using a water-balance model and a land-use

model. Model outputs of ecosystem services (water quality,

food production, etc.) then interacted with the slow process

of cultural change and fast economic processes to affect the

slow variable of ‘‘community sensitivity,’’ or the commu-

nity’s perceived threat an environmental issue posed to

their quality of life (Fig. 4c). Elshafei et al. (2014) found

that when community sensitivity is high, the socio-cultural

regime is enviro-centric, where environmental conserva-

tion measures are more likely to be employed. In this

model application, the behavioral response to a given level

of ecosystem services depends on the current state of the

community sensitivity in the catchment.

Overall, 50% (n = 13) of the papers we reviewed sim-

ulated the full impact-service feedback loop while only

three papers included socio-cultural processes (Fedra 2007;

Roy et al. 2011; Elshafei et al. 2014) and only three papers

included slow human system processes (Roy et al. 2011;

Elshafei et al. 2014; Srinivasan 2015) (Table 1, Fig. 5). All

of the 26 papers simulated fast human and biophysical

system processes, with water quantity and price as the most

common variable linkages. Within the biophysical system,

Fig. 5 Percentage of all 26 papers that simulated a given component connection and variable type (fast or slow). Thicker lines indicate more

commonly simulated linkages; all percentages below 20 are presented in red text to highlight the least commonly simulated linkages
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62% (n = 16) papers simulated slow freshwater processes,

all of which were focused on surface and groundwater

depletion. Only one paper simulated a slow terrestrial

system process, changes to soil fertility (van Delden et al.

2007).

The rarity of CNHS models that include feedback loops

with both economic and socio-cultural processes is likely a

result of a less-established history of disciplinary collabo-

ration between biophysical and socio-cultural researchers

and more disparate disciplinary methodologies. Feedback

loops with economic processes are likely more common

because biophysical scientists and economists rely on rel-

atively similar quantitative methodologies to represent

system processes (Schlüter et al. 2017). For example,

decision-making theories in economics are often repre-

sented using mathematical formulas, such as ordinary dif-

ferential equations, which are similar to biophysical

process-based model algorithms (Schlüter et al. 2017).

These common methodological foundations facilitate col-

laboration between biophysical scientists and economists,

potentially resulting in more well-established collabora-

tions between these disciplines (Mooney et al. 2013).

Similarly, water quantity is likely the most commonly

represented slow biophysical system process due to the

relative ease of mathematical representation of hydrologi-

cal dynamics. Simulating water quantity change requires

relatively straightforward and highly robust algorithms

that, for the most part, include well-known physical

dynamics. However, simulating water quality requires

describing complex, often non-linear, and less well-estab-

lished algorithms, in part because biological processes are

intimately involved.

MODEL COUPLING METHODS

To reflect complex system dynamics, the development of

coupled models requires highly interdisciplinary, collabo-

rative teams. Incorporating multiple human-based disci-

plinary perspectives (e.g., social psychology and

economics) in coupled models likely enables a more

comprehensive representation of more types of human–

freshwater feedback loops, including interactions between

fast and slow processes within the human system. Impor-

tantly, each discipline needs to be included and contribute

to the design of a project’s research questions, methods,

and analytical approach. Whether and how this is done has

been shown to make a difference in the quality of the

interdisciplinary science that results (e.g., Cheruvelil et al.

2014).

All coupled human–freshwater system models we

reviewed linked biophysical and economic variables. Bio-

physical models quantify environmental variables and

economic models quantify the values people assign to

goods and services, including market and non-market

measures. Non-market values for ecosystem services may

be quantified through estimates of stakeholders’ willing-

ness-to-pay, measured in monetary units (e.g., estimation

of how much a stakeholder is willing to pay for in-stream

flow benefits through surveys, as in Fedra (2007). One

significant challenge in establishing these linkages is that

biophysical system models often operate on an hourly or

daily time step, whereas economic models often operate on

a seasonal or annual time step, requiring data (model out-

put and input) aggregation or disaggregation techniques.

For examples of specific data aggregation techniques, see

Letcher et al. (2006), Jia et al. (2009), Roy et al. (2011),

Daloğlu et al. (2014), Gandolfi et al. (2014), and Cabello

et al. (2015). Every paper we reviewed simulated fast

processes in biophysical and economic components, but

only two simulated slow economic processes (Elshafei

et al. 2014; Srinivasan 2015) and only one simulated a slow

biophysical shift in environmental quality (van Delden

et al. 2007).

Linking socio-cultural processes as part of coupled

models often requires explicitly representing or accounting

for held values: basic principles that shape how people

assign value to specific environmental entities (Jones et al.

2016). The implementation of feedback loops with socio-

cultural processes can be facilitated by eliciting the role of

economic and socio-cultural factors in decision-making

through participatory engagement of stakeholders with

subsequent incorporation of those perspectives into the

coupled model simulation (as in Fedra 2007). Alterna-

tively, this can also be accomplished by simulating the role

of social or cultural factors in determining the market value

of ecosystem services. For example, Elshafei et al. (2014)

simulated dynamic changes to ‘‘enviro-centrism’’ (a held

value) as a result of changes in ‘‘community sensitivity,’’ or

perceived threat to livelihood as a result of environmental

change (context of valuation). In the model, dynamic

community sensitivity has the capacity to alter the level of

enviro-centrism, changing the way values are assigned to

ecosystem services and thereby altering human decision-

making (Elshafei et al. 2014).

Agent-based models (ABMs) that incorporate psy-

chosocial, cognitive, or institution-based theories of human

decision-making and behavior are particularly useful for

representing socio-cultural processes of how held values

factor into market processes and human decision-making

(An 2012). Incorporating feedback loops with socio-cul-

tural processes in coupled models can be challenging;

however, explicit representation of held values, use of

ABMs, and use of human behavior theories that include the

role of social and cultural contexts for decision-making

provide a path forward for incorporating both economic
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and socio-cultural processes in CNHS model feedback

loops (An 2012; Jones et al. 2016; Schlüter et al. 2017).

NOVEL INSIGHTS WITH FAST AND SLOW

FEEDBACK LOOPS

Simulating fast and slow system processes together pro-

vides novel insights into complex system behavior. Time

lags and the interaction of fast and slow processes in CNHS

create non-linear complex system behavior (Filatova et al.

2016), in which a slow variable may remain relatively

constant for years before changing, sometimes abruptly, in

response to small but persistent forcing from fast variables.

For example, changes in annual gross domestic product and

water quality (fast variables) affect community sensitivity

(a slow variable), which in turn affects human decision-

making and subsequent gross domestic product and water

quality (Elshafei et al. 2014). In this case, human decision-

making in response to a given level of gross domestic

product and water quality is context-dependent on the level

of community sensitivity since people are more likely to

adopt conservation measures when community sensitivity

is high. Understanding how fast variables affect slow

variables in this system is critical for predicting system

trajectories: if the community sensitivity response to fast

variables was not included in the coupled model,

researchers may incorrectly assume that decision-making

in response to a given gross domestic product and water

quality will be the same today as in the future.

Additionally, since different stakeholders often have

conflicting interests (e.g., agricultural development versus

recreation), community sensitivity may differentially affect

different stakeholder groups. In this case, the relative

political power available to stakeholders is important in

representing how decreasing water quality may in turn alter

future local policy (Roy et al. 2011). Under conditions of

high water quality, recreational stakeholders may not per-

ceive threats to future recreation opportunities and thus

may be relatively inactive in local policy debates. In con-

trast, under low water quality conditions, recreation-fo-

cused stakeholder groups may be more inclined to lobby

for policy change that would improve water quality.

Understanding the way slow human system processes—

such as changes to policy or social norms—respond to fast

biophysical and human system processes—such as changes

in food production and water quality—is essential for

informing potential long-term trajectories of CNHS. Our

literature review emphasizes that a major challenge, and

area for pushing knowledge forward in coupled human–

natural systems, is to understand when and where changes

in slow variables may occur as a result of changes in fast

variables and how they control overall system dynamics.

Often, policy and management decisions are made in

response to changes in fast variables without consideration

of how the interaction of fast and slow variables determine

overall system function and drive system dynamics over

the long term. CNHS models that incorporate both fast and

slow processes may reveal which management actions may

be more effective over the long term. Currently, environ-

mental decision-making often relies on ‘‘quick-fixes’’

(Stroh 2015) to initiate system change at ‘‘shallow’’

leverage points (Meadows 1999; Abson et al. 2017). Lev-

erage points are focused alterations to a system (e.g., to a

stock or flow, or to the system structure), which can initiate

change in the rest of the system, and they range from least

effective (shallow) to most effective (deep) at causing

change to the overall system (Meadows 1999). Shallow

leverage points are often interventions to fast variables and

are the easiest to implement, but have the least potential to

influence overall system dynamics (Abson et al. 2017).

Shallow leverage points include policy changes to taxes,

subsidies, and the rate of material flows in a system (e.g.,

regulating the extraction of water) (Abson et al. 2017).

Since shallow leverage points do not necessarily account

for fast–slow variable interactions, they often result in

unintended consequences over the long term (Stroh 2015).

An example of a shallow leverage point may be providing

financial incentives to decrease the amount of phosphorus

fertilizer applied on the land, which aims to affect the

overall system by slowing the rate of phosphorus additions

to the landscape. This management action is focused on

controlling the rate of material flows in the system, but

ignores the way that slow variables, such as social norms or

community sensitivity, interact with fast variables to affect

overall system dynamics, decreasing the effectiveness of

the phosphorus incentive policy over the long term.

More effective, yet more difficult to implement leverage

points are those that take into account an understanding of

the system dynamics that arise out of the interaction

between fast and slow variables, such as those that address

system feedbacks (interaction between components), sys-

tem design (social system drivers of feedbacks and

parameters: e.g., power and structure of information flows),

or system intent (system trajectory as a result of ‘‘values,

goals, and world views of actors’’ in the system) (Abson

et al. 2017). For example, rather than attempting to directly

alter the rate of phosphorus fertilizer used through financial

incentives as described above, a system design leverage

point may alter information flows by reporting the quantity

of phosphorus export from a land parcel directly to a

landowner. Using a CNHS model to understand the pro-

cesses of technology innovation or adoption as in Srini-

vasan (2015) elucidates a potential system design leverage

point: altering the path of information flows of new tech-

nology may accelerate the rate of adoption. Altering the
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relative political power of stakeholder groups, as explored

in Roy et al. (2011), is another potential system design

leverage point. Using CNHS models with fast and slow

variable interaction may increase system understanding

among stakeholders, altering the most effective leverage

points for system change: the intent of the system.

Importantly, CNHS models that simulate both fast and

slow human system processes foster new thinking around

human–environment interactions and work toward whole-

system understanding.

CONCLUSIONS

There is a critical need for incorporating both fast and slow

biophysical and human processes to simulate the feedback

loops that fundamentally define CNHS over long time

scales. Our literature review demonstrates that economics

is often used to simulate fast human system processes over

short time scales. The papers that simulated both economic

and socio-cultural processes in feedback loops were more

likely to also incorporate both fast and slow human system

processes (two of the three papers). Thus, incorporation of

both economic and socio-cultural factors in human deci-

sion-making may foster consideration of fast and slow

interactions in CNHS (or vice versa).

Incorporating both fast and slow processes in coupled

CNHS models enables exploration of time lags between

slow and fast processes and threshold behavior in complex

systems, working toward critical system understanding that

fosters sustainable long-term decision-making. Improved

understanding of complex dynamics has the potential to

foster new understanding by researchers, decision-makers,

and stakeholders, an essential step toward sustainable

decision-making in complex systems (Matson et al. 2016).

Incorporating both economic and socio-cultural processes

in CNHS coupled models requires well-integrated inter-

disciplinary teams, use of aggregation techniques for

linking economic and biophysical system models, and use

of non-monetary ecosystem service valuations for linking

socio-cultural and biophysical system processes (Cobourn

et al. 2018).

Ultimately, incorporating fast and slow processes has

the potential to reveal emergent system behaviors, such as

how slow human system processes (social norms) may

change as a result of biophysical variables (water quality

and food production) and how these changes alter system

trajectories. Incorporating fast and slow variables in CNHS

models will also contribute to novel solution-oriented

decisions, informing policies that focus on system feed-

backs, system design, or system intent. Since the full

dynamics of biophysical and human systems cannot be

observed at any point in time or over the timeframe when

many human decisions are made, modeling plays an

important role in the future of human–environment

research (Troy et al. 2015). We encourage adoption of

CNHS models with integrated fast and slow processes to

improve system representation and contribute to more

sustainable decision-making.
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