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A B S T R A C T

Nutrient loading lead to poor water quality and this has impacts of the welfare of people who live near lakes. We
develop a novel coupling between a limnology model of within-lake hydrodynamics and an economic model of
property prices to support integrated assessments of actions to protect or improve water quality. We find, in the
context of Lake Mendota that is eutrophic with high concentrations of nitrogen (N) and phosphorous (P), that
there is a nonlinear response in water quality to changes in nutrient loading. Reductions in nutrient loading
result in much larger improvements in water quality than the magnitude of water quality deterioration with a
similar size increase in nutrient loading. Given the in-situ concentrations of N and P in the lake, large reductions
in nutrient loading are required to have a substantial impact on water quality.

1. Introduction

Lakes support a myriad of ecosystem services that benefit humans
and have quantifiable economic effects, including the provisioning of
drinking water and recreational activities, such as swimming, fishing,
and boating. These services can be compromised by poor water quality,
which commonly occurs when lakes are impacted by excessive nutrient
inputs from nonpoint source pollution such as phosphorus and nitrogen
from agricultural runoff. High nutrient loads fuel algal blooms, which
can lead to toxin production, decreased water transparency, and low
oxygen levels (hypoxia) (Brookes and Carey, 2011). Economic con-
sequence of surface water quality degradation on nearby residential
properties and water-based recreation are well known (David, 1968;
Boyle et al., 1999; Poor et al., 2007; Walsh and Milon, 2016; Wolf and
Klaiber, 2017; Zhang and Sohngen, 2018; and Nicholls and Crompton
(2018) for summary of the literature). Likewise, the linkage between
nutrient loading and lake water quality is well documented in the
limnological literature (e.g., Edmondson, 1970; Vollenweider et al.,
1974; Schindler, 1977). However, the full set of linkages from nutrient
loading to changes in lake water quality to property values has yet to be

fully explored. In this study, we couple lake ecosystem and economic
models to examine the relationship between upstream cause (nutrient
loading) and downstream consequence (property value changes) as
mediated by lake water quality changes. An understanding of these
complex dynamics is critical to support effective and efficient policies
that target water quality improvements to mitigate the social costs of
aquatic ecosystem degradation.

Some coupled models have been developed to support integrated
assessments of surface water quality. These studies have typically
coupled a SWAT model (Soil and Water Assessment Tool, https://swat.
tamu.edu) with an economic decision making model (e.g., Jha et al.,
2007; Secchi et al., 2007; Liu et al., 2019). These studies typically use
SWAT to model the fate-transport of nutrients based on land-use
practices to understand the impact on water quality. Here, given a
specified level of nutrient loading, the limnological model calibrates the
impact on the lake ecosystem which is then passed to the economic
model.

To our knowledge, this paper presents the first coupling of a model
of lake dynamics with a hedonic property-value model to support in-
tegrated assessments of the effects of different nutrient loading

https://doi.org/10.1016/j.ecolecon.2019.106556
Received 25 March 2019; Received in revised form 27 September 2019; Accepted 17 November 2019

⁎ Corresponding author.
E-mail address: wweng@geneseo.edu (W. Weng).

Ecological Economics 169 (2020) 106556

Available online 14 December 2019
0921-8009/ Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/09218009
https://www.elsevier.com/locate/ecolecon
https://doi.org/10.1016/j.ecolecon.2019.106556
https://swat.tamu.edu
https://swat.tamu.edu
https://doi.org/10.1016/j.ecolecon.2019.106556
mailto:wweng@geneseo.edu
https://doi.org/10.1016/j.ecolecon.2019.106556
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolecon.2019.106556&domain=pdf


scenarios on lake water quality and consequently property values (see
Kling et al., 2017). To do so, we couple a whole-ecosystem lake model
(General Lake Model, hereafter GLM; Hipsey et al., 2017) to a hedonic
property-value model (hereafter hedonic model) to link changes in lake
nutrient loading into changes in lakefront property values (Taylor,
2017). The GLM model has been stress tested across 32 lakes selected
from a global observatory network (Bruce et al., 2018) and calibrated to
observed data from Lake Mendota. The hedonic model is estimated
using observed water-quality data from Lake Mendota. We use GLM to
model lake water quality responses under different nutrient loading
scenarios and use GLM outputs as inputs to the hedonic model to
compute changes in capitalized property values under the different
nutrient loading scenarios. We then consider how capitalized changes
in property values impact property tax revenues to consider effects on
members of the community that do not own property on or near the
lake.

This research makes several important contributions: first, it ad-
vances scientific knowledge at the intersection of natural processes and
human choices in the context of lake ecosystems. In Lake Mendota with
compromised water quality, reducing nutrient loads has a much greater
positive impact than the negative impact of increases in nutrient loads.
Second, given the in-situ concentrations of nutrients in the lake, large
reductions in nutrient loading are required to have a substantial impact
on water quality and thereby property values. Third, changes in prop-
erty values are not experienced by all households in a lake community
and this paper considers resulting changes in property-tax revenues
from affected lakefront properties that have a ripple effect across the
community through changes in municipal budgets (Brunori et al.,
2006). Fourth, the model coupling provides an important evidence-
based linkage so that economic predictions of changes in capitalized
property values are directly linked to the changes in non-point source
pollution loading to a lake (e.g., Phaneuf, 2002). Collectively, analytical
results based on this type of coupled modeling inform and reduce un-
certainty in identifying effects and quantifying benefits and cost of
policies to protect and enhance freshwater resources (Bosch et al.,
2006; Keeler et al., 2012).

2. Methods and Data

We use Lake Mendota (Madison, Wisconsin, USA; Fig. 1) as a case
study for exploring relationships between nutrient loading, water
quality, property values, and tax revenues. Mendota is a north tempe-
rate lake that is eutrophic with continuing high levels of nutrient
loading. As part of the North Temperate Lakes Long-Term Ecological
Research (NTL-LTER) program (Carpenter et al., 2007), long-term and
high-frequency physical, chemical, and biological data are available to
calibrate GLM and estimate the hedonic model (Brock, 2012). Lake
Mendota has a surface area of 40 km2, mean and maximum depths of
12.8 m and 25.3 m, respectively, a mean water residence time of
4.3 years, and is ice-covered each winter (December–January through
March–April) (Lathrop and Carpenter, 2014). A combination of agri-
cultural (67% of the watershed) and urban (22% of the watershed) land
uses in the watershed contribute to high loading of nitrogen (N) and
phosphorus (P) to the lake (Bennett et al., 1999; Lathrop, 2007; Duffy
et al., 2018). As a result, Lake Mendota experiences annual summer
phytoplankton blooms that result in noxious odors, surface scums, and
beach closures (Carey et al., 2016). There is year-to-year variability in
the magnitude of the blooms, which is linked to total precipitation and
variation in water temperature (Lathrop and Carpenter, 2014; Carey
et al., 2016).

In this section, we outline the structure and calibration of the GLM,
which we use to simulate changes in lake water quality in response to
changes in nutrient loading. We then describe the estimation of the
hedonic model that links changes in lake water quality with changes in
property values. Finally, we discuss coupling the models to consider the
effects of changes in nutrient loading on property values and property

tax revenues (Fig. 2).

2.1. General Lake Model (GLM)

GLM is an open-source, one-dimensional hydrodynamic model that
uses dynamic vertical layers to simulate water and energy budgets
within a lake (Hipsey et al., 2014, 2017). GLM is coupled with the
Aquatic EcoDynamics library (GLM-AED version 2.2.0; Hipsey et al.,
2013) to model vertically-resolved, dynamic water quality metrics, in-
cluding light attenuation and concentrations of dissolved oxygen, ni-
trogen (N), phosphorus (P), and chlorophyll-a (chl-a; a proxy for phy-
toplankton biomass). We ran the model at a daily time step over a 13.5-
year period, from April 1, 2000 to December 31, 2013 to simulate
seasonal dynamics and inter-annual variability, including both high
(e.g., 2008) and low precipitation years (e.g., 2001–2003).

2.1.1. GLM Driver Data
GLM requires both meteorological and surface water inflow time

series as driver data. We compiled meteorological data at an hourly
time step from the North American Land Data Assimilation System
(NLDAS-2; Cosgrove et al., 2003) that included air temperature, short
and long wave radiation, relative humidity, wind speed, and pre-
cipitation (rain and snow).

Surface water inflow time series required discharge (flow volume),
water temperature, and concentrations of N (nitrogen) and P (phos-
phorous) at daily time steps. We separated inflow N concentrations into
fractions for inorganic N as nitrate (NIT; NO3) and ammonium (AMM;
NH4), and dissolved organic nitrogen (DON). We separated inflow P
concentrations into fractions for inorganic P as filterable reactive
phosphorus (FRP) and FRP adsorbed to particles (FRP_ads), and organic
P as both dissolved (DOP) and particulate (POP) fractions.

Continuous discharge, temperature, and nutrient time series were
not available for the entirety of the Lake Mendota watershed from 2000
to 2013. To address this challenge, we produced modeled hydrological
time series by combining mechanistic hydrological modeling for spa-
tially resolved inflow with regression modeling for solute fluxes. For the
former, we used the Pennsylvania Integrated Hydrological Model
(PIHM; Kumar et al., 2009) to model surface inflow discharge at a daily
time-step from 2000 to 2013. PIHM-modeled discharge included six
hydrological inflows: Yahara River (23% of inflow), Pheasant Branch
River (4%), Spring Harbor (2.3%), Six Mile Creek (8.4%), overland flow
(62%), and groundwater (0.2%). To match available USGS gauge data,
we combined these into two inflows. Pheasant Branch and Spring
Harbor were treated as one inflow, and the four remaining inflows
(Yahara River, Six Mile Creek, overland flow, and groundwater flow)
were combined into one Yahara inflow. Water temperature time series
for both inflows (Pheasant Branch and Yahara) were available from the
same USGS gauges at which nutrient concentration data were collected.

We built regression models using discharge and surface nutrient
concentrations from USGS gauges on two Lake Mendota inflows:
Yahara River at Windsor (USGS gauge 05427718) and Pheasant Branch
(USGS gauge 05427948). For the Yahara River inflow, total phosphorus
(TP; the sum of organic and inorganic fractions) data were available for
the entire model period (2000−2013), whereas nitrogen data (NIT:
nitrite + nitrate, Kjeldahl: ammonia + organic nitrogen) were avail-
able from 2015 to 2017. For Pheasant Branch, data for both N and P
concentrations were available beginning in 2015. We built regression
models for TP, NIT, and Kjeldahl nitrogen (dissolved and particulate
organic N + AMM) at the Yahara and Pheasant Branch rivers using the
loadflex package in R (Appling et al., 2015). We then used these re-
gression models to predict N and P concentrations in the Yahara and
Pheasant Branch using discharge time series from the PIHM model
output.

Following Snortheim et al. (2017), we doubled TP concentrations to
include an adsorbed fraction not measured in the field. We then cal-
culated concentrations of each phosphorus species (FRP, FRP_ads, DOP,

W. Weng, et al. Ecological Economics 169 (2020) 106556

2



POP) for each of the two inflows as fractions of TP as follows, ap-
proximated from values reported by USGS for the gauging stations:
0.235 FRP, 0.500 FRP_ads, 0.195 DOP, and 0.070 POP. We calculated
concentrations of DON, NIT, and AMM for each of the two inflows as
fractions of Kjeldahl nitrogen as follows, approximated from values
reported by USGS for the gauging stations and with the assumption that
a small fraction of the Kjeldahl nitrogen was DON: 0.076 DON, 0.167
AMM, 0.757 NIT.

2.1.2. GLM Calibration and Validation
The underlying equations of GLM include many parameters that can

be calibrated to reflect conditions in a specific lake. We calibrated
parameters for the Lake Mendota GLM using results from Hart et al.
(2017a, 2017b) as initial values, and then adjusted the parameters
following the procedures described below.

The 8-year model calibration period ran from 2001 to 2010, and the
validation period ran from 2011 to 2013. For calibration, we calculated
goodness-of-fit (GOF) metrics involving the comparison of model out-
puts of maximum water temperature, mean dissolved oxygen, and mean
chl-a concentrations to observed high-frequency buoy and manually
collected data from the NTL-LTER. We manually adjusted model
parameters to sequentially optimize GOF for these model state variables
with a focus on capturing seasonal patterns and peak timing for each
state variable. We calculated four GOF metrics for state variables at the
lake surface (0–4 m) using the hydroGOF package for R (Zambrano-
Bigiarini, 2017): the coefficient of determination (R2), root mean square
error (RMSE), Spearman's rank correlation coefficient (Spearman's rho
[ρ]), and normalized mean absolute error (NMAE; Kara et al., 2012).

Appendices A1–A6 present the parameter sets used in the calibrated
baseline model. The calibrated baseline GLM adequately represented
the focal calibration state variables over the model time period (Table
A7), with GOF values similar to those of previously published Lake
Mendota ecosystem models (e.g., Kara et al., 2012; Snortheim et al.,
2017).

2.1.3. GLM Water Quality Outputs
GLM produces output variables that capture diverse aspects of lake

water quality, many of which may not be known to, nor are easily
observed by, property sellers and buyers. In this analysis, we focused on
two key water quality metrics for inclusion in the hedonic model,
namely water clarity and surface chl-a concentrations. We chose these
two metrics because they have been shown by the economic literature
to affect property sales (e.g., Michael et al., 2000; Walsh and Milon,
2016). Water clarity is measured by lowering a Secchi disc, which has
alternating black and white quadrants, into the water. The depth at
which the disc disappears is the Secchi depth (in meters), with a de-
crease in Secchi depth corresponds to a reduction in water clarity. We
calculated Secchi depth from GLM model outputs as 1.7 divided by the
light extinction coefficient (GLM output variable “extc_coef”). Surface
(1 m depth) chl-a concentrations (μg L−1) were based on the GLM
output variable “PHY_TCHLA”. An increase in chl-a concentration
corresponds to an increase in phytoplankton biomass and the appear-
ance of surface scums, both of which are associated with reduced water
quality. We focused on these output variables for summer months
(June, July, August) when lake users are most likely to observe changes
in water clarity due to phytoplankton blooms.

Fig. 1. Map of the study area. Lower right panel denotes the location of Dane County, WI, within which the Lake Mendota catchment (Latitude: 43.09, Longitude:
−89.40) is located.

W. Weng, et al. Ecological Economics 169 (2020) 106556

3



We saved outputs for Secchi depth and chl-a concentrations at a
daily timestep for 2008–2013, as these years overlapped with available
data for the hedonic model (see Section 2.2). Daily estimates of summer
(June, July, August) Secchi depth and surface chl-a concentrations in
the baseline model were strongly correlated (Spearman's rho = −0.95;
p < 0.0001). The baseline model captured seasonal variability in
summer (June, July, August) Secchi depth, with minimum Secchi
depths typically occurring in late July (Fig. 3A). The baseline model
also captured inter-annual variability in Secchi depth and chl-a due to
meteorological and inflow drivers. For example, within the model
period, 2012 had the highest mean annual air temperature and the
lowest total annual precipitation, and had correspondingly high
summer Secchi depth and low summer chl-a concentrations compared
to other model years. Across the full model period, mean (± 1 standard
error) summer Secchi depth was 2.04 ± 0.04 m, though daily summer
Secchi depths ranged from 0.94 (Jul. 2013) to 5.47 m (Jun. 2008). Chl-
a concentrations were generally lowest in early June, with a peak in late
July, corresponding with minimum Secchi depth measurements
(Fig. 3B). Across model years, mean summer chl-a was
88.3 ± 1.4 μg L−1, with maximum and minimum daily concentrations
of 167.7 (Jul. 2013) and 27.9 μg L−1 (Jun. 2013).

2.2. Hedonic Model

To capture the relationship between property sale prices and lake
water quality as indicated by Secchi depth and chl-a concentrations, we
estimated the hedonic model using observed water quality data. This
approach is often used to estimate values for ecosystem services that
affect market prices for properties, such as proximity to open space,
urban tree cover, water quality, and other environmental amenities
(Braden et al., 2011; Simons and Saginor, 2010; Taylor, 2017).

2.2.1. Hedonic Model Specification
We specified the hedonic model regression model as:

Fig. 2. Conceptual framework linking changes in nutrient loading to changes in property values and then into changes in property-tax revenues for a lake community.
The effect of nutrient loading on water quality (as measured by water clarity and phytoplankton blooms) is simulated using GLM. Observed variation in lake water
quality is used to estimate the effects on sale prices of properties near the lake, the hedonic model. Changes in the sale price of properties, in turn, affect property tax
revenues used to fund local services such as public schools. Changes in nutrient loads are inputs to GLM to simulate changes in lake water quality. The GLM outputs
are used as inputs to the estimated hedonic model to compute changes in property values and the resulting impacts on property-tax revenues.

Fig. 3. Baseline GLM model output for summer (Jun. 1–Aug. 31) (A) Secchi
depth and (B) surface (1 m) chlorophyll-a concentrations. Colors indicate the
year.
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where Pit is the sale price of property i in year t, Lakefronti is a binary
variable for properties with frontage on the lake (1 for lakefront and 0
otherwise), Distancetolakei is a measure of the Euclidean distance from
the centroid of a property to Lake Mendota; and WaterQualitytw is water
quality in year t for measurement metric w (either Secchi depth or chl-a
concentration). Because of the high degree of correlation between
Secchi depth and chl-a concentration, separate equations are estimated
for each of these water quality measures; the higher the concentration
of chl-a, the lower the Secchi depth measure of water clarity. Lakefront
properties are defined as properties abutting the shoreline of Lake
Mendota and were identified using Google Earth. For lakefront prop-
erties, we set Distancetolakei equal to zero. We took the natural log of
WaterQualitytw to reflect the fact that when water clarity (Secchi depth)
is high, it becomes more difficult for property owners to recognize
changes in water quality (Smeltzer and Heiskary, 1990). Similarly,
when chl-a is small, it is likely property owners would find it difficult to
observe small changes in surface phytoplankton concentrations. Prop-
erty specific, time-invariant structural and lot characteristics (Si) are
variables typically used in hedonic model analyses, and include square
feet of living area, lot acreage, house age, and number of bedrooms.
Locational characteristics (Li) include median income and demographic
characteristics (e.g., race and age structure of population) at the Census
block group level, and dummy variable fixed effects for school districts.
We also included a variable in locational characteristics that indicates
whether a property is closer to Lake Monona than to Lake Mendota (1 if
closer to Monona and 0 otherwise). The βs are parameters to be esti-
mated and ϵit is a random error term.

Our key variable for investigating the effect of water quality on
property sales prices is the interaction term Lakefronti ∗ lnWaterQualityt,
which captures the effect of water quality on the sales prices of lake-
front properties. We expected the estimate β3 to be positive when
Secchi depth is included in the model, which reflects increasing in
property values as water clarity increases. We expected a negative re-
lationship for chl-a concentration as a decrease in chl-a is associated
with increasing property value. If β3j is statistically significant for either
Secchi depth or chl-a concentration, this indicates that lake water
quality affects sale prices of lakefront properties.

We use Secchi because it is a summative measure that can be ob-
served by buyers and sellers, while chl-a is a measure of water quality of
direct interest to limnologists. Secchi depth readings are an indicator of
all particles in the water column, including chl-a, sediments, and other
particulate matter, that affect the clarity of lake water. Chl-a is one
component of the water column and is an indicator of phytoplankton
biomass. Thus, β3w is expected to be larger in absolute value in the
Secchi equation relative to the chl-a equation. That is, a one-unit
change in chl-a will affect Secchi measurements but does not reflect all
elements in the water column that affect water clarity.

Contemporary hedonic models often use a quasi-experimental de-
sign to control for unobserved variables that might be correlated with
the policy variable of interest, lake water quality here. Due to the
limited number of observations in the study area, we follow Kuminoff
et al. (2010) using time fixed effects (T – dummy variables for the year
of each property sale and the month when the sale occurred) to control
for omitted variables that vary over time and are potentially correlated
with temporal changes in water quality.

2.2.2 Hedonic Model Data.
We used observed water quality (Secchi depth, chl-a concentration)

data from the NTL-LTER to estimate the hedonic model (Fig. 4). The
NTL-LTER water quality data were collected at the deepest part of the
lake, which is considered to be the most representative sampling lo-
cation within the lake. It is also the location that GLM simulates as

representative of whole-lake water quality. Secchi depths were mea-
sured fortnightly and surface chl-a concentrations were measured every
30 days during summer months. A change in NTL-LTER chl-a in-
strumentation created an uncorrectable bias in concentrations mea-
sured between 2002 and 2007. To address this discrepancy, we used
observed Secchi depth and chl-a data from 2008 through 2015 only to
estimate the hedonic model.

A fundamental assumption of hedonic models is that buyers and
sellers are fully informed regarding property characteristics. The em-
pirical investigator, without buyer-specific data, does not know what
information on lake water quality buyers use when contemplating
purchases of properties. We use summer mean water quality values to
represent informed buyers perceptions of water quality in the hedonic
model for both Secchi depth and surface chl-a concentrations (Michael
et al., 2000).

If a sale happened in the first half of the year, January 1st to June
30th, we used the summer water quality measurements from the prior
year in the hedonic model because buyers cannot observe water quality
when Lake Mendota is frozen during the winter months. If the sale
happened in the second half of the year, July 1st to December 31st, we
use summer water quality from the same year in the hedonic model.

We obtained property transactions data for Dane County, WI from
two sources (National Association of Realtors and CoreLogic). These
data include property sale prices and selected property characteristics.
We include arms-length transactions of single-family residential prop-
erties, which are sales between willing sellers and willing buyers, for
estimation. We exclude from the analysis properties with extreme sales
prices (i.e. any observation with price per square foot less than $20 or
greater than $500 per square foot). The final dataset contained 13,169
property-sale records (Fig. 5).

To account for the Great Recession and associated changes in re-
sidential-property markets, we used transactions from 2009 to 2015
(Dominguez and Shapiro, 2013). We adjusted sales prices to 2015
dollars using the Consumer Price Index for all urban consumers to re-
flect inflation. Year and month fixed effects were included in the esti-
mation to capture adjustments in the residential property market as the
economy progressed beyond the Great Recession. These fixed effects
also are crucial for identifying the water quality effect as the estimation
includes a single water quality measure for each year.

We geocoded each transaction in the data using GIS to identify
Mendota lakefront properties, distance to Lake Mendota, and the re-
lative proximity of the home to Lake Mendota versus Lake Monona. To
identify a property's proximity to the lakes, we merged the property
sales data with lake boundaries from the USGS National Hydrography
Dataset. We also merged the property sales data with census block
group data from the U.S. Census Bureau to obtain community demo-
graphic data. We overlaid property sales, lake, census and school dis-
trict data layers to compile the dataset used to estimate the hedonic
model. In general, lakefront properties are larger, somewhat older, and
more expensive than non-lakefront properties (Table 1).

2.2.2. Hedonic Model Estimation Results
The estimated coefficient on the Lakefront variable is significant in

both the Secchi and chl-a equations specifications, indicating a sig-
nificant price premium for properties located along the shoreline of
Lake Mendota (Table 2). The estimated Distancetolake coefficients are
negative and significant, indicating that the property values decrease
with distance from the lake. The coefficients on the distance variables
should be interpreted with caution as distance to the lake is correlated
with distance to the state capital building, the Madison central business
district and the University of Wisconsin campus. The campus is located
on the shore of Lake Mendota and the state capital and central business
district are located about a half mile from campus.

Other property characteristics such as square footage of living area,
house age, number of bathrooms, median household income, age and
race are statistically significant in explaining variation in property sale
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prices. Appendix Table A8 reports school district and year and month of
property sale fixed effect coefficient estimates.

The primary variables for the coupling analysis are Lakefront*ln
(Secchi) and Lakefront*ln(chl-a). Both interaction terms are significant
and have the expected signs, which were positive for Secchi and ne-
gative for chl-a. As discussed above, we expected that the coefficient on
the Secchi interaction variable would be larger than for the chl-a in-
teraction variable in absolute value. This expected relationship is borne
out by the estimation results.

An interesting outcome is that the coefficient on Lakefront is larger
in the chl-a equation than in the Secchi equation. This suggests that the
unobserved changes in water quality captured by Secchi measurements,
but not by chl-a measurements, are captured by the Lakefront coeffi-
cient in the chl-a equation.

Finally, we did try estimating hedonic models where the water
quality variables were interacted with distance of each property from
the lake to see if the effect of water quality on property values extended
spatially through the community, but these variables were not statis-
tically significant. Thus, the only broader community impacts in the
current analysis will arise through changes in property-tax revenues
from lakefront properties.

2.3. Coupling the GLM With the Hedonic Model (Nutrient Loading
Scenarios)

We link the GLM and hedonic model results presented in the pre-
vious two sections to create a coupled limnological-economic (natural-
human) modeling tool that allows us to connect changes in nutrient
loading with changes in water quality and ultimately, to changes in
property values in communities surrounding the lake. To model these
connections, we first use GLM to simulate changes in water quality
during the summer months in response to nutrient loading scenarios.
We then use GLM predictions of changes in Secchi depth and chl-a

concentrations and the estimated coefficients of the hedonic model to
predict changes in property values in the lake catchment.

We ran the calibrated GLM for eight scenarios of changes in N and P
loading (j = ±25, 50, 75 and 100%) to Lake Mendota. We chose these
scenarios to cover a wide range of potential changes in nutrient loading
that will provide reference bounds to inform potential policy actions.
The scenarios are based on changes in N and P concentrations flowing
into the lake relative to observed N and P inflow concentrations during
the 13.5-year model period. For each scenario, we changed inflow
concentrations in the GLM input file of all N and P fractions simulta-
neously and by the same proportion. This is a simplifying assumption
that is consistent with a change in the use of purchased fertilizers by
farmers, which contain fixed proportions of N and P (Maguire et al.,
2009). We ran GLM for each of these scenarios to simulate changes in
Secchi depth and chl-a concentrations.

Using simulated changes in these water quality metrics from GLM,
we then used the estimated parameters from the hedonic model to
predict changes in property values. Letting sj denote the nutrient
loading scenarios, we predicted the sale prices of lakefront properties
as:

   ⎟= ⎛

⎝
⎜ + = ⎞

⎠
∗ +P β β Lakefront ln WaterQuality β Xexp ( 1 )s i s0 3j j

(2)

where Psj is the predicted sale price for water quality scenario sj, the β s
are estimated coefficients and X is a vector of the means of other ex-
planatory variables multiplied by their respective estimated coefficients
(β ). TheWaterQualitysj is the predicted water quality level associated
with each nutrient loading scenario. The predicted sales price on the
left-hand side of Eq. (2) is the capitalized value of the stream of benefits
a property owner enjoys from the property at the specific level of water
quality.

To obtain changes in property values we derived the proportional
changes in water quality as:

Fig. 4. Observed water quality data for summer (Jun.
1–Aug. 31) across modeled years in hedonic model
(2008–2015). Boxes represent the first quartile, median, and
third quartiles of the distribution of measured water quality
data (gray points) for each modeled year (2008–2015);
whiskers represent 1.5× the interquartile range. Black
diamonds indicate the mean value for each year.
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where sb is predicted baseline water quality and sj is the predicted water
quality under each nutrient loading scenario. Building on Eq. (3), the
proportional change in property values is:

 ∆ = ∆P epr s
β WQln( )

j
sj3 (4)

Building on Eq. (4), the capitalized change in property value for the
property with the average sales price (P ) in the data is:

 ∆ = ± ∆ ∗P P P(1 )s pr sj j (5)

We aggregated changes in property values ( ∆Psj) for each scenario to
all lakefront properties as:  = ∆ ∗aggP P ks sj j , where k is the total
number of lakefront properties (those that sold and did not sell during
the study period).

While the estimated hedonic model only includes the effect of water
quality on lakefront properties, changes in the value of these properties
can have financial implications for the entire community via changes in
property tax revenues. Using number of lakefront properties in each of
the five communities with frontage on Lake Mendota (c = Madison,
Maple Bluff, Middleton, Shorewood Hills, Westport), we compute the
weighted property tax mill rate m as: = ∑ =m c

k m
k1

5 c c , where kc and mc

are community-specific mill rates and number of lakefront properties.
We multiplied the capitalized aggregate change in property values

by the weighted property tax mill rate to predict the potential gains or
losses in property tax revenues (PTR) due to a change in water quality:


∆ = ⎛

⎝
⎜

∆ ⎞

⎠
⎟ ∗ ∗PTR

P
k m

1,000
.c s

c s
,

,
j

j

(6)

Property tax mill rates are levied per $1000 of the assessed property
value so ∆Pc s, j is divided by 1000. We used predicted changes in prop-
erty values as proxies for assessed value changes. As communities re-
assess properties over time, the change in capitalized value due to
changes in water quality will be reflected in updated assessments.

Our coupling differs, yet complements, the coupling presented by
Liu et al. (2019). The Liu study uses a general hydrologic model (SWAT)
that is not specific to lake ecosystems (Francesconi et al., 2016), while
we employ GLM that is specific to lake systems. This paper also explains
more about GLM than Liu does about SWAT but, at the same time,
SWAT is a more well-known model in the literature; GLM is best known
currently in the limnology literature where it was developed. The Liu
study investigated a watershed that contained a reservoir, while our
study focused on a natural lake and nutrient loads from the catchment
into the lake. Liu used SWAT predictions as input to estimate the he-
donic model, while in the current study we use observed water quality
data. Comparing the estimation of hedonic models with simulated
versus observed data is an interesting auxiliary area of investigation for
future research. In the current paper, we use GLM to predict changes in
water quality as inputs to the estimated hedonic model to compute
effects on property values from different nutrients loads to the lake,
while the Liu study did not appear to do such model linking. Thus, the
similarities and differences of these papers collectively push the frontier
of coupled natural-human model linking in the context of lake

Fig. 5. Geographical location of property sales of the estimation period (2009–2015). Red dots represent lakefront property sales (n = 100), green dots represent
non-lakefront property sales (n = 13,069). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ecosystems.

3. Simulation Results and Scenario Evaluations

In this section, we report the modeled results of nutrient loading
scenarios in terms of water quality impacts and the resulting con-
sequences for property prices and property taxes.

3.1. Water Quality Simulation Results

For both Secchi depth and chl-a concentrations, changes were not
symmetric across the nutrient loading scenarios. We observed greater
proportional changes under a reduction in nutrient loading than under
an equivalent increase in nutrient loading (Fig. 6). The most extreme
reduction in nutrient loading (100% decrease) resulted in a mean
summer Secchi depth of 7.15 ± 0.02 m, which is a 250% increase
relative to the baseline (Fig. 6A). At the other extreme, a 100% increase
in nutrient loading resulted in a mean summer Secchi depth of
1.80 ± 0.04 m, which is approximately a 12% decrease relative to the
baseline. For chl-a, a 100% reduction in nutrient loading resulted in

mean summer concentrations of 4.19 ± 0.11 μg L−1, which is a 95%
decrease relative to baseline (Fig. 6B). A 100% increase in nutrient
loading resulted in mean summer concentrations of
103.0 ± 1.4 μg L−1, which is a 17% increase relative to baseline. In a
lake with high nutrient concentrations and poor water quality, these
results suggest that relatively little additional degradation in these
metrics of water quality occurs with further increases in nutrient
loading. In contrast, relatively greater gains in water quality may be
obtained with an equivalent proportional decrease in nutrient loading.

3.2. Property Value and Property Tax Effects

A one-meter increase in mean summer Secchi depth leads, on
average, to an $11,412 increase in property price, and a 1 μg L−1 de-
crease in the mean summer surface concentration of chl-a leads, on
average, to a $1263 increase in property price. Based on the average
sale price of $569,921 for properties with frontage on Lake Mendota,
these represent changes of 2% and 0.2%. The respective aggregate
changes in property values across all lakefront properties are
$9,243,720 for a one-meter increase in Secchi depth and $1,023,030 for

Table 1
Summary statistics for residential property sales: 2009–2015.

Variable Unit Lakefront
(N = 100)

Non-lakefront
(N = 13,069)

Mean Standard deviation Mean Standard deviation

Property characteristics
Sales price 2015 US$ $569,921 $353,741 $222,957 $112,461
Log of sales price 2015 US$ 13.1 0.6 12.2 0.4
Living area square feet 2722 1288 1899 798
Lot size acres 0.30 0.20 0.21 0.15
House age years 32 17 28 16
Number of bathrooms count 3 1 2 1

Neighborhood and locational characteristics
Distancetolake Meters 0 0 4231 2640
Lake Monona dummy 1 if Monona closest 0 0 0.378 0.485
Median household income 2015 US$ $54,771 $10,536 $64,962 $22,409
Population > 65 % 10.2 4.6 10.7 6.0
African American % 5.4 2.2 6.4 6.4

Distribution of school districts
Sales in District 5503180. % 0 – 0.92 –
Sales in District 5508520 %. 100 – 82 –
Sales in District 5508910 % 0 – 0.46 –
Sales in District 5509510. % 0 – 4.18 –
Sales in District 5509810. % 0 – 0.02 –
Sales in District 5514640. % 0 – 2.06 –
Sales in District 5515330 % 0 – 10.36 –

Distribution of sales by year
Sales in 2009 % 11 – 13 –
Sales in 2010 % 8 – 11 –
Sales in 2011 % 19 – 11 –
Sales in 2012 % 17 – 15 –
Sales in 2013 % 14 – 17 –
Sales in 2014 % 14 – 15 –
Sales in 2015 % 17 – 18 –

Distribution of sales by month
Sales in January % 6 – 4 –
Sales in February % 1 – 5 –
Sales in March % 4 – 7 –
Sales in April % 6 – 9 –
Sales in May % 8 – 12 –
Sales in June % 13 – 15 –
Sales in July % 12 – 14 –
Sales in August % 13 – 10 –
Sales in September % 8 – 7 –
Sales in October % 6 – 7 –
Sales in November % 12 – 6 –
Sales in December % 11 – 4 –

Note: We assume the Distancetolake for all lakefront properties is 0.
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a one-meter decrease in chl-a concentration.
In the context of our scenarios, a 25% increase in nutrient loading

will, on average, lead to a loss of $2883 to $5756 for a lakefront
property, depending on whether we look at chl-a concentrations or
Secchi depth, respectively (Table 3). These changes are equivalent to
0.5% to 1.0% of the average lakefront property sales prices. On the
other hand, if we consider a 25% decrease in nutrient loading, lakefront
property owners gain $3994 to $6897 per property on average, which is
equivalent to a slightly larger increase of 0.7% to 1.2% of the average
property sale price. The disparity between property values for nutrient
increases and decreases becomes starker as the magnitude of the nu-
trient loading changes, e.g., 17.6% for a 100% decrease and 1.6% for a
100% decrease based on Secchi depth.

The reader will note that the changes in property values based on
Secchi measurements are larger than the comparable changes in values
based on chl-a concentrations. This difference is not surprising as chl-a
concentration is one component of the water column that affects clarity,
but not the only component. Thus, while chl-a is a measurement of
fundamental importance to a limnologist, Secchi disks provide a sum-
mative measure of what a layperson sees when they look into a lake.

At the community scale, considering all lakefront properties in the
five municipalities with frontage on Lake Mendota, improved water
quality arising from 25% and 100% reductions in nutrient loading yield
increases in annual tax revenues ranging from about $73 thousand to
nearly $2 million (Table 4). The $1,984,356 increase in tax revenues

(2015$) from a 100% decrease in nutrient loading, based on chl-a, is
about 0.3% of the 2014 annual property tax revenues in the five mu-
nicipalities. While this is a small percentage, taking the average Wis-
consin teacher salary of $51,469 in 2017–18 (Will, 2019) and assuming
a fringe benefit rate of 36%, $2 million in annual property tax revenue
could fund 28.6 teaching positions.

Our results suggest that a decrease in nutrient loading will generate
greater economic benefits than the loss associated with an equal pro-
portionate increase in nutrient loading. The asymmetry in the effects of
increases and decreases in nutrient loading on water quality (see Fig. 6)
drives the asymmetry in property sale price effects and subsequent
changes in property-tax revenues. This occurs because Lake Mendota is
eutrophic and has high N and P concentrations due to a long history of
nutrient loading. Thus, decreases in nutrient loads result in larger im-
provements in water quality than proportionately similar increases in
nutrient loads reduce water quality. Further, a small decrease in nu-
trient loading (25%) has a much smaller impact than a large decrease
(100%). Because of the high N and P concentrations in the lake, it is
necessary to have a substantial reduction in nutrient loading to sub-
stantially improve water quality.

The greater the nutrient loading restrictions, the more pronounced
property value effects are likely to be and the ripple effects of changes
in property tax revenues through the community to those who do not
own lakefront property. While 100% changes in nutrient loads to the
lake may be unlikely and if such changes occurred, the property market
would be expected to adjust, the 25% and 100% change scenarios might
be expected to show the outer bounds of the economic effects in terms
of the effects on property values and property taxes.

4. Conclusions and Discussion

The scope of the U.S. Clean Water Act underscores the need to ex-
amine the potential benefits and costs of changes in nutrient loading
(Cropper and Isaac, 2011), motivating analyses that examine the con-
nectivity between freshwater systems and human actions (Cobourn
et al., 2018). To date, the literature coupling limnological simulation
models with models of economic consequences of changes in water
quality is sparse. By coupling models of lake water quality and property
prices, our study is an example of coupled modeling to provide evi-
dence-based, integrated assessment analyses of policies that address
nutrient pollution.

Our GLM results indicate that in Lake Mendota, increases in nutrient
loads have little effect on water quality as measured by Secchi depth
and surface chl-a concentration. This result is due to high nutrient
concentrations in the lake. Conversely, reductions in nutrient loading
can lead to substantial improvements in water quality. One might ex-
pect the opposite pattern for an oligotrophic lakes with low nutrient
concentrations, in which reductions in nutrient loading might do little
to improve water quality while increases in nutrient loading could re-
sult in proportionally larger reductions in water quality.

It follows that the greatest capitalized changes in property values for
Lake Mendota are for reductions in nutrient loading. There are smaller
changes in property values for increases in nutrient loading. Thus, the
costs and benefits associated with different policies depend critically on
the starting point for the lake water quality and the direction of the
policy change being evaluated. This suggests that the importance of
policies to protect lakes with high water quality from nutrient loading
and the benefits of reducing nutrient loading in lakes with low water
quality.

Future studies might consider including the coupling of a recreation
demand model that would extend the economic effects to residents of
the community that do not own lakefront property but uses the lake for
recreation (e.g., Zhang and Sohngen, 2018). In fact, some who do not
use the lake for recreation in the current state might choose to recreate
on the lake if water quality improved. Even people who do not use a
lake for recreation might benefit from improvements in water quality if

Table 2
Hedonic property-value model estimation results using mean water quality
measurements.

Variable Secchi depth Chl-a concentration

Lakefront dummy 0.353***
(0.008)

0.598***
(0.015)

Distancetolake −0.00005***
(3.02e-06)

−0.00005***
(3.02e-06)

Lakefront*ln(Secchi) 0.129***a

(0.003)
Lakefront*ln(Chl-a) −0.057***

(0.004)
Lake Monona dummy 0.004

(0.013)
0.004
(0.013)

Living area 0.0004***
(0.00003)

0.0004***
(0.00003)

Living area2 −2.38e-08***
(4.52e-09)

−2.39e-08***
(4.53e-09)

Lot size 0.008
(0.067)

0.009
(0.067)

Lot size2 0.013
(0.017)

0.013
(0.017)

House age −0.003***
(0.0006)

−0.0027***
(0.0006)

House age2 −7.15e-06
(7.81e-06)

−7.43e-06
(7.81e-06)

Number of bathrooms 0.027***
(0.005)

0.027***
(0.005)

Median household income 4.24e-06***
(4.14e-07)

4.24e-06***
(4.14e-07)

% of population > 65 −0.008***
(0.002)

−0.008***
(0.002)

% of African American −0.014***
(0.0007)

−0.014***
(0.0007)

Constant 11.654***
(0.032)

11.65***
(0.033)

School district fixed effects Yes Yes
Year fixed effects Yes Yes
Month fixed effects Yes Yes
Observations 13,169 13,169
R-squared 0.602 0.602

Notes: ***, **, * indicates significance at the 1%, 5%, and 10% level respec-
tively. Standard errors have been clustered at the school district level. Detailed
coefficient estimates of fixed effects are reported in supporting material table
A8.
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they hold non-use values for the lake as part of their community culture
(e.g., Loomis, 2006).

On a more granular level, our results could be used in public edu-
cation efforts to motivate property owners to take actions that improve
water quality and thereby their property values. That is, property
owners might be receptive to educational programs on actions they can
take on their own property from which they will benefit directly.
Potential increases in lakefront property prices can motivate property
owners to take direct actions such as reducing fertilizer usage on lawns
and planting riparian buffers along the lakeshore. These motivations
can help to unite property owners, scientists, environmental activists
and public decision makers to use coupled models to support evidence-
based policy discussions and actions.
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Fig. 6. GLM model outputs for summer (Jun. 1–Aug. 31)
across modeled years (2008–2013). A) Secchi depth and (B)
surface chlorophyll-a concentrations under different nu-
trient loading scenarios relative to the baseline, ranging
from a 100% decrease in inflow nitrogen and phosphorus to
a 100% increase relative to baseline concentrations. Boxes
represent the first quartile, median, and third quartiles of
the distribution of daily values (gray points) for each sce-
nario across modeled years (2008–2013); whiskers re-
present 1.5× the interquartile range. Black diamonds in-
dicate the mean value for each scenario.

Table 3
Changes in the mean value for lakefront properties.

Nutrient load change
scenarios

Change in property values

Secchi depth changes Chl-a concentration
changes

25% increase −$5756 (−1.0%) −$2883 (−0.5%)
50% increase −$7808 (−1.4%) −$4162 (−0.7%)
75% increase −$8587 (−1.5%) −$5007 (−0.9%)
100% increase −$9146 (−1.6%) −$4995 (−0.9%)
25% decrease +$6897 (1.2%) +$3994 (0.7%)
50% decrease +$23,135 (4.1%) +$13,531 (2.3%)
75% decrease +$53,659 (9.4%) +$31,854 (5.6%)
100% decrease +$100,190 (17.6%) +$108,161 (19.0%)

Notes: Values in parentheses represent corresponding percentage changes in
property values for each scenario based on the average selling price of lakefront
properties during the study period of $569,921.

Table 4
Changes in annual property tax revenues for lakefront communities.

Nutrient load change
scenarios

Annual tax revenue change

Secchi depth changes Chl-a concentration
changes

25% increase −$105,601 −$52,892
50% increase −$143,248 −$76,357
75% increase −$157,540 −$91,860
100% increase −$167,795 −$91,640
25% decrease +$126,535 +$73,275
50% decrease +$424,442 +$248,244
75% decrease +$984,445 +$584,404
100% decrease +$1,838,118 +$1,984,356

Notes: Computation based on number of lakefront properties (n = 810) and
weighted average property tax mill rate ($/1000) across five lakefront com-
munities (m = 22.65).
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