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A B S T R A C T

Understanding potential effects of climate warming on biogeochemical cycling in freshwater ecosystems is of
pressing importance. Specifically, increasing air and water temperatures could accelerate nutrient cycling in
lakes, which has major implications for in-lake nutrient concentrations, water column nutrient stoichiometry,
and downstream nutrient export. Lakes may respond differentially to warming based on their current trophic
state, although direct comparisons of temperature-driven changes in nutrient cycling between low- and high-
nutrient lakes are lacking. Here, we used an open-source coupled hydrodynamic biogeochemical model to si-
mulate ecosystem-scale changes in water column total nitrogen (TN) and total phosphorus (TP) concentrations
and TN:TP ratios due to potential incremental changes in air temperature (from +0 °C to +6 °C) in a low-
nutrient and a high-nutrient lake. Warming resulted in lower TN and higher TP epilimnetic (surface water)
concentrations in both lakes, resulting in reduced molar TN:TP ratios in both lakes. While the high- and low-
nutrient lakes had similar magnitude reductions in TN:TP ratio between the +0 °C and +6 °C scenarios (30.3%
and 34.6%, respectively), median epilimnetic TN:TP in the low-nutrient lake significantly decreased with as little
as 1 °C of warming. Warming also altered net nutrient retention, with decreased downstream export of TN but
increased downstream export of TP in both lakes. Our modeling results suggest that low-nutrient lakes may
respond to warming at lower levels of temperature increase than high-nutrient lakes, and that climate warming
could intensify effects of nutrient enrichment driven by increased N and P loading due to land-use change.

1. Introduction

As sentinels of climate change (sensu Adrian et al., 2009), many
lakes are warming rapidly (O'Reilly et al., 2015). Syntheses of satellite
imagery and long-term in situ monitoring of lake temperatures world-
wide indicate that there is widespread warming of lakes in response to
air temperature changes, with surface water temperatures increasing in
some cases by up to 1.3 °C per decade (O'Reilly et al., 2015;
Richardson et al., 2017b). Climate models also suggest that warming air
temperatures will increase the proportion of lakes in the continental
United States that experience prolonged periods of water temperatures
in excess of 30 °C (Butcher et al., 2017, 2015), with implications for
habitat suitability, food web dynamics, and biogeochemical cycling
(Butcher et al., 2015; Magee et al., 2019; Sahoo et al., 2013;

Wilhelm and Adrian, 2008; Winder et al., 2009). Consequently, it is
important to identify the effects of warming air temperatures on lake
ecosystem function.

Warming air temperatures can potentially affect lake nutrient con-
centrations – including nitrogen (N) and phosphorus (P) – through
multiple interacting ecosystem processes. Previous field survey and lake
ecosystem modeling studies have demonstrated that as air temperatures
increase, density differences between surface and bottom water layers
can become more pronounced, increasing the stability of the water
column, and resulting in longer and more intense lake thermal strati-
fication (Adrian et al., 2009; Foley et al., 2012; Kraemer et al., 2015;
Richardson et al., 2017b). Longer and stronger periods of stratification
often result in prolonged periods of hypoxia (dissolved oxygen <
2 mg L−1) in the bottom waters (Foley et al., 2012; Jiménez
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Cisneros et al., 2014; Marcé et al., 2010). Low oxygen in turn can
promote the release of dissolved P and ammonium (NH4

+) from the
sediments into the water column, while simultaneously decreasing ni-
trate (NO3

−) via denitrification (Stumm and Morgan, 1996;
Wetzel, 2001). Increasing temperatures can also alter nutrient con-
centrations more directly, as phytoplankton growth rates and corre-
sponding dissolved nutrient uptake generally increase with temperature
(Reynolds, 2006). Warmer temperatures can also directly accelerate
water column mineralization, thereby increasing nutrient concentra-
tions (Stumm and Morgan, 1996).

Interacting processes are difficult to disentangle at the ecosystem
scale, especially across a range of air temperature changes, which has
motivated two decades of microcosm and mesocosm experiments (re-
viewed by Fordham, 2015). This work has provided important insights
to the effect of warming on individual ecological mechanisms. How-
ever, simultaneous consideration of these interacting processes is
needed to understand the balance of N and P at the ecosystem scale,
necessitating other research approaches. Process-based numerical si-
mulation models allow for specific drivers and pathways to be isolated
within complex ecosystems (e.g., Gal et al., 2009; Snortheim et al.,
2017); for example, holding external nutrient loads from the catchment
constant under multiple air temperature scenarios isolates the effects of
temperature on solely within-lake processes. Similarly, setting static
Arrhenius parameters (temperature-driven rate constants that control
the response of biogeochemical rates to temperature; Arrhenius, 1889)
ensures that the temperature-dependence of different processes is
identical among climate scenarios, lakes, and nutrients, allowing us to
study their relative importance in model space. Finally, modeling total
N and total P rather than individual constituents incorporates changes
in dissolved and particulate nutrients that occur due to phytoplankton
uptake and remineralization, which are included in the total nutrient
fraction.

Because of the multiple interacting mechanisms by which air tem-
perature can alter nutrient transformations, it is challenging to predict
the net effect of warming on ecosystem-scale N and P cycling in lakes,
which will subsequently alter downstream export of nutrients.
Increasing air temperature will have multiple indirect effects on lakes
and their catchments, such as changing the water temperature and

nutrient mineralization rates of inflow streams (Jeppesen et al., 2010).
However, examining the direct effects of air temperature change re-
presents an important first step for understanding lake biogeochemical
responses to climate change. Specifically, it is possible that nutrient
cycling in low-nutrient lakes may exhibit greater sensitivity to the di-
rect effects of warming than in high-nutrient lakes (Collins et al., 2019).
For example, as warming increases the duration and intensity of
thermal stratification in a low-nutrient lake, it may induce bottom-
water hypoxia for the first time, which would in turn initiate internal N
and P loading from the sediments into the water column, representing a
fundamental change to the lake's biogeochemistry and ecosystem
functioning (Beutel and Horne, 2018). In comparison, it is possible that
any warming-induced increase in the duration of hypoxia and intensity
of internal loading in high-nutrient lakes may primarily reinforce the
existing high-nutrient state. High-nutrient lakes tend to already ex-
perience hypoxia under current climatic conditions, and the baseline
nutrient mineralization and sediment release rates are likely already
high, though we are unaware of any previous study that has directly
demonstrated this mechanism.

Here, we used eleven years of observational data to calibrate and
validate a coupled, one-dimensional hydrodynamic and biogeochemical
lake model for a low-nutrient lake and a high-nutrient lake. We used the
calibrated models to estimate the effects of different climate warming
scenarios on each lake's N and P cycling and export, focusing on eco-
system-scale responses. Specifically, we quantified the direct net effects
of climate warming on the timing and duration of hypoxia and coin-
cident changes in surface water N and P concentrations to improve our
understanding of how nutrient cycling in the two lakes may change
with warming temperatures. We also quantified how warming may
alter lake nutrient retention and downstream export, which have im-
portant implications for water quality in the larger catchment.
Biogeochemical cycling in low-nutrient lakes is generally understudied
relative to high-nutrient lakes, despite a rapid decline in the number of
low-nutrient lakes across the continental U.S. (Stoddard et al., 2016);
this provides additional motivation to understand how trophic state
mediates responses to warming. Thus, comparing N and P dynamics in
two lakes of different trophic state under a range of temperature
warming scenarios advances our understanding of ecosystem-scale

Fig. 1. Map showing within-state locations
(points) of Lake Mendota (Wisconsin, USA,
shown in red) and Lake Sunapee (New
Hampshire, USA, shown in blue); insets show
lake shape, the location of each lake's high-
frequency buoy (buoy icon), and the dominant
surface inflows (diamonds) and outflow (tri-
angle). (For interpretation of the references to
color in this figure legend, the reader is re-
ferred to the web version of this article.)
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responses to future warming beyond a single-lake or single-scenario
study and highlights the importance of historical nutrient baselines for
predicting future ecosystem conditions.

2. Methods

2.1. Modeled lakes

We modeled lake responses to climate warming based on two well-
studied north temperate lakes, Lake Mendota (Wisconsin, USA) and
Lake Sunapee (New Hampshire, USA; Fig. 1). These two lakes share
multiple common characteristics, including glacial origin, climate sea-
sonality (due to similar latitude), a dimictic mixing regime, and inflows
dominated by surface water (Table 1, Cobourn et al., 2018). In addition,
the lakes have similar mean depths and water residence times (Table 1).
The lakes also differ in watershed land use, which contributes to sub-
stantial differences in lake water nutrient concentrations (Table 1). The
Mendota watershed is large relative to the lake area, and is dominated
by agriculture (67%) and urban development (22%), which deliver
large N and P loads to the lake and contribute to Mendota's high-nu-
trient state (Cobourn et al., 2018; Snortheim et al., 2017). In contrast,
the Sunapee catchment is relatively small compared to the lake surface
area, and is 80% forested, with only 6% currently developed
(Richardson et al., 2017a). Nutrient inputs to the lake are low, resulting
in Sunapee's low-nutrient state (Carey et al., 2014). Given their con-
trasting nutrient concentrations, these two lakes serve as approximate
end members on a continuum of trophic state.

Rather than simulating simplified imaginary model ecosystems
(e.g., identical lakes with hemispherical basins and no inflow tribu-
taries), we used Lakes Mendota and Sunapee for this study because we
needed their rich long-term monitoring datasets to ensure that our
parameterized models were appropriately capturing baseline conditions
for a high- and low-nutrient lake. In addition, we used air temperature
warming scenarios of up to 6 °C based on downscaled data for these two
lakes, vs. simulated air temperature scenarios based on global averages.
After the models representing Mendota and Sunapee were calibrated
with observational data, we focused on these two lake models as
idealized high-nutrient and low-nutrient ecosystems, respectively, to
examine potential responses to climate warming for temperate lakes of
different baseline water quality.

2.2. Model description and driver data

We used the open-source, one-dimensional hydrodynamic General
Lake Model (GLM version 2.1.8; Hipsey et al., 2014, 2019) to model the
energy and water budget of each lake. The Aquatic EcoDynamics

library (AED; Hipsey et al., 2013) was coupled with GLM (hereafter,
GLM-AED) to model water quality dynamics, including changes in
concentrations of dissolved oxygen (DO), N, and P. We chose GLM-AED
because it has dynamic vertically-resolved layers within a lake, which
allows for comparisons of stratified biogeochemical processes
(Hipsey et al., 2019). Moreover, the heat transfer and mixing algo-
rithms in GLM, developed by Hamilton and Schladow (1997) have been
found to successfully reproduce observed water temperatures of lakes
with varying conditions (e.g., mixing regime, climate, latitude, mor-
phology) around the world (Bruce et al., 2018).

GLM-AED is particularly suited for studying how climate warming
may alter ecosystem-scale lake nutrient cycling because it is able to
simultaneously simulate lake stratification dynamics and a suite of in-
teracting N and P processes (Bruce et al., 2018; Hipsey et al., 2019,
2013). These biogeochemical processes include nitrification; deni-
trification; sediment fluxes of NO3

−, NH4
+, phosphate (PO4

3−), dis-
solved organic P (DOP), dissolved organic N (DON), particulate organic
P (POP), and particulate organic N (PON); PO4

3- adsorption/desorption;
DON, DOP, PON, and POP water column mineralization; NO3

−, NH4
+,

and PO4
3− phytoplankton uptake; zooplankton excretion of DON, DOP,

PON, and POP; and the settling rate of all N and P fractions
(Hipsey et al., 2013). All of these processes will directly respond to
warming temperatures because the underlying model equations include
Arrhenius parameters governing their temperature dependence, hence
the need for an ecosystem modeling approach to address our study's
objectives (Hipsey et al., 2019).

The GLM-AED combines lake morphometry with meteorological
and inflow driver data to simulate a water budget and thermal profile
for each lake. We compiled observed hourly meteorological driver data
for each lake from the North American Land Data Assimilation System
(NLDAS-2). These data included air temperature (°C), wind speed (m
s−1), relative humidity (%), shortwave and longwave radiation (W
m−2), and precipitation (m d−1) for the full model period. We used a
combination of observational and statistically-modeled data to develop
a daily time series for the surface inflows to each lake, which included
tributary inflow rates (m3 s−1), inflow water temperature (°C), and
inorganic and organic fractions of N and P (mmol m−3; see Supplement
A for lake-specific inflow data sources and model simulations). We in-
cluded eight different P and N fractions in our inflow files: filterable
reactive P (FRP), adsorbed FRP, DOP, POP, NO3

−, NH4
+, DON, and

PON. Inflow data also included two fractions of organic carbon: parti-
culate and dissolved. Each lake model included a single outflow dis-
charge file at a daily time step (Supplement A).

We ran each lake model at an hourly time step over an eleven-year
period from 8 November 2003 to 31 December 2014. We chose this
period because it represents the most complete time series of high-
frequency observational data for both lakes and encompasses a re-
presentative range of climatic events for each modeled lake, including
both flood and drought periods and particularly cool and warm years.
In addition, the length of the model runs allows for integration of
background meteorological variability that occurs over time.

2.3. Baseline calibration and validation

We calibrated the baseline GLM-AED model for each lake using the
7-year period from 1 April 2004 – 31 December 2010, and validated
model state variables using the 4-year period from 1 January 2011 – 31
December 2014. The model “spin-up” period was from 8 November
2003 through 31 March 2004, meaning we did not analyze model
outputs prior to 1 April 2004. During calibration, we manually changed
model parameters for each lake with the goal of sequentially optimizing
goodness-of-fit (GOF) metrics for a suite of focal state variables (water
balance, water temperature, DO, N, P), with a focus on reproducing
seasonal patterns and peak timing for each state variable (following
Kara et al., 2012). Lake-specific calibration focused on parameters re-
lated to lake morphometry and physical mixing, nutrient fluxes at the

Table 1
Physical and chemical characteristics of focal lakes.

Characteristic Mendota Sunapee

Latitude 43.10 43.38
Longitude −89.65 −72.03
Watershed area (km2) 5931 1235

Lake area (km2) 39.61 16.65

Watershed:lake area ratio 15.0 7.4
Mean depth (m) 12.71 11.25

Residence time (years) 4.41 3.15

Lake volume (108 m3) 5.032 1.862

Mean air temperature ( °C) 8.613 7.193

Mean summer epilimnetic total nitrogen (µg L−1) 9604 1704

Mean summer epilimnetic total phosphorus (µg L−1) 854 5.34

1 Lathrop and Carpenter 2014.
2 Lake area (m2) × mean depth, following Solomon et al. (2013).
3 NLDAS-2 for 2003–2014.
4 Solomon et al., 2013.
5 Richardson et al., 2017a.
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sediment-water interface, and settling rates of organic C, N, and P.
Importantly, almost all other parameter values governing water

column biogeochemical processes (e.g., all Arrhenius temperature
multipliers, half-saturation O2 concentrations governing biogeochem-
ical fluxes, and maximum aerobic mineralization rates for organic C, N,
and P) were set as identical between lakes, so that the only parameters
that differed between the two models were related to inherent differ-
ences in trophic state (e.g., higher sediment PO4

3− release rates in the
high-nutrient lake than the low-nutrient lake; Tables A2, A5). We used a
general set of parameters to represent phytoplankton and zooplankton
groups in both lakes (following Hipsey et al., 2013), because phyto-
plankton and zooplankton were not the focus of this analysis.

Model outputs of water temperature, DO, total nitrogen (TN) and
total phosphorus (TP) were compared to both low-frequency manual
water samples (up to twice monthly) and high-frequency buoy data
(hourly from April – October each year) collected from the deepest
point in each lake (Supplement A). Lake Sunapee buoy data were col-
lected by the Lake Sunapee Protective Association (LSPA;
Richardson et al., 2020) and Lake Mendota data were collected through
the North Temperate Lakes Long Term Ecological Research (NTL-LTER)
site (Magnuson et al., 2010a, 2010b, 2010c, 2010d). For both lakes, we
compared observed maximum daily water temperature and mean daily
DO concentrations from both manual and buoy measurements to
modeled daily noon water temperatures and DO concentrations (Sup-
plement A; Magnuson et al., 2010a, 2010b). Manual samples of TN and
TP were available up to twice monthly (Sunapee: Carey et al., 2014;
Steiner and Titus, 2017; Mendota: Magnuson et al., 2010a, 2010d), and
were compared to mean daily model outputs for each lake (Supplement
A).

We calculated four GOF metrics to compare model outputs and
observational data: coefficient of determination (R2), root mean square
error (RMSE), Spearman's rank correlation coefficient (Spearman's rho
[ρ]), and normalized mean absolute error (NMAE; Kara et al., 2012)
using the hydroGOF package for R (Zambrano-Bigiarini, 2017). Sepa-
rate GOF calculations were made for the epilimnion (0–4 m, both lakes)
and hypolimnion (16–20 m, both lakes). We focused on these layers to
compare representative epilimnetic and hypolimnetic depths between
the two lakes; using different layer depths yielded qualitatively similar
results. We chose to use layers instead of discrete depths for calibration
and validation to maximize available manual observational data for
comparison with model output. Evaporation effects on the lakes’ water
levels were negligible relative to precipitation, permitting the use of the
same layer depths over time and among scenarios within lakes (Figure
A1).

2.4. Climate warming simulations

To model changes in lake nutrient dynamics with climate warming,
we ran a suite of downscaled climate warming scenarios (ranging from
+0 to +6 °C above 2003–2014 air temperatures) for each lake. The
scenarios were developed to encompass the maximum range of poten-
tial warming above historical 1950–1980 conditions projected for the
lakes in year 2099, based on MACAv2-METDATA downscaled global
climate models (Abatzoglou, 2013; Abatzoglou and Brown, 2012;
Taylor et al., 2012). For Lake Mendota, maximum air temperature
warming of approximately 5.4 °C is projected by 2099 under RCP8.5
relative to historical conditions, while Lake Sunapee is projected to
warm by approximately 5.7 °C by 2099. We applied these potential
warming air temperature scenarios to the historical 2003–2014 period
and held all other meteorological driver variables constant to compare
scenario output with the baseline 2004–2014 simulation output. While
these simplified scenarios did not include the weather variability ex-
pected with future climate change (e.g., Hayhoe et al., 2008, 2010), it
allowed us to isolate the direct effects of different levels of potential air
temperature warming on ecosystem-scale lake nutrient cycling.

Because it is computationally intensive to model a range of climate

scenarios for multiple lakes, we implemented a distributed computing
platform (GRAPLEr; www.graple.org) that enables users to run lake
model simulations, submitted from the R environment, on cloud com-
puting and cyber infrastructure resources (Subratie et al., 2017a). Si-
mulations are distributed across processing nodes that have been ag-
gregated into a peer-to-peer overlay virtual private network
(Subratie et al., 2017b), dramatically reducing computation time.

2.5. Data analysis

Model outputs of focal state variables in each climate warming
scenario were compared to the baseline simulation, with a focus on the
period between 1 April and 31 October each year (henceforth,
“summer”), which includes spring mixing, summer thermal stratifica-
tion, and fall mixing in both lakes (Figure A2, A3). By comparing the
scenario model outputs to the baseline model output, not observational
data, our analyses focused on the temperature responses of idealized
high- and low-nutrient lakes based on Mendota and Sunapee, respec-
tively. We focused primarily on the differences between the baseline
(+0 °C) and +6 °C scenarios to examine the direct effects of a range of
warming possibilities on nutrient cycling in the selected lakes.

We first calculated daily Schmidt stability (J m−2) for each lake
across warming scenarios to test whether air temperature warming
increased water column stratification, using the Lake Analyzer tools
(Read et al., 2011) in MATLAB version R2018b (MathWorks, Natick,
MA, USA). We then summarized daily estimates of stability as summer
medians each year in the 2004–2014 modeling period and used those
values to compare the range and overall (among-year) summer median
stability across scenarios. We calculated stratification duration as the
number of days for which water temperatures between the surface
(0 m) and hypolimnion (20 m in Mendota, 18 m in Sunapee) differed by
more than 1 °C, following Woolway et al. (2014) and based on historical
monitoring data for both lakes, which show that this threshold rea-
sonably delineates mixed vs. stratified periods. These depths were
chosen based on hypsographic curves and represent the hypolimnetic
depth that encompasses approximately 80% of the sediment area in
each lake.

To quantify the incidence of hypoxia, we calculated the number of
days each summer (1 April – 31 October) for which hypolimnetic DO
concentrations (20 m in Mendota, 18 m in Sunapee) were < 2 mg L−1.
We then compared the median number of hypoxic DO days for each
summer and its range among warming scenarios for each lake. We
calculated median concentrations for epilimnetic (0 m, both lakes) and
hypolimnetic (20 m in Mendota, 18 m in Sunapee) TN (µg L−1), TP (µg
L−1), and median molar TN:TP each summer. We then used Anderson-
Darling statistical tests (Razali and Wah, 2011) to make pairwise
comparisons between the distributions of each response variable (TN,
TP, TN:TP) across the 11-year model period (2004–2014) between each
incremental climate warming scenario and the baseline distribution.
We also compared model outputs of denitrification, NH4

+ mineraliza-
tion, and PO4

3− fluxes at the sediment-water interface among scenarios
to assess potential mechanisms for changes in TN and TP concentra-
tions.

Finally, we estimated net fluxes of TN and TP as a percent of inputs
each summer for both lakes following Powers et al. (2015):

= ×F _ 100 ( Outputs Inputs)/ Inputsnet summer

where Outputs and Inputs represent the daily mass of TN or TP leaving
and entering the lake, respectively, during the period of 1 April to 31
October each year. Daily stream inflow concentrations of TN and TP
constituents were summed to calculate daily inflow TN and TP, then
multiplied by daily inflow volume to yield the daily mass of TN and TP
inputs. Daily median epilimnetic TN and TP concentrations were mul-
tiplied by outflow volume to calculate the mass of TN and TP outputs as
both lake's outflows are composed of surface water. Daily inputs and
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outputs were summed across the 1 April to 31 October period each year
to estimate Fnet_summer, with Fnet_summer > 0 signifying that the lake was
a net source (downstream export) of TN or TP, and Fnet_summer < 0
indicating that the lake was a net sink (retention and/or removal) of N
or P. All analyses except for the MATLAB Lake Analyzer calculations
were conducted in R version 3.5.2 (R Core Team, 2019).

3. Results

3.1. Model calibration

For both lakes, calibrated models of GLM-AED reasonably simulated
observed dynamics in focal physical and chemical state variables in the
baseline 2004–2014 simulation (Table 2, Figs. 3 and 4). Modeled water
temperatures were generally within an RMSE of 2 °C for both lakes,
with better fits for both manual and buoy data in the epilimnion than
the hypolimnion (Figs. 3A, 4A). Dissolved oxygen RMSE was ≤ 2.5 mg
L−1 for all depths and data sources in each lake (Figs. 3B, 4B). While
there were fewer observations of N and P than temperature and DO,
particularly in Lake Sunapee, model fits generally reproduced the sea-
sonality and range of concentrations in both lakes (Table 2; Figs. 3C-D,
4C-D). Although the calibrated Sunapee model had higher bias for TP
than Mendota (Table 2; Fig. 4D), we deemed the calibration acceptable
because it minimized differences in parameterization of biogeochemical
processes between the two lakes to enable comparison of temperature
scenarios. Moreover, all subsequent analyses were focused on com-
parison of the scenario model outputs to the baseline model output, not
observational data.

3.2. Strength of stratification and duration of hypoxia increase with climate
warming

Climate warming scenarios led to warming of the water column in
both lakes (Fig. 5). Between the baseline (+0 °C) and +6 °C air tem-
perature scenarios, among-year median summer surface water tem-
peratures increased in both lakes, with a 19.1% (3.8 °C) increase from
the baseline in the high-nutrient lake (individual year median change
ranging from +3.1 °C to +4.1 °C), and a 19.2% (3.6 °C) increase in the
low-nutrient lake (individual year change +3.3 °C to +4.0 °C). The
hypolimnion of each lake experienced less warming than the epilimnion
overall between the baseline and +6 °C scenarios, but was more vari-
able among years, with a 5.4% (0.7 °C) increase from the baseline in the
high-nutrient lake (individual year change −1.4 °C to +4.0 °C), and a
12.5% (1.3 °C) increase in the low-nutrient lake (individual year change
+0.2 °C to +3.3 °C).

Warmer surface water temperatures amplified thermal stratification
in both lakes (Fig. 5): among-year median Schmidt stability between 1
April and 31 October increased 50% in the high-nutrient lake (in-
dividual year change: +5 to +95%) and 57% in the low-nutrient lake
(individual year change: +34 to +105%) between the baseline and
+6 °C scenarios (Fig. 6A). In addition, the year-to-year variability in
Schmidt stability increased with warming, with the range of summer
medians increasing 2.1× in the high-nutrient lake and 1.1× in the low-
nutrient lake between the baseline and +6 °C scenarios (Fig. 6A). Along
with intensifying stratification, the duration of stratification increased
among scenarios, though the amount of change differed between lakes
and was highly variable year-to-year. In the high-nutrient lake, among-
year median stratification duration increased eight days (from 193 to
201 days) between the baseline and +6 °C scenarios (year-to-year
range −35 to +50 days), with the average spring onset of stratification
occurring seven days sooner, and fall turnover occurring one day later
in the +6 °C scenario than in the baseline. In contrast, among years, the
low-nutrient lake experienced spring onset three days sooner, and
turnover four days later, resulting in a median change in stratification
duration of seven days (from 205 to 212; year-to-year range −24 to
+42 days).

Warming-induced changes in stability and stratification likely con-
tributed to the observed increase in the extent and duration of low DO
concentrations in the hypolimnion of both lakes (Fig. 7, 6B). Between
the baseline (+0 °C) and +6 °C scenarios, hypoxic DO concentrations
in the hypolimnion occurred earlier in the year and lasted longer, re-
sulting in more summer days with DO concentrations < 2 mg L−1

(Fig. 6B). In the high-nutrient lake, there were up to 1.1× as many
summer hypoxic days under the +6 °C scenario as the baseline (max-
imum 131 vs. 119 days per year, respectively). In the low-nutrient lake,
effects on DO were much larger, and warming led to the development of
prolonged hypolimnetic hypoxia for the first time, with up to 39 hy-
poxic days per summer under +6 °C warming, compared to a maximum
of one hypoxic day per summer in the baseline simulation (Fig. 6B). In
addition, more intense warming resulted in greater hypoxia in the low-
nutrient lake: with +6 °C warming, summer hypoxia occurred in five of
11 simulation years, versus in only one of 11 simulation years for
scenarios with up to +2 °C warming. As with stability, the year-to-year
variability of hypoxia duration in the low-nutrient lake also increased
with warming, with the range of medians increasing from one to 39
days between the baseline and +6 °C scenarios (Fig. 6B). In contrast,
the range of medians was 41 days in the high-nutrient lake for both the
baseline and +6 °C scenarios (Fig. 6B).

Table 2
Goodness-of-fit (GOF) metrics (coefficient of determination [R2], root mean square error [RMSE], Spearman's rank correlation coefficient [ρ], normalized mean
absolute error [NMAE]) for key state variables in Lake Mendota and Lake Sunapee for the combined calibration and validation period (1 January 2004 – 31 December
2014). GOF metrics were calculated for two depths; the epilimnion (0–4 m) and hypolimnion (16–20 m) of each lake using manually collected (Manual) and/or
seasonal high-frequency buoy (Buoy) data.

Variable Depth Observation Mendota Sunapee
n R2 RMSE ρ NMAE n R2 RMSE ρ NMAE

Daily Maximum Temperature (°C) Epilimnion Manual 163 0.97 1.37 0.98 0.06 45 0.79 1.39 0.88 0.05
Buoy 1461 0.92 1.77 0.94 0.06 1263 0.98 1.06 0.99 0.04

Hypolimnion Manual 163 0.87 1.55 0.83 0.12 43 0.41 2.44 0.68 0.21
BuoyA 1318 0.55 1.55 0.69 0.10 783 0.93 1.44 0.93 0.10

Daily Mean Dissolved Oxygen (mg L−1) Epilimnion Manual 162 0.43 1.88 0.64 0.15 45 0.24 0.96 0.70 0.06
BuoyB 1274 0.02 2.30 0.03 0.18 693 0.72 0.36 0.85 0.03

Hypolimnion Manual 162 0.82 2.49 0.90 0.33 43 0.33 2.34 0.62 0.22
Total Nitrogen

(µg L−1)
Epilimnion Manual 161 0.08 376 0.34 0.33 6 0.01 233 −0.09 1.69
Hypolimnion 94 0.35 789 0.25 0.38 2 1.00 229 −1.00 1.10

Total Phosphorus
(µg L−1)

Epilimnion Manual 161 0.10 118 0.32 1.50 41 0.01 6 0.24 1.04
Hypolimnion 94 0.69 121 0.75 0.40 47 0.09 8 −0.33 1.23

A Sunapee hypolimnion buoy temperature based on deepest two meters of available buoy data (12–14 m).
B Buoy dissolved oxygen was only collected at 0.5 m (Mendota) or 1.0 m (Sunapee).
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3.3. Epilimnetic TN and TP concentrations and stoichiometric ratios change
with warming

Climate warming had ecosystem-scale effects on nutrient cycling
that resulted in altered epilimnetic TN and TP concentrations, though
the magnitude of responses was lake-specific, and the direction of
change differed between TN and TP. In both lakes, surface TN de-
creased between the baseline (+0 °C) and +6 °C scenarios. In the high-
nutrient lake, the among-year median summer epilimnetic TN was
19.2% lower in the +6 °C scenario than in the baseline scenario

(Fig. 8A), with a statistically significant change in the distribution of
median summer epilimnetic TN compared to the baseline simulation
with warming of at least +5 °C (Table 3; Fig. 8A). The low-nutrient lake
also exhibited decreased epilimnetic TN with climate warming; among-
year median TN was 30.4% lower in the +6 °C scenario than in the
baseline scenario. Importantly, in the low-nutrient lake, there was a
statistically significant shift in the distribution of median summer TN
relative to the baseline when warming was at least 2 °C (Table 3;
Fig. 8A).

Decreased TN concentrations were likely driven by increased rates

Fig. 2. Conceptual diagrams of the (A) General Lake Model (GLM; adapted from Hipsey et al., 2019) and (B) Aquatic EcoDynamics library (AED; adapted from
Hipsey et al., 2013). Text indicates model inputs (blue) and model-simulated processes (black). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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of denitrification with warming. Among-year median water column
denitrification rates increased 45.0% and 37.6% in the high- and low-
nutrient lakes, respectively, between the baseline and +6 °C scenarios.
Warming also increased N-processing rates at the sediment-water in-
terface in both lakes; NH4

+fluxes from the sediments into the water
column increased 42.7% and 35.1% in the high- and low-nutrient lakes,
respectively, among years between the baseline and +6 °C scenarios.
Among-year median denitrification rates at the sediment-water inter-
face also increased, up 29.9% in the high-nutrient lake and 26.6% in the
low-nutrient lake between the baseline and +6 °C scenarios.

In contrast to TN, both lakes exhibited increased epilimnetic TP
concentrations in the +6 °C scenario compared to the baseline scenario,
though the magnitude of change differed between lakes. In the high-
nutrient lake, among-year median summer epilimnetic TP was 23.1%
higher in the +6 °C scenario than in the baseline scenario (Fig. 8B),
with a significant shift in the distribution of summer surface TP with

warming of +6 °C (Table 3). In the low-nutrient lake, among-year
epilimnetic TP increased 8.9% between the baseline and +6 °C scenario
(Fig. 8B), with significant shifts in the distribution of median summer
TP with at least 2 °C of warming. These changes were attributed to
increased P fluxes from the sediments with warming temperatures;
median sediment fluxes increased 33.5% and 33.6% in the high- and
low-nutrient lakes, respectively, between the baseline and +6 °C sce-
narios.

Lake-specific differences in TN and TP in response to warming led to
differences in the epilimnetic N:P stoichiometry in both lakes, but the
low-nutrient lake was more sensitive to low levels of warming. In the
high-nutrient lake, among-year median epilimnetic molar TN:TP was
30.3% lower between the baseline and +6 °C warming scenarios
(Fig. 8C), and the distributions of summer median TN:TP were sig-
nificantly lower than the baseline with at least +4 °C of warming
(Table 3). In the low-nutrient lake, the proportional shift in epilimnetic

Fig. 3. Baseline modeled (solid lines) ecosystem state variables (A: water temperature (Temp.), B: dissolved oxygen (DO), C: total nitrogen (TN), D: total phosphorus
(TP)) compared to observed manual measurements (triangles) and high-frequency buoy data (circles) in Lake Mendota epilimnion (0–4 m, left panels) and hypo-
limnion (16–20 m, right panels).
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TN:TP distribution was similar to that of the high-nutrient lake, with an
among-year median reduction of 34.6% between the baseline and
+6 °C scenarios. However, the distribution of TN:TP in the low-nutrient
lake was shifted significantly lower than the baseline with as little as
1 °C of warming (Table 3; Fig. 8C).

3.4. Warming differentially changes net export of N and P

Warming generally decreased TN export but increased TP export
downstream for both lakes during the summer (1 April – 31 October;
Fig. 9). In the high-nutrient lake, among-year median summer TN ex-
port downstream decreased 2.2% between the baseline and +6 °C
scenarios (individual year change −5.9% to +0.4%), while in the low-
nutrient lake, TN export decreased 16.1% between the same scenarios
(individual year change −24.6% to −3.5%), resulting in greater net N

retention and/or removal in both lakes during the summer. In both
lakes, variability in TN export decreased with warming; the year-to-
year range of summer export decreased 22.2% in the high-nutrient lake
and 28.5% in the low-nutrient lake between the +0 °C and +6 °C
scenarios. Both lakes remained net sinks of N (summer fluxes < 0)
among years and across scenarios.

Both lakes exhibited lower net retention and greater downstream
export of TP during the summer, with greater changes observed in the
high-nutrient lake than the low-nutrient lake under warming scenarios.
Among-year median TP export downstream in the high-nutrient lake
increased 29.6% between the +0 °C and +6 °C scenarios (individual
year change −4.2% to +170%). Net TP export in the high-nutrient
lake exhibited high year-to-year variability in the baseline scenario
(−71.0% to −16.7%), and the year-to-year range increased 57.8%
between the +0 °C and +6 °C scenarios, with at least one year

Fig. 4. Baseline modeled (solid lines) ecosystem state variables (A: water temperature (Temp.), B: dissolved oxygen (DO), C: total nitrogen (TN), D: total phosphorus
(TP)) compared to observed manual measurements (triangles) and high-frequency buoy data (circles) in Lake Sunapee epilimnion (0–4 m, left panels) and hypo-
limnion (16–20 m, right panels).
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estimated as a net source of P (summer export > 0) with warming of at
least +2 °C (Fig. 9). In the low-nutrient lake, TP export downstream
increased, but much less than in the high-nutrient lake; 16.2% between
the +0 °C and +6 °C scenarios (individual year change −1.6% to
+40.2%). Baseline year-to-year variability in TP export was also lower
in the low-nutrient lake than in the high-nutrient lake (−38.9% to
−18.2%), and variability decreased slightly (−8.7%) between the
+0 °C and +6 °C scenarios. Unlike the high-nutrient lake, the low-
nutrient lake consistently acted as a net sink of P (summer export < 0)
across all warming scenarios and years.

4. Discussion

4.1. Ecosystem-scale effects of climate warming

Our study provides new evidence that ecosystem-scale nutrient cy-
cling in both high- and low-nutrient lakes is sensitive to air temperature
warming, though sensitivity likely varies by lake trophic state.

Specifically, low-nutrient lakes may experience significant changes in
nutrient concentrations and stoichiometry at lower levels of warming
than high-nutrient lakes. We observed lower TN and higher TP con-
centrations in both lakes as they warmed, but the low-nutrient lake
exhibited significant changes in epilimnetic nutrients and TN:TP ratios
at 1–2 °C of warming, vs. 5–6 °C of warming in the high-nutrient lake.
Consequently, as the number of low-nutrient lakes is rapidly declining
across the continental U.S. (Stoddard et al., 2016) due to increased N
and P loading from ongoing land-use change and an increased in-
cidence of extreme events delivering terrestrial nutrients and sediments
(e.g., Kelly et al., 2019; Prein et al., 2017), our study demonstrates that
climate warming may intensify lake eutrophication.

Our modeling study corroborates empirical data from field surveys,
mesocosm experiments, and paleolimnological records that illustrate
how climate warming can transform lake ecosystem functioning (re-
viewed by Havens and Jeppesen, 2018; Jeppesen et al., 2014;
Moss, 2012). Other modeling studies that have used process-based, one-
dimensional lake simulation models have shown how climate warming

Fig. 5. Modeled water column temperatures ( °C) in the high-nutrient lake (A, B) and the low-nutrient lake (C, D) under +0 °C (A, C) and +6 °C (B, D) air
temperature warming scenarios, shown from 1 April to 31 October 2011 as an example year. Color scale shows water temperatures throughout the water column;
note differences in maximum water temperature between the two lakes. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 6. Changes in modeled (A) Schmidt stability (J m−2) and (B) low dissolved oxygen (< 2 mg L−1) days under +0 °C to +6 °C air temperature warming scenarios
for the high- and low-nutrient lakes. Points indicate median values for the period of 1 April to 31 October each year.

Fig. 7. Modeled water column dissolved oxygen (mg L−1) in the high-nutrient lake (A, B) and the low-nutrient lake (C, D) under +0 °C (A, C) and +6 °C (B, D) air
temperature warming scenarios, shown from 1 April to 31 October 2011 as an example year. Color scale shows dissolved oxygen concentrations throughout the water
column. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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alters lake thermal profiles and mixing regimes (Bueche et al., 2017;
Bueche and Vetter, 2015; Fenocchi et al., 2018; Woolway and
Merchant, 2019), hypolimnetic anoxia (Fang et al., 2012; Ito and
Momii, 2015; Snortheim et al., 2017; Stefan et al., 1993), and nutrient
cycling (Arheimer et al., 2005; Komatsu et al., 2007; Malmaeus et al.,
2006). Our study builds upon these earlier modeling analyses to add
new evidence that lake nutrient concentrations, through linked bio-
geochemical processes, may change differentially across a range of
potential air temperature warming scenarios depending on lake trophic
state.

4.2. Potential drivers of lake nutrient changes

The complexity and non-linearity of ecosystem processes makes it
challenging to predict how changing external drivers due to altered
climate (e.g., warming air temperature) may affect ecosystem func-
tioning (Burkett et al., 2005; Parrott and Meyer, 2012; Shaver et al.,
2000), necessitating our modeling approach. In lakes, N and P con-
centrations in surface waters are jointly controlled by external loading
from the catchment, climate forcing, and internal nutrient cycling
(Nürnberg, 1984; Stumm and Morgan, 1996; Wetzel, 2001), creating
complex patterns in observational data that challenge our ability to link

cause and effect in empirical studies (reviewed by Carpenter, 1988).
Following the precedent of previous modeling studies (e.g.,
Komatsu et al., 2007; Snortheim et al., 2017), we held external nutrient
loads constant while manipulating air temperature driver data, thereby
simplifying the inherent complexity of lake nutrient cycling to isolate
the effects of climate warming on epilimnetic nutrients.

Our findings highlight the strong coupling between lake thermal
structure and nutrient cycling, and how that coupling may vary be-
tween lakes of different trophic state. Warmer air temperatures lead to
stronger thermal stratification, which further isolates hypolimnetic
waters from the atmosphere, reducing the availability of oxygen for
biogeochemical processing (Snortheim et al., 2017). While previous
research has implied the importance of this mechanism for nutrient
cycling (e.g., Pettersson et al., 2003; Sahoo et al., 2013), our results
show that not only will warmer air temperatures promote hypolimnetic
hypoxia, but will also reduce surface water TN while increasing TP. Due
to the complexity of lake ecosystem simulations, these changes in nu-
trient concentrations cannot be attributed to a single process, but rather
emerge from interactions of multiple processes in the model. We use the
lake model as a calibrated experimental tool, linking drivers and phy-
sical/ecological processes that likely lead to the changing nutrient
concentrations we observed in the model results. We show that the links

Fig. 8. Distributions of among-year median epilimnetic (0 m) (A) total nitrogen (TN), (B) total phosphorus (TP), and (C) molar TN:TP for the high- and low-nutrient
lakes across air temperature warming scenarios (+0 °C to +6 °C) for the period of 1 April to 31 October each year. Distributions for each temperature scenario are
based on 11 model years per lake. Stars indicate significant differences in distributions between warming scenarios and the baseline simulation (+0 °C) as assessed by
Anderson-Darling tests; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

Table 3
Results of Anderson-Darling tests for shifts in epilimnetic (0 m) nutrient distributions (total nitrogen [N], total phosphorus [P]) and nutrient ratios [molar N:P]
between baseline (+0 °C) and each of the warming scenarios (+1 °C to +6 °C, denoted by Scenario Contrast) for the high-nutrient lake and the low-nutrient lake.
The Anderson-Darling criterion (AD), standardized test statistic (T.AD), and P-values (asymptotic approximation) are reported for each pairwise scenario comparison.
P-values in bold indicate significant (α = 0.05) shifts in the distribution; values in italics indicate marginal shifts (α = 0.10).

Scenario Contrast Total Nitrogen Total Phosphorus Molar N:P
AD T.AD P AD T.AD P AD T.AD P

High-nutrient lake
+1 °C 0.54 −0.66 0.75 0.71 −0.41 0.57 1.16 0.22 0.28
+2 °C 0.84 −0.23 0.46 1.72 1.02 0.12 2.21 1.72 0.06
+3 °C 1.52 0.75 0.16 1.46 0.65 0.18 2.15 1.64 0.07
+4 °C 2.11 1.58 0.07 2.12 1.60 0.07 3.15 3.06 0.02
+5 °C 2.50 2.14 0.04 2.29 1.84 0.06 4.14 4.48 0.006
+6 °C 2.60 2.28 0.04 2.67 2.38 0.03 5.03 5.74 0.002
Low-nutrient lake
+1 °C 1.40 0.58 0.19 2.05 1.50 0.08 4.46 4.93 0.004
+2 °C 3.62 3.73 0.01 3.23 3.20 0.02 7.14 8.75 <0.001
+3 °C 5.50 6.41 0.001 3.55 3.63 0.01 8.52 10.72 <0.001
+4 °C 6.28 7.52 <0.001 3.55 3.63 0.01 8.52 10.72 <0.001
+5 °C 6.58 7.95 <0.001 3.55 3.63 0.01 8.52 10.72 <0.001
+6 °C 6.74 8.18 <0.001 3.55 3.63 0.01 8.52 10.72 <0.001
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between thermal structure, hypoxia, and temperature-mediated bio-
geochemical cycling all are important to N and P concentrations in a
warming climate, but their importance depends on lake characteristics.

Our data support previous findings that in the absence of changes to
hydrology and external nutrient loading, warming alone can sub-
stantially alter lake thermal structure (Magee and Wu, 2017a;
Palmer et al., 2014; Richardson et al., 2017b; Woolway and
Merchant, 2019) and in turn, oxythermal habitat (Fang et al., 2012;
Magee et al., 2019) and nutrient processing (Komatsu et al., 2007;
Radbourne et al., 2019). In our scenarios, the hypolimnion warmed less
than the epilimnion, but lake warming was more variable among years
as air temperatures increased. This is consistent with previous research
on lakes across the northeastern United States that found approximately
half of lakes experience deepwater warming as air temperatures in-
crease, while others experience deepwater cooling (Richardson et al.,
2017b). Similarly, our models indicated that Schmidt stability and
duration of stratification increased with warming, as was found in
previous climate warming simulations based on lake “archetypes,” in
which model lakes were conceptualized to encompass regionally-re-
presentative ranges of lake depth, surface area, and water clarity
(Butcher et al., 2015).

The observed decreases in TN concentrations associated with
warming are likely related to greater hypoxia and subsequent N re-
moval from the lakes by denitrification. Previous empirical surveys of

water chemistry across latitudinal gradients showed greater N limita-
tion in warmer, tropical lakes that are thermally stratified most of the
year, with increased denitrification potential driven by reduced oxygen
availability in warmer hypolimnia (Lewis Jr. 1996 and references
therein, Lewis Jr. 2002, Talling and Lemoalle 1998). Our modeling
results show that lakes can exhibit a similar change in N cycling in a
warming climate. In the warmest scenario, there were over 10× more
days per year with hypoxia in the low-nutrient lake than under baseline
conditions and 1.1× as many days with hypoxia in the high-nutrient
lake, increasing NO3

− removal from the water column by 38% in the
low-nutrient lake and 45% in the high-nutrient lake relative to baseline
rates. This increased rate of N removal exceeded higher rates of NH4

+

mineralization (up 43% and 35% in the high- and low-nutrient lakes,
respectively) from the sediments due to warmer waters, resulting in net
TN decreases.

Increased TP concentrations in both lakes in our study likely relate
to increases in hypolimnetic hypoxia (DO < 2 mg L−1). While hypo-
limnetic anoxia (DO ~0 mg L−1) is an established mechanism for sti-
mulating the release of P bound in sediments into the water column
(Nürnberg, 1984; Wetzel, 2001), it is less well-understood how changes
in hypoxia may affect surface water nutrient concentrations. Previous
empirical studies have shown that hypoxia can increase P fluxes from
the sediments and subsequent downstream export (Gerling et al., 2016),
even in low-nutrient lakes (North et al., 2014). Our modeling results

Fig. 9. Estimated net flux of total nitrogen (A, B) and total phosphorus (C, D) downstream as a percent of inflow N and P in the high-nutrient lake (A, C) and low-
nutrient lake (B, D). Points indicate net flux (%) for the period of 1 April to 31 October each year; flux < 0 represents net retention and/or removal, flux > 0
represents net downstream export.
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suggest a similar behavior in lakes experiencing warming. Lakes in our
study had increased incidence of hypoxia, which created low DO con-
ditions in the hypolimnion that increased P fluxes from the sediments
into the water column. At +6 °C warming, fluxes of P from the sedi-
ments were 34% higher than baseline rates in both lakes. Interestingly,
although our analysis focused on the differences between the baseline
(+0 °C) scenario and +6 °C potential warming scenario, the physical
and chemical responses of both lakes appeared to be mostly linear for
intermediate warming scenarios (Figs. 5, 8, and 9).

As noted above, we cannot precisely quantify the relative im-
portance of thermal stratification, decreases in hypolimnetic oxygen, or
temperature-mediated nutrient cycling rates on surface TN and TP, as
these processes are strongly interconnected and occur simultaneously
within the model. More empirical data from years with contrasting air
temperature and hypolimnetic oxygen conditions could be used to
disentangle these drivers. Additionally, future work implementing a
two- or three-dimensional coupled hydrodynamic-ecosystem model
could be used to identify hotspots of N and P biogeochemical cycling
within each lake ecosystem (sensu Bocaniov et al., 2016;
Cavalcanti et al., 2016), thereby informing the relative importance of
oxygen, thermal stratification, and water temperature.

4.3. Differences in warming response between a high-nutrient and a low-
nutrient lake

Our models of Lake Mendota and Lake Sunapee enable comparisons
of idealized high- and low-nutrient lakes as a first step toward under-
standing how the net direct effects of warming on TN and TP cycles in
lakes may differ across trophic states. Across our warming scenarios, we
found that the magnitude of relative changes in TN:TP ratios tended to
be similar between the two lakes, though reductions in TN were sub-
stantially higher in the low-nutrient lake than the high-nutrient lake,
while TP increases were proportionally larger in the high-nutrient lake
than the low-nutrient lake. The most notable difference between lakes
was the temperature increase at which nutrient concentrations and
ratios exhibited statistically significant changes: in the high-nutrient
lake, TN, TP, and TN:TP were significantly different from baseline
conditions at +5 °C, +6 °C, and +4 °C, respectively. In contrast, the
low-nutrient lake experienced significant changes in TN, TP, and TN:TP
at +2 °C, +2 °C, and +1 °C, respectively. This consistently lower
threshold for responses suggests that ecosystem-scale processes in the
low-nutrient lake may be fundamentally more sensitive to warming air
temperatures, which aligns with predictions that high-nutrient lakes
may have more muted responses to climate warming (Collins et al.,
2019).

These results highlight the value of using decadal-scale ecosystem
models coupled with long-term data to understand potential implica-
tions of climate warming on lake ecosystems. Our 11-year model period
allowed for the detection of overall trends in TN and TP cycling in both
lakes, despite substantial year-to-year variability in nutrient con-
centrations and fluxes driven in part by background variability in me-
teorological and inflow driver data. The use of whole-ecosystem si-
mulation models to detect relatively small changes in nutrient
concentrations can provide important insights into how lake nutrient
cycling at the ecosystem scale may change over decadal scales. While
our focus here was on the GLM-AED ecosystem model, we note that
other approaches, including mesocosm experiments, field surveys, and
statistical models (reviewed by Jeppesen et al., 2014), also provide
valuable context for understanding ecosystem responses to warming.
Indeed, a combination of modeling and empirical approaches will likely
provide the strongest insights about potential future changes in lake
responses to warming.

4.4. Lake warming in the context of climate change

Climate change is expected to elicit non-linear, interconnected

changes in lake ecosystem functions. While our lake models simulate
many interconnected ecosystem-scale biogeochemical processes that
will change in response to the direct effects of increasing air tempera-
ture, our relatively simplistic uniform year-round air temperature sce-
narios do not account for potential effects of variability in air tem-
perature warming (Hayhoe et al., 2010, 2008), which will affect the
onset and intensity of seasonal stratification, and in turn nutrient cy-
cling. In addition, our current approach does not include potential in-
direct effects of warming and other aspects of climate change that are
likely to affect nutrient cycling in Lake Mendota and Lake Sunapee. For
example, climate warming is expected to change the timing and in-
tensity of precipitation (e.g., Mearns et al., 2013) and increase upstream
nutrient leaching in temperate lake catchments (Jeppesen et al., 2010,
2009), which would affect inflow water volumes and nutrient con-
centrations for our model lakes. Such changes could be further com-
pounded by human-driven land use change in lake watersheds, re-
sulting in dramatically altered nutrient loading to lakes (Cobourn et al.,
2018; Fraterrigo and Downing, 2008). In addition, warming tempera-
tures will alter the phytoplankton community (reviewed by Carey et al.,
2012), such that the current model parameterization of phytoplankton
functional groups is unlikely to be representative of future commu-
nities. Further, it is likely that warming will also alter lake carbon dy-
namics in addition to nitrogen and phosphorus cycling
(Bartosiewicz et al., 2019). Using a coupled catchment-lake model and
harnessing the power of the GRAPLEr distributed computing framework
(Subratie et al., 2017a) in future work to generate millions of additional
scenarios that explore the interactive effects and potential emergent
properties of multiple global change variables would greatly improve
our understanding of the nuanced ways that climate change will likely
affect lakes. In addition, it is possible that different model para-
meterizations would result in different nutrient responses; however, the
similarity of relative changes in water temperature, thermal stratifica-
tion, denitrification, sediment P fluxes, and summer TN export between
the two lakes calibrated to represent varying trophic states suggests that
lake results are robust.

Finally, while our analysis focused on the stratified period of Lake
Mendota and Lake Sunapee (1 April to 31 October), as north temperate,
dimictic lakes, both lakes currently experience ice-covered periods for
multiple months each winter (Bruesewitz et al., 2015; Magee et al.,
2016). Across the full year, warming may exacerbate changes in nu-
trient processing and retention in our focal lakes, as increased air
temperatures reduce ice-cover duration and ice thickness (e.g., Magee
and Wu, 2017b). Despite these limitations, our study provides evidence
that ecosystem-scale nutrient concentrations can change, sometimes
substantially, due to increases in air temperature alone; thus, decreases
in inflow nutrients could help alleviate the expected effects of climate
warming.
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