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Abstract
Freshwater reservoirs play a significant role in the global carbon cycle by processing and storing large quantities of dissolved 
organic matter (DOM). Quantifying the magnitude of DOM fluctuations across multiple temporal scales can advance our 
understanding of how the controls on reservoir carbon cycling may vary. We monitored fluorescent DOM (fDOM) using an 
in situ epilimnetic sensor at a ten-minute resolution over one year in a eutrophic reservoir in southwestern Virginia, USA 
with low dissolved organic carbon concentrations (2–6 mg  L−1). We determined the dominant time scales of variability and 
key environmental predictors of fDOM concentrations using continuous wavelet transforms and autoregressive time series 
modeling. Throughout the year, fDOM concentrations varied considerably, with maximum concentrations in the autumn (30.0 
quinine sulfate units) and minimum concentrations in the spring (4.7 quinine sulfate units). The monthly time scale was the 
dominant time scale of variability, but the daily time scale was significant during the summer. Based on the autoregressive 
time series analysis, precipitation, water temperature, and shortwave radiation were important environmental predictors of 
fDOM on daily time scales, while water temperature alone best predicted monthly variability. Our study is one of the first to 
reveal substantial variability in fDOM concentrations during a full year, emphasizing the need for long-term, high-frequency 
in situ DOM monitoring to capture changes occurring on multiple time scales. By quantifying the variability and environ-
mental predictors of fDOM on different time scales, we are able to better understand how and why DOM concentrations 
change throughout the year.

Keywords Continuous wavelet transforms · Dissolved organic carbon · Fluorescent dissolved organic matter · High 
frequency sensors · Reservoir limnology · Time series modeling

Introduction

Dissolved organic matter (DOM) in lakes and reservoirs is 
a complex mixture of many different organic compounds, 
with bulk DOM concentrations often represented as dis-
solved organic carbon (DOC; Curtis and Adams 1995). 
Freshwater DOM plays an important role in the global car-
bon cycle (Cole et al. 2007; Tranvik et al. 2009), in addition 

to influencing lake and reservoir ecosystem functioning and 
water quality (Kaplan et al. 2006; Williamson et al. 2015). 
Lake and reservoir DOM, whether allochthonous or autoch-
thonous in origin, can either be buried in the sediments, min-
eralized and released to the atmosphere as carbon dioxide 
 (CO2) or methane  (CH4), or transported downstream (Tran-
vik et al. 2009; Hanson et al. 2015; Mendonça et al. 2017). 
Understanding the magnitude of DOM variability on differ-
ent time scales and the environmental predictors of potential 
DOM pathways is needed to constrain the role of lakes and 
reservoirs in the global carbon cycle (Cole et al. 2007), espe-
cially as DOM and DOC dynamics may be changing due to 
altered climate and land use (Tranvik et al. 2009).

Variability in DOM concentrations has important conse-
quences for lake and reservoir carbon balance, ecosystem 
functioning, and ecosystem services, such as drinking water 
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(Kaplan et al. 2006; Hanson et al. 2015; Williamson et al. 
2015). DOM concentrations can influence light attenuation 
(Seekell et al. 2015), rates of microbial metabolism (Amon 
and Benner 1996; Minor and Stephens 2008; Williams et al. 
2010), water chemistry (Schindler et al. 1992), plankton 
migration and food web structure (Leech and Williamson 
2001; Miner and Kerr 2011; Williamson et al. 2015), and 
can lead to lake browning (Nicolle et al. 2012; Kritzberg 
et al. 2014). At high levels, DOM can decrease light avail-
ability and inhibit primary production, while at lower levels, 
DOM can stimulate primary production by releasing bound 
nutrients through photolysis (Seekell et al. 2015). In drink-
ing water sources specifically, DOM can also serve as a pre-
cursor to disinfection by-product (DBP) formation (Kaplan 
et al. 2006; Tomlinson et al. 2016), which can be costly to 
treat. DBPs are formed in the water treatment process when 
DOM reacts with a disinfectant, such as chlorine, to form 
potentially carcinogenic compounds (Tomlinson et al. 2016).

Lakes and reservoirs exhibit a wide range of DOC con-
centrations worldwide (0.1 to > 300 mg  L−1), though most 
waterbodies exhibit concentrations between 1 to 20 mg  L−1 
(Sobek et al. 2007). Lake and reservoir DOM studies, how-
ever, have primarily focused on the summer stratified period, 
so the extent of DOM variability throughout the year, espe-
cially in the winter, remains understudied (but see Gonsior 
et al. 2013 and Denfeld et al. 2016). Variability in DOM 
concentrations can be due to many factors, including pre-
cipitation and associated runoff (Sadro and Melack 2012), 
photodegradation (Osburn et  al. 2011; Cory and Kling 
2018), microbial processing (Fasching et al. 2014), changes 
in water temperature (Gudasz et al. 2010; Dinsmore et al. 
2013) or dissolved oxygen (DO; Bastviken et al. 2004), and 
phytoplankton excretion and uptake (Tittel and Kamjunke 
2004; Zhang et al. 2009; Romera-Castillo et al. 2010), with 
the relative importance of different drivers varying with time 
scale. On diel scales, photodegradation can influence DOM 
concentrations in lakes and reservoirs by mineralizing DOC 
(Miller 1998; Osburn et al. 2011), especially in the well-lit 
epilimnion (Müller et al. 2014; Watras et al. 2016a). For 
example, Watras et al. (2016a) found that fluorescent DOM 
(fDOM) concentrations peak at night and decrease during 
the day in multiple lakes, suggesting that within-lake DOM 
processing and/or photodegradation can drive fDOM vari-
ability on the diel scale. In addition, microbial processing/
uptake and phytoplankton excretion, as well as convective 
mixing entraining DOM from the metalimnion, have been 
shown to be important processes driving diel DOM vari-
ability (Watras et al. 2015).

On seasonal time scales, DOM variability is often 
driven by changing environmental conditions over the 
course of a year. Seasonal changes in precipitation can 
increase allochthonous carbon inputs via stream and over-
land flow and alter water residence time (WRT; Zwart et al. 

2017). Decreases in WRT are associated with increases in 
DOC mineralization rates (Catalán et al. 2016), suggest-
ing higher DOM lability in short WRT systems. In addi-
tion, increased temperature and DO, which vary season-
ally due to stratification and mixing, have been shown to 
increase DOC mineralization rates (Bastviken et al. 2004; 
Lønborg et al. 2009; Gudasz et al. 2010). As mineraliza-
tion rates increase due to increased temperature or higher 
DO concentrations, DOM concentrations decrease through 
its conversion to  CO2 and/or  CH4 (Bastviken et al. 2004; 
Cole et al. 2007). Water temperature has also been found 
to be positively associated with DOC on seasonal scales in 
streams due to biological production from allochthonous 
sources (Dinsmore et al. 2013). In addition, increases in 
air temperature can lead to increased export of soil DOC 
due to higher enzyme activity under warmer conditions, 
which increased DOC concentrations in streams and lakes 
in the United Kingdom (Freeman et  al. 2001). Taken 
together, these seasonal changes in mineralization and 
inputs interact to drive changes in DOM concentrations 
in lakes and reservoirs.

As DOM concentrations can be highly variable across 
multiple time scales, obtaining high-frequency observa-
tions of DOM in lakes and reservoirs is important for 
improving our understanding of DOM drivers and dynam-
ics. In situ fDOM sensors can be used to examine DOM 
variability on a range of time scales, from minutes to years, 
as fDOM represents a substantial fraction of the total DOC 
and DOM pools (Downing et al. 2009, 2012; Watras et al. 
2011). fDOM sensors use ultraviolet (UV) light to detect 
the fluorescent component of DOM (Zhang et al. 2009; 
Downing et al. 2009), which is typically associated with 
terrestrial, humic-like organic matter, as determined by the 
Peak C region of excitation emission matrices (Coble et al. 
2014; Fellman et al. 2010). Numerous studies have found 
fDOM to be a robust proxy for DOM as well as DOC in a 
range of freshwater ecosystems (e.g., Saraceno et al. 2009; 
Downing et al. 2009; Watras et al. 2011; Lee et al. 2015; 
Koenig et al. 2017).

Using high-frequency in situ fDOM sensors, continuous 
wavelet transforms, and time series modeling, we inves-
tigated the dominant time scales of variability of fDOM 
concentrations and their environmental predictors in the 
epilimnion of a dimictic reservoir over a full year, includ-
ing in winter. In this study, we were interested in a broad 
range of time dynamics of DOM, which can be measured 
continuously at the minute scale with fDOM sensors while 
DOC observations, from traditional manual sampling, are 
usually only measured at weekly or longer periods. Our 
study addressed the following questions: (1) What are the 
dominant time scales of variability of fDOM across a year? 
and (2) What are the key environmental predictors of fDOM 
dynamics on daily to seasonal time scales?
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Materials and methods

Study site

We examined fDOM dynamics in Falling Creek Reservoir 
(FCR), a small reservoir located in Vinton, Virginia, USA 
(37.30° N, 79.84° W; Fig. 1). FCR is classified as eutrophic 
and has a trophic state index (TSI) of 51 (Carlson and Simp-
son 1996; Supplementary Table 1). FCR is a drinking-water 
source located in a predominately deciduous forested catch-
ment and is owned and operated by the Western Virginia 
Water Authority (see Gerling et al. 2016 for catchment land 
use and land cover data). FCR has a surface area of 0.12 
 km2, a mean depth of 4 m, and a maximum depth of 9.3 m 
(Gerling et al. 2014). Its catchment area is 3.43  km2, result-
ing in a catchment to surface area ratio of 29:1. The res-
ervoir is historically dimictic, with intermittent ice cover 
during January to March, and thermal stratification from 
April to October (Carey 2019; Carey et al. 2019a). During 
the 2019 summer stratified period, FCR had a mean thermo-
cline depth of 3 m, a mean light attenuation coefficient of 
1.04 m−1, and a mean photic zone depth of 5 m. The main 
inflow to FCR is via a forested stream that has a gauged 
weir (Fig. 1).

Field sampling

We deployed an EXO sonde, which measured fDOM, DO, 
temperature, and chlorophyll-a (YSI Incorporated, Yellow 
Springs, OH, USA) on ten-minute intervals at 1.6 m depth 
at the deepest site of FCR (Carey et al. 2020a; Fig. 1). We 
selected 1.6 m so the sensor was adjacent to a frequently-
used outtake valve for water treatment. The EXO sonde 
was equipped with an automated wiper that operated on 
a ten-minute interval and was manually cleaned approxi-
mately weekly. We analyzed fDOM sonde data over a full 
calendar year, from 2 October 2018 through 1 October 
2019. The fDOM sensor was calibrated prior to deploy-
ment following manufacturer instructions using distilled 
water and a one-point calibration to establish baseline 
concentrations and temperature corrections (Xylem 2019). 
The fDOM sensor measured excitation wavelengths at 
365 ± 5 nm and emission wavelengths at 480 ± 40 nm, with 
a reported minimum detection limit of 0.07 quinine sulfate 
units (QSU). The wavelengths captured by the fDOM sen-
sor are most closely related to the humic Peak C region 
as identified within an excitation-emission matrix (Xylem 
2019; Coble et al. 2014). Humic peak C corresponds to 
fDOM that is characterized as humic-like, terrestrial, and 
allochthonous, and is often comprised of high molecular 

weight, highly aromatic and conjugated DOM molecules 
(Coble et al. 2014; Fellman et al. 2010). 

As noted above, fDOM has often been used as a proxy for 
DOC in previous studies (e.g., Saraceno et al. 2009; Down-
ing et al. 2009; Watras et al. 2011; Lee et al. 2015; Koenig 
et al. 2017). While our goal was not to predict DOC from 
fDOM, we compared the two variables to provide insights 
into reservoir DOM and DOC dynamics. Thus, we collected 

Fig. 1  Bathymetry map of Falling Creek Reservoir (FCR; 37.30° N, 
79.84° W). Sampling sites (EXO Sonde, Weir, Meteorological Sta-
tion) are denoted by the symbols on the map
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intermittent in situ water samples for DOC analysis at the 
same site and depth (1.6 m) adjacent to the EXO sonde, as 
well as at 9 m at the same site and at the weir on the primary 
inflow stream (Carey et al. 2020b; Supplementary Figs. 1, 
2). DOC sampling occurred twice weekly throughout the 
summer, weekly in the spring and fall, and monthly during 
the winter throughout the study period. Using a Van Dorn 
sampler (Wildco, Yulee, FL, USA) for the 1.6 m and 9 m 
samples and surface grabs for the inflow samples, we imme-
diately filtered water through Whatman GF/F (0.7 µm) filters 
into acid-washed polypropylene bottles and stored frozen 
until analysis. Thawed DOC samples were poured into glass 
vials which had been acid-washed and combusted at 550 °C 
(USEPA 1979, 2009) and analyzed on an Elementar vario 
TOC cube (Elementar, Ronkonkoma, NY, USA) following 
US EPA Methods 415.1 and 415.3 (USEPA 1979, 2009), 
with a limit of quantitation of 0.41 mg  L−1 and a minimum 
detection limit of 0.11 mg  L−1.

A research-grade meteorological station (Campbell Sci-
entific, Logan, UT, USA) deployed at FCR’s dam meas-
ured precipitation and incoming shortwave radiation every 
minute throughout the study period (Carey et al. 2020c; 
Fig. 1). Shortwave radiation was measured using a Hukse-
flux NR01 4-Component Net Radiometer with two SR01 
pyranometers. The pyranometers capture a spectral range 
of 305–2800 nm (Carey et al. 2020c). The inflow weir on 
the primary tributary was equipped with an INW Aquistar 
PT2X pressure sensor (INW, Kirkland, WA) that was used 
to calculate stream inflow every fifteen minutes (Carey et al. 
2020d; Fig. 1). WRT was calculated using the fifteen-min-
ute inflow data averaged to daily values and assuming the 
volume of FCR was at full pond (3.1 × 105  m3) following 
Gerling et al. (2014). FCR ice cover was monitored both 
visually and with water temperature sensors at the surface 
of the reservoir (Carey 2019; Supplementary Fig. 3 and 
Table 2); we defined spring mixis as the first date after the 
last ice-covered period with isothermal temperatures, fol-
lowing Bruesewitz et al. (2015).

Dominant time scales of variability

We used continuous wavelet transforms (CWTs) to deter-
mine dominant time scales of variability of fDOM in FCR, 
following the methods of Torrence and Compo (1998) and 
Carey et al. (2016). The CWTs applied scaled oscillating 
functions to the fDOM data to identify the relative impor-
tance of different time frequencies in the time series. The 
outputs of the CWTs are different power function values for 
each time scale on every sampling interval (Torrence and 
Compo 1998; Langman et al. 2010; Carey et al. 2016). Fol-
lowing the Nyquist theorem (Nyquist 1928; Shannon 1949), 
we determined the relative importance of time scales ranging 

from 20 min to 6 months for the year-long, ten-minute reso-
lution fDOM data. CWT analysis was performed using R 
version 4.0.1 (R Core Team 2020) and package dplR (Bunn 
et al. 2020).

There were rare cases when fDOM values were missing, 
either due to sensor maintenance, malfunction, or extreme 
outliers. Outliers were defined as absolute values greater 
than two standard deviations (S.D. = 4.8 QSU) from previ-
ous and subsequent measurements. Outliers were removed, 
and all missing data were linearly interpolated prior to CWT 
analysis. In total, 0.6% of fDOM data points (n = 337 out of 
52,544 total) were linearly interpolated. We used a Z-trans-
form to normalize the time series data before CWT analysis, 
following Carey et al. (2016).

We used the Morlet continuous wavelet transforms (Tor-
rence and Compo 1998) on the normalized time series. 
We analyzed 175 discrete time scales from 20 min (two 
times the minimum temporal frequency of measurement) 
to 6 months (half the total measurement period). To deter-
mine the dominant time scales of variability, we calculated 
the global power function by averaging the power function 
values for each time scale across the study period (Carey 
et al. 2016). To determine the significance of each scale, we 
compared the coefficients from our power function to coef-
ficients from a red-noise spectrum, using a 95% significance 
level (Carey et al. 2016). We included a cone of influence 
(COI) to represent where edge effects may distort our results, 
especially for longer time scales (Torrence and Compo 1998; 
Carey et al. 2016).

Environmental predictors of fDOM variability

After the CWT analysis determined the daily and monthly 
time scales to be the most significant time scales of fDOM 
variability in FCR, we used autoregressive (AR) time series 
modeling to identify the most important environmental pre-
dictors of fDOM variability in FCR at these two time scales. 
We used AR models, rather than a cross-wavelet transform 
analysis, because we were interested in determining which 
combination of multiple environmental variables were most 
important for predicting fDOM on the daily and monthly 
scales. Additionally, cross-wavelets are primarily used to 
study the relationship between two time series (following 
Grinsted et al. 2004). AR modeling is commonly used to 
analyze ecological time series and is well-suited to our study 
because it accounts for temporal autocorrelation (Box and 
Pierce 1970; Hampton et al. 2013). AR time series analysis 
was performed using R version 4.0.1 (R Core Team 2020) 
with the stats (R Core Team 2020) and MuMIn packages 
(Barton 2020).

We created separate AR models for mean daily and 
mean monthly fDOM concentrations. To determine daily 
and monthly fDOM concentrations, we averaged the 
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ten-minute resolution fDOM data to each respective time 
scale. Next, we used a partial autocorrelation function 
(PACF) to determine significant lags and determined that 
only the first lag was needed to account for autocorrelation 
within the fDOM time series for both daily and monthly 
models (Supplementary Fig. 4).

We collated potential environmental predictor data on 
water temperature, DO percent saturation, chlorophyll-a 
concentration, WRT, inflow, shortwave radiation, and pre-
cipitation, and averaged all data to both daily and monthly 
scales. For the daily AR model, precipitation on a one 
day lag was included as a potential predictor in addition 
to same-day precipitation as it likely takes ~ 1 day for 
inflowing water to deliver terrestrial organic matter into 

the reservoir from the small, sloped, forested watershed. 
These environmental variables were selected based on lit-
erature suggesting they influence DOC and/or DOM con-
centrations (e.g., Bastviken et al. 2004; Gudasz et al. 2010; 
Osburn et al. 2011; Dinsmore et al. 2013; Tomlinson et al. 
2016; Catalán et al. 2016). Spearman correlations were 
used to remove potential environmental predictors that 
were collinear with other predictors (Dormann et al. 2013). 
We excluded potential predictors with Spearman corre-
lation rho values >|0.8| as aggregated over the daily and 
monthly time scales (Supplementary Tables 3 and 4). One-
day lagged precipitation and precipitation from the same 
day were only weakly correlated ( Spearman’s �  = 0.3), so 
both were included in the daily model (Supplementary 

Fig. 2  a Time series of 10-min fDOM sensor observations from 2 October 2018–1 October 2019. b A representative summer week (1–7 July 
2019; red) and a representative winter week (1–7 January 2019; blue) as a visual comparison of fDOM variability between seasons
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Fig. 3  Time series of daily aggregated fDOM and candidate environmental predictors of fDOM in Falling Creek Reservoir. a fDOM concentra-
tion, b dissolved oxygen (DO) percent saturation, c incoming shortwave radiation (SW), d water temperature, e chlorophyll-a (Chl-a), f inflow 
(flow), g precipitation, and h water residence time (WRT)

Fig. 4  a Timeseries of DOC concentrations from 7 October 2018–19 September 2019. b Correlation between DOC and fDOM (Pearson’s 
r = 0.66). Observations within two weeks of fall turnover were removed from the statistical analysis (n = 4). Symbols designate different seasons 
throughout the year defined as: fall (circles), Winter (plus signs), Spring (triangles), and Summer (squares)



Variability in fluorescent dissolved organic matter concentrations across diel to seasonal…

1 3

Page 7 of 18    30 

Table 3). We used a Z-transform on AR environmental 
predictor data to allow for comparison of the magnitude 
of coefficients in AR model results; fDOM data were not 
transformed for AR analysis.

Once we determined predictors and fDOM AR lag 
terms to include, we developed global models for both 
the daily and monthly time scales that included all pos-
sible combinations of potential non-collinear predictor 
variables. The predictors for the global daily fDOM model 
were the AR term, water temperature, DO percent satura-
tion, chlorophyll-a, shortwave radiation, WRT, precipita-
tion, and precipitation at a one day lag. The predictors 
for the global monthly fDOM model were the AR term, 
water temperature, DO percent saturation, chlorophyll-a, 
and monthly total (summed) precipitation. We then con-
structed AR models with all possible combinations of 
these predictor variables without interaction terms and a 
daily and monthly model using only the AR lag term. We 
used the corrected Akaike Information Criterion (AICc) 
to determine which models were the best predictors of 
fDOM concentrations for each time scale (Burnham and 
Anderson 2002). We report the top models for both daily 
and monthly fDOM (i.e., all models within two AICc units 
of the best-fitting model) and the model based solely on 
the AR lag term as a null model; the full model results are 
in Supplementary Tables 5 and 6.

Results

Observed variability in fDOM over time

fDOM concentrations exhibited substantial variability 
throughout the year (Fig. 2a), with maximum concentrations 
in October 2018 following passage of Hurricane Michael (30 
QSU) and minimum concentrations in late March 2019 (4.7 
QSU) (Figs. 2a, 3g). After fall turnover, which occurred on 
21 October 2018, fDOM experienced a period of stable, yet 
elevated concentrations (~ 24 QSU) for approximately three 
weeks before declining throughout the winter (November 
2018–March 2019). We note no changes in fDOM following 
spring mixis on 2 February 2019. The minimum fDOM con-
centration was observed in March 2019 at 4.7 QSU; fDOM 
increased again from April 2019 through September 2019.

In general, there was greater diel and hourly variability in 
fDOM concentrations in the summer (June–August) than in 
the winter (December–February; Fig. 2b). The mean daily 
(midnight to midnight) fDOM range in summer months was 
5.61 ± 2.59 QSU, while the mean daily fDOM range in win-
ter was 0.69 ± 0.66 QSU (Fig. 2b).

A comparison of fDOM and DOC during our study period 
indicates that fDOM and DOC were correlated (Pearson 

correlation r = 0.66; p < 0.0001; Fig. 4). Thus, while fDOM 
is capturing most of the DOC pool in FCR, there are likely 
other DOC compounds that are not being measured by the 
fDOM sensor. DOC concentrations measured at the weir on 
the primary inflow suggest similar DOC concentrations as 
the in-reservoir site at 1.6 m during the fall, winter, spring, 
and early summer (Supplementary Fig. 2). The increase in 
fDOM that occurred in the fall was associated with a similar 
increase in DOC concentrations at the same site while DOC 
concentrations at the inflow remained constant (Supplemen-
tary Figs. 1 and 2). Prior to fall turnover, the hypolimnion 
exhibited greater color and higher DOC concentrations than 
in the epilimnion, suggesting that the increase in fDOM at 
1.6 m after turnover was likely due to an influx of organic 
matter from the hypolimnion (Supplementary Fig. 1).

Observed variability in potential environmental 
predictors of fDOM over time

Potential environmental predictors of fDOM showed varying 
trends throughout the year (Fig. 3). DO saturation, incom-
ing shortwave radiation, and water temperature all exhib-
ited expected seasonality (Fig. 3b–d). Water temperature at 
1.6 m ranged from 2 to 30 °C over our sampling period, with 
maximum temperatures in late July and minimum tempera-
tures in late January. In winter 2019, there were two short 
periods of ice cover that lasted from 21 to 23 January 2019 
and 27 January to 1 February 2019 (Supplementary Table 2 
and Fig. 3). Incoming shortwave radiation ranged from 6 
to 344 W m−2 and followed similar temporal patterns as 
temperature. DO ranged from 58% to 160% saturation with 
peaks in August 2019 due to high primary production and 
minimum levels in October 2018 that coincided with fall 
turnover.

In contrast, inflow, precipitation (same day or lagged), 
WRT, and chlorophyll-a did not display obvious seasonal 
trends but did exhibit peaks which coincided with peaks 
in fDOM. Daily inflow ranged from 0.001 to 0.14  m3 s−1 
throughout our study period with peaks occurring through-
out the year and low values occurring in September 2019. 
September 2019 was a particularly dry period with few 
precipitation events, which led to high WRT. Mean WRT 
was 215 days (median = 88, S.D. = 311, range = 25–3036) 
throughout the study period, with peaks in early October 
2018 and September 2019. Precipitation increases in Octo-
ber 2018 due to Hurricane Michael coincided with rapid 
increases in fDOM. Chlorophyll-a concentrations ranged 
from 0 to 55 µg  L−1, with minimum concentrations in late 
March and maximum concentrations occurring during a 
phytoplankton bloom in July, with the chlorophyll-a peak 
coinciding with a peak in fDOM and increasing DOC 
concentrations.
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Dominant time scales of fDOM variability

The CWT revealed that both monthly and daily scales were 
significant time scales of variability for fDOM, but their 
importance varied seasonally (Fig. 5). Overall, the monthly 
scale (~ 28–30 days) was the dominant time scale of variabil-
ity during the year-long study (Fig. 5b). The monthly time 
scale had the highest global power value for time scales out-
side the COI; however, because our dataset was constrained 
to one year, edges of the monthly time scale results were 
located within the COI (Fig. 5a). Despite this, the majority 
of the monthly time scale was located outside of the COI and 
had a significantly larger global power value when compared 
to other time scales (Fig. 5b).

Despite the daily time scale having a lower global power 
value than the monthly time scale, it was still significant 

intermittently in July and August in 2019 (Fig. 5). This 
summer-time significance of daily time scales is visible in 
the global power spectrum analysis, in which the daily time 
scale had twice the global power than the preceding and 
following time scales (Fig. 5c). Throughout our year-long 
monitoring period, 62 days exhibited a significant daily time 
scale, with 50 (81%) of these days occurring in the sum-
mer. Of these 62 days, 69% (n = 43) occurred when water 
temperatures were greater than 25 °C, and 79% (n = 49) 
occurred when the daily mean incoming shortwave radiation 
was greater than 200 W m−2, indicating that significant diel 
oscillations in fDOM were most likely to emerge on warm 
summer days with high mean irradiance.

Fig. 5  a Continuous wavelet 
transform (CWT) showing the 
periodicity of fDOM con-
centrations through the full 
time series. The black contour 
represents 95% significance 
levels and the black hatching 
represents the cone of influ-
ence (COI) where edge effects 
may distort results. The color 
gradient represents power, in 
which darker red represents 
high power and darker blue 
represents low power. b The 
mean global power spectrum 
shows the dominant time scales 
aggregated over the entire 
monitoring period, based on the 
power value averaged across our 
study period time. The purple 
shaded region in b is plotted in 
c. c Mean global power over 
the range of 0–5 days. Note 
large differences in y-axis scale 
between b and c 
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Dominant predictors of fDOM on daily and monthly 
time scales

The AR models indicated that there were multiple environ-
mental predictors of fDOM variability on the daily time 
scale (Table 1). The best-fitting model included an AR term, 
a positive relationship with precipitation from the previous 
day and water temperature and a negative relationship with 
incoming shortwave radiation and same day precipitation 
(RMSE = 0.8 QSU; Table l). Four alternate models had 
AICc values within 2 units of the best-fitting model, indicat-
ing that their model fit was equally as good as the best-fitting 
model. Two of these alternate models included DO, while 
chlorophyll-a was included in one alternate model, all with a 

positive association with fDOM (Table 1). The AR lag term 
of fDOM was consistently an important driver in all of the 
daily models, but the models with environmental predictors 
were significantly better at predicting daily fDOM than the 
AR term alone, as indicated by a difference of > 30 AICc 
units between the best-fitting model and the AR term-only 
model (Table 1).

There was a strong level of agreement between observed 
and predicted fDOM concentrations in our best-fitting 
daily fDOM model (RMSE = 0.8 QSU; Table 1; Fig. 6a). 
The mean residual (observed minus predicted fDOM) 
was −  0.002 ± 0.49 QSU from November to April but 
was higher from May through September (mean resid-
ual = − 0.015 ± 1.00 QSU; Fig. 6b). The fDOM peaks during 

Fig. 6  Observed (black) and predicted (blue) fDOM concentrations for the a best-fitting AR daily model and b best-fitting AR monthly model. 
Model residuals are plotted for c daily fDOM and d monthly fDOM. Horizontal dashed lines indicate 0 for the residuals
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October 2018 were not as well captured by the best-fitting 
daily model, with a mean October residual of 0.09 ± 0.80 
QSU. The mean residual during the entire study period was 
extremely small (20.6 × 10–15 ± 0.76 QSU), indicating that 
the best-fitting daily model was a good predictor of daily 
fDOM.

Water temperature was the dominant driver of fDOM vari-
ability on monthly scales (Table 1). The best-fitting monthly 
model was driven by a positive relationship with water tem-
perature (RMSE = 2.50 QSU). The best-fitting monthly model 
predicted monthly fDOM reasonably well throughout the year 
(RMSE = 2.5 QSU; mean residual = − 4.88 × 10–15 ± 2.59 
QSU), but did not capture fDOM variability during the fall 
(September 2019, October 2018; Fig. 6d). The best-fitting 
monthly model over-predicted fDOM in September 2019 
(residual = −  2.75 QSU) and under-predicted the fDOM 
peak in October 2018 (residual = 7.22 QSU). The best-fitting 
monthly model also over-predicted monthly fDOM in May 
2019 (residual = − 2.34 QSU). Similar to the daily models, the 
AR term was found to be an important driver in the monthly 
models, but the models with environmental predictors had 
lower AICc than the AR term-only model (monthly AICc dif-
ference of ~ 3 units; Table 1).

The best-fitting monthly and daily models differed in 
their ability to accurately predict fDOM concentrations. The 
best-fitting monthly model explained less variability in the 
observed fDOM data than the daily models, likely due to the 
aggregation of data to the monthly scale, but still explained 
monthly fDOM reasonably well with an  R2 of 0.76 and an 
RMSE of 2.50 QSU (Table 1). While AICc cannot be com-
pared between daily and monthly models, the best-fitting 
daily fDOM model had substantially lower RMSE (0.80 
QSU) and higher  R2 (0.98) than the best-fitting monthly 
model.

Discussion

We found that the monthly time scale was the dominant time 
scale of variability for fDOM throughout our year-long study 
and was largely predicted by water temperature. The daily 
time scale was also significant during the summer and pre-
dicted by precipitation from the previous day and same-day 
precipitation, water temperature, and shortwave radiation. 
Quantifying fDOM variability and identifying the key envi-
ronmental predictors on different time scales improves our 
understanding of how and why DOM concentrations may 
be changing throughout the year. Our finding of minimal 
daily fDOM variability in winter months, even when there 
is no ice cover, is valuable in expanding our understand-
ing of year-round DOM dynamics. Below, we discuss the 
implications of our findings for reservoir DOM variability 
and carbon cycling.

DOM cycling in reservoirs

This study represents one of the first to assess fDOM 
dynamics in a reservoir, as the majority of long-term 
(i.e., at least 3 months) fDOM studies to date have been 
conducted in naturally-formed lakes (Ryder et al. 2012; 
Watras et al. 2015, 2016b; National Ecological Observa-
tory Network 2020). While naturally-formed lakes and 
reservoirs share many similar characteristics, there are 
several key differences that allow for interesting com-
parisons between the two waterbody types. First, reser-
voirs on average have seven times higher catchment to 
surface area ratios in the U.S., which can lead to higher 
runoff and DOM loading rates (Doubek and Carey 2017). 
Second, reservoirs tend to have half the WRT of natural 
lakes in the U.S., which influences DOM mineralization 
rates (Hayes et al. 2017; Doubek et al. 2019). This is par-
ticularly important as shorter WRT can lead to increased 
inputs of highly-labile DOM (Zwart et al. 2017; Duffy 
et al. 2018). Third, reservoir construction has long-term 
effects on ecosystem biogeochemical pathways, through 
transformation of river and floodplain ecosystems to res-
ervoirs, which inherently differ from natural lakes (e.g., 
Maeck et al. 2013; Gerling et al. 2016). Due to construc-
tion of dams on former rivers or wetlands, organic matter 
can build up in reservoir sediments (Downing et al. 2008; 
Maeck et al. 2013; Deemer et al. 2016). Over time, accu-
mulated sediment organic matter can increase the release 
of labile organic carbon into the water column, resulting 
in higher and more variable fDOM and DOC concen-
trations in reservoirs as compared to naturally formed 
lakes (Clow et al. 2015). Thus, high-frequency monitor-
ing of fDOM dynamics may be particularly important 
for human-made reservoirs, which have been shown to 
be highly variable freshwater ecosystems (Górniak et al. 
2002).

Despite the waterbody type differences described 
above, FCR exhibits a similar range and concentration 
of fDOM and DOC over time as compared to naturally 
formed lakes. In FCR, we observed fDOM concentrations 
ranging from 4.7 to 30.0 QSU over a full year (Fig. 2a), 
with correlated DOC concentrations ranging from 1.5 to 
6.2 mg  L−1 (mean: 3.3 mg  L−1; Fig. 4). In a literature 
search of waterbodies with sub-daily fDOM measure-
ments over several months, we found seven lakes or res-
ervoirs with comparable fDOM data sets to FCR. Milford 
Reservoir and Lakes Feeagh, Crampton, and Suggs all 
exhibit higher concentrations and ranges of fDOM than 
FCR, while Lakes Barco and Mendota exhibited smaller 
ranges and lower fDOM concentrations (Table 2). Lit-
tle Rock Lake was the only system with similar fDOM 
range and concentration to FCR (Table 2). Additionally, 
we compared FCR to lakes in Wisconsin, USA (Lead PI 



 D. W. Howard et al.

1 3

   30  Page 12 of 18

Ta
bl

e 
2 

 M
ea

n 
an

d 
ra

ng
e 

of
 e

pi
lim

ne
tic

 D
O

C
 a

nd
 fD

O
M

 fo
r l

ak
es

 w
or

ld
w

id
e,

 c
al

cu
la

te
d 

fro
m

 th
e 

m
ul

tip
le

 d
ay

s t
o 

ye
ar

s o
f a

va
ila

bl
e 

da
ta

 fo
r e

ac
h 

w
at

er
bo

dy
 a

gg
re

ga
te

d 
to

ge
th

er

C
ol

um
ns

 w
ith

 m
is

si
ng

 d
at

a 
di

d 
no

t h
av

e 
so

ur
ce

s r
ep

or
tin

g 
th

os
e 

va
lu

es
. S

am
pl

in
g 

oc
cu

rr
ed

 a
t t

he
 d

am
 o

r d
ee

pe
st 

si
te

 o
f e

ac
h 

la
ke

 o
r r

es
er

vo
ir

W
at

er
bo

dy
 n

am
e

N
at

ur
al

ly
-fo

rm
ed

 
la

ke
 o

r r
es

er
vo

ir
Lo

ca
tio

n
M

ea
n 

D
O

C
  

(m
g 

 L−
1 )

D
O

C
 

ra
ng

e 
 

(m
g 

 L−
1 )

M
ea

n 
fD

O
M

 
(Q

SU
)

fD
O

M
 ra

ng
e 

(Q
SU

)
Sa

m
pl

in
g 

pe
rio

d
Sa

m
pl

in
g 

in
te

rv
al

D
es

cr
ip

tio
n 

(d
er

iv
ed

 fr
om

 
re

fe
re

nc
e)

Re
fe

re
nc

es

Fa
lli

ng
 C

re
ek

 
(th

is
 st

ud
y)

Re
se

rv
oi

r
V

irg
in

ia
, U

SA
3.

3
1.

5–
6.

2
15

.7
4.

7–
30

.0
O

ct
ob

er
 2

01
8–

O
ct

ob
er

 2
01

9
fD

O
M

: 1
0 

m
in

D
O

C
: w

ee
kl

y–
m

on
th

ly

Sm
al

l 
eu

tro
ph

ic
 

re
se

rv
oi

r

C
ar

ey
 e

t a
l. 

(2
02

0a
, b

)

B
ar

co
La

ke
Fl

or
id

a,
 U

SA
0.

7
6.

5
0.

9–
10

.5
17

 Ja
nu

ar
y–

4 
N

ov
em

be
r 

20
19

;
D

O
C

: 1
98

6–
19

87

fD
O

M
: 5

 m
in

D
O

C
: s

ea
so

na
lly

C
le

ar
 so

ft 
w

at
er

 la
ke

N
at

io
na

l E
co

lo
gi

ca
l 

O
bs

er
va

to
ry

 N
et

-
w

or
k 

(2
02

0)
; J

am
es

 
(1

99
1)

C
ra

m
pt

on
La

ke
W

is
co

ns
in

, U
SA

4.
0

23
.8

12
.5

–6
1.

7
fD

O
M

: 2
9 

Ju
ly

–5
 

N
ov

em
be

r 2
01

9
D

O
C

: J
ul

y–
A

ug
us

t 2
00

0

fD
O

M
: 5

 m
in

C
le

ar
 o

lig
o-

tro
ph

ic
N

at
io

na
l E

co
lo

gi
ca

l 
O

bs
er

va
to

ry
 N

et
-

w
or

k 
(2

02
0)

; H
an

so
n 

et
 a

l. 
(2

00
3)

Fe
ea

gh
La

ke
M

ay
o,

 Ir
el

an
d

7.
7–

12
.3

36
.4

–7
7.

5
fD

O
M

: M
ar

ch
 

20
10

–D
ec

em
-

be
r 2

01
1

D
O

C
: J

ul
y 

20
10

–
Ju

ne
 2

01
1

fD
O

M
: 2

 m
in

D
O

C
: n

ot
 sp

ec
i-

fie
d

O
lig

ot
ro

ph
ic

, 
hu

m
ic

 la
ke

Ry
de

r e
t a

l. 
(2

01
2)

Li
ttl

e 
Ro

ck
La

ke
W

is
co

ns
in

, U
SA

3.
2

14
.5

8.
4–

30
fD

O
M

: 2
6 

Ju
ne

–6
 

O
ct

ob
er

 2
01

9
D

O
C

: n
ot

 sp
ec

i-
fie

d

fD
O

M
: 5

 m
in

Se
ep

ag
e 

la
ke

N
at

io
na

l E
co

lo
gi

ca
l 

O
bs

er
va

to
ry

 N
et

-
w

or
k 

(2
02

0)
; W

at
ra

s 
et

 a
l. 

(2
01

6b
)

M
en

do
ta

La
ke

W
is

co
ns

in
, U

SA
5.

6
2.

7–
15

.5
9.

8
5.

8–
12

.8
fD

O
M

: A
pr

il–
N

ov
em

be
r 2

01
9

D
O

C
: 1

99
6–

20
18

fD
O

M
: d

ai
ly

 
av

er
ag

e
D

O
C

: m
on

th
ly

–
se

as
on

al
ly

Eu
tro

ph
ic

 
la

ke
Le

ad
 P

I (
20

20
a;

 b
)

M
ilf

or
d

Re
se

rv
oi

r
K

an
sa

s, 
U

SA
51

.0
32

.4
–6

0.
6

M
ay

–S
ep

te
m

be
r 

20
16

15
 m

in
 in

te
rv

al
s 

on
 2

5–
26

 M
ay

, 
8–

10
 Ju

ne
, 

20
–2

1 
Ju

ly
, 

14
–1

5 
Se

pt
em

-
be

r

Eu
tro

ph
ic

 
re

se
rv

oi
r

K
in

g 
(2

01
9)

Su
gg

s
La

ke
Fl

or
id

a,
 U

SA
22

.6
22

2.
2

11
9.

9–
27

9.
2

fD
O

M
: 7

 Ja
nu

-
ar

y–
14

 D
ec

em
-

be
r 2

01
9

D
O

C
: 1

98
6–

19
87

fD
O

M
: 5

 m
in

D
O

C
: s

ea
so

na
lly

D
ar

k 
w

at
er

 
la

ke
N

at
io

na
l E

co
lo

gi
ca

l 
O

bs
er

va
to

ry
 N

et
-

w
or

k 
(2

02
0)

; J
am

es
 

(1
99

1)



Variability in fluorescent dissolved organic matter concentrations across diel to seasonal…

1 3

Page 13 of 18    30 

2020a) and Sweden (Environmental data MVM 2020) that 
had comparable DOC data. FCR had lower mean DOC 
concentrations than lakes in both Wisconsin and Sweden 
but had a larger range over multiple months than many 
Swedish lakes (Supplementary Table 7). By comparing 
results from FCR to waterbodies around the world, we 
highlight the need to consider a broad gradient of ecosys-
tems, including lakes and reservoirs across latitudes, to 
develop a more global understanding of fDOM in these 
ecosystems.

Drivers of fDOM on daily and monthly time scales

The monthly time scale was the dominant time scale of 
fDOM variability and primarily driven by water tempera-
ture. We initially expected temperature would be negatively 
correlated with fDOM, as increasing water temperature is 
linked to increasing DOM mineralization at lake sediments 
(Gudasz et al. 2010), but observed a positive relationship, 
likely due to an increase in biological activity and primary 
production during warmer months (Freeman et al. 2001; 
Weyhenmeyer and Karlsson 2009; Dinsmore et al. 2013). 
In FCR, the positive correlation between temperature and 
fDOM could be due to increased primary production, which 
can increase autochthonous DOM concentrations as a result 
of phytoplankton excretion and degradation (Zhang et al. 
2009; Romera-Castillo et al. 2010). This mechanism is sup-
ported by observed increases in fDOM and DOC shortly 
after the chlorophyll-a maximum in late July (Figs. 3a, e, 
4a). Alternatively, higher terrestrial primary production in 
warm summer conditions can increase freshwater alloch-
thonous DOC concentrations (Pagano et al. 2014). Other 
waterbodies have exhibited a similar pattern to FCR, e.g., 
a study of 1041 Swedish lakes found that DOC exhibited a 
positive relationship with air temperature across the region 
(Weyhenmeyer and Karlsson 2009).

Following our expectations, shortwave radiation was 
negatively correlated with daily fDOM concentrations. 
Increased solar radiation can lead to increased photodegra-
dation and a resulting decrease in DOM concentrations in 
surface waters (Osburn et al. 2011; Ward and Cory 2020). 
Other studies using fDOM sensors have also found that 
shortwave radiation decreased fDOM concentrations on 
daily to seasonal time scales in lake epilimnia (Müller et al. 
2014; Watras et al. 2016a). Müller et al. (2014) found that 
solar radiation led to a 25–50% reduction in CDOM over 
the course of four months while daily chromophoric DOM 
(CDOM) had a coefficient of variation (CV) up to 15% due 
to solar radiation. In FCR, we observed a greater level of 
variability during the day (CV = 34%; Fig. 2b), but did not 
observe a decrease in concentrations throughout the summer 
as predicted by Müller et al. (2014), likely because FCR has 

relatively high allochthonous and autochthonous DOM loads 
because of its short WRT and eutrophic state, respectively.

Precipitation from the previous day was found to be an 
important positive driver of daily fDOM concentrations 
while precipitation on the same day was a negative driver 
(Table 1). Previous studies have shown both positive rela-
tionships between precipitation and aquatic DOC (Sadro and 
Melack 2012; Dinsmore et al. 2013; Zwart et al. 2017), and 
negative relationships between precipitation and DOC due 
to dilution (Engstrom 1987). The mechanisms likely driv-
ing these patterns are immediate dilution or flushing due 
to precipitation, thereby decreasing DOC concentrations 
on the day of precipitation, followed by greater delivery of 
organic matter into the reservoir that increase reservoir DOC 
on subsequent days. We also note that Hurricane Michael led 
to rapid increases in fDOM (up to 30 QSU) in early Octo-
ber 2018, suggesting that episodic storm events may also 
be important to fDOM dynamics in reservoir ecosystems 
(Fig. 3g). However, this may not be true for all systems; 
for example, an extreme storm event with > 50 mm of pre-
cipitation in a 2-h period at Lough Feeagh, Ireland had no 
noticeable effect on DOC in this humic lake (de Eyto et al. 
2016). Altogether, our results suggest that hydrology and the 
magnitude of precipitation interact to control the relation-
ship between precipitation and reservoir fDOM in Falling 
Creek Reservoir.

Implications for winter limnology

Our analysis of a year-long, high-frequency fDOM dataset 
allowed us to examine fDOM dynamics through the winter. 
Despite major projected changes in the duration of winter 
processes, especially ice cover (Hampton et al. 2017), few 
studies have explored winter fDOM dynamics (Downing 
et al. 2009; Ryder et al. 2012; Koenig et al. 2017). FCR has 
historically experienced ice cover lasting over a month in 
the winter, but during our study, the reservoir only had two 
short periods of ice cover lasting 3–6 days (Carey 2019, 
Supplementary Table 2 and Fig. 3). Although FCR expe-
rienced intermittent ice cover, there were no notable dif-
ferences in patterns of fDOM concentrations through time 
during ice covered vs. non-ice covered periods (Supplemen-
tary Table 8). This suggests ice cover had little influence 
on fDOM concentrations during the winter of 2019, but we 
note that the ice cover in FCR was intermittent and thin 
during the study period. We note that the daily scale did not 
emerge as significant during the winter months, likely due 
to reduced variability in daily temperature, solar radiation, 
and primary production during the winter as compared to 
the summer. As ice cover becomes more dynamic in many 
waterbodies (Sharma et al. 2019), determining the effects 
of intermittent ice cover and a longer open-water period on 
fDOM should be a priority for future studies.
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Limitations and possible next steps

While our study is useful in informing DOM patterns and 
drivers over a year, we acknowledge some limitations. Addi-
tional years of data would allow us to determine if the domi-
nant time scale of variability changes across longer time 
scales; however, we note that our study is one of the first 
to successfully capture fDOM dynamics during the winter, 
including during brief ice covered conditions. Additional 
data would also allow us to better understand the effect of 
fall turnover on fDOM concentrations. Fall turnover had 
major effects on fDOM concentrations in October 2018, 
disrupting the seasonal pattern for nearly three weeks, 
when concentrations stabilized at ~ 24 QSU before gradu-
ally decreasing throughout the winter (Fig. 2a). Finally, 
including additional environmental variables known to be 
strongly correlated to fDOM variability, such as photodeg-
radation rates and microbial activity (Bastviken et al. 2003; 
Williams et al. 2010; Osburn et al. 2011; Müller et al. 2014), 
would likely help constrain fDOM variability on multiple 
time scales.

In addition, the specific wavelengths captured by the 
fDOM EXO sonde have important implications for our 
understanding of fDOM variability and environmental 
drivers in this ecosystem. Specifically, the fDOM captured 
in this study was constrained to the terrestrial, humic-like, 
Peak C region of excitation emission fluorescence (Coble 
et al. 2014; Fellman et al. 2010), indicating that we are 
likely missing a large portion of fDOM (Miller et al. 2009). 
This has important implications for a eutrophic ecosystem 
like FCR, where a significant contribution to the DOC and 
fDOM pools may be from autochthonous sources (Sup-
plementary Fig. 2). Additional studies would be needed to 
discriminate the relative contributions of the two sources to 
fDOM variability in reservoirs.

Conclusions

By identifying the dominant time scales of fDOM vari-
ability and key environmental predictors, our work contrib-
utes to an improved understanding of reservoir DOM and 
carbon cycling. As reservoirs process and store significant 
amounts of carbon, our work highlights the variability of 
reservoir DOM dynamics throughout the year and demon-
strates the similarities and differences between reservoir and 
lake ecosystems. In eutrophic reservoirs with short WRT 
like FCR, constant allochthonous and autochthonous inputs 
of DOM may increase diel DOM variability and process-
ing rates relative to glacially-formed lakes. For example, 
Watras et al. (2016a) observed oscillations up to 0.28 mg  L−1 
in fDOM-correlated DOC concentrations over 24 h in the 
epilimnia of glacially-formed lakes in northern Wisconsin. 

In comparison, daily summer fDOM in FCR ranged up 
to 5.6 QSU, which corresponds to 1.0 ± 0.7 mg  L−1 DOC 
as calculated using the observed fDOM-DOC correlation 
(Fig. 4; Watras et al. 2016a).

Additionally, our study provides a baseline for com-
paring summer versus winter fDOM concentrations and 
variability. We highlight the importance of fDOM variabil-
ity on daily and monthly timescales throughout the year, 
which were largely attributed to seasonal and diurnal pat-
terns of temperature variability. As changes in temperature 
become more prevalent in the future due to global change, 
we expect to see greater increases in DOM concentrations 
in lakes and reservoirs. This has significant implications 
for not only our understanding of DOM cycling in FCR, 
but more broadly organic carbon cycling in lakes and res-
ervoirs experiencing global change.
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