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Abstract Freshwater ecosystems are experiencing greater variability due to human activities,
necessitating new tools to anticipate future water quality. In response, we developed and deployed a
real‐time iterative water temperature forecasting system (FLARE—Forecasting Lake And Reservoir
Ecosystems). FLARE is composed of water temperature and meteorology sensors that wirelessly stream
data, a data assimilation algorithm that uses sensor observations to update predictions from a hydrodynamic
model and calibrate model parameters, and an ensemble‐based forecasting algorithm to generate
forecasts that include uncertainty. Importantly, FLARE quantifies the contribution of different sources of
uncertainty (driver data, initial conditions, model process, and parameters) to each daily forecast of water
temperature at multiple depths. We applied FLARE to Falling Creek Reservoir (Vinton, Virginia, USA), a
drinking water supply, during a 475‐day period encompassing stratified and mixed thermal conditions.
Aggregated across this period, root mean square error (RMSE) of daily forecasted water temperatures
was 1.13°C at the reservoir's near‐surface (1.0 m) for 7‐day ahead forecasts and 1.62°C for 16‐day ahead
forecasts. The RMSE of forecasted water temperatures at the near‐sediments (8.0 m) was 0.87°C for 7‐day
forecasts and 1.20°C for 16‐day forecasts. FLARE successfully predicted the onset of fall turnover 4–14 days
in advance in two sequential years. Uncertainty partitioning identified meteorology driver data as the
dominant source of uncertainty in forecasts for most depths and thermal conditions, except for the
near‐sediments in summer, when model process uncertainty dominated. Overall, FLARE provides an
open‐source system for lake and reservoir water quality forecasting to improve real‐time management.

1. Introduction

As a result of human activities, ecosystems around the globe are increasingly changing (Stocker et al., 2013;
Ummenhofer &Meehl, 2017), making it challenging for resource managers to consistently provide vital eco-
system services (West et al., 2009). In particular, managers of freshwater ecosystems, which have been more
degraded than any other ecosystem on the planet (Millennium Ecosystem Assessment, 2005), are seeking
new tools to anticipate future change and ensure clean water for drinking, fisheries, irrigation, industry,
and recreation (Brookes et al., 2014).

In response to this need, near‐term, real‐time iterative ecological forecasting has emerged as a solution to
provide stakeholders, managers, and policy‐makers crucial information about future ecosystem conditions
(Clark et al., 2001; Dietze et al., 2018; Luo et al., 2011). Here, we define a real‐time iterative forecast as a pre-
diction of future ecosystem states with quantified uncertainty, generated from models that can be continu-
ally updated with new data as they become available (adapted from Clark et al., 2001; Dietze, 2017a, 2018;
Luo et al., 2011). Multiple statistical approaches, such as Bayesian state‐space modeling, particle filters,
and ensemble filters, are used to estimate and propagate the different sources of uncertainty that contribute
to the total uncertainty in a forecast (e.g., driver data, initial conditions, model process, and parameters;
Clark et al., 2008; Dietze, 2017a; Ouellet‐Proulx, Chimi Chiadjeu, et al., 2017). Fully specifying all of these
uncertainty sources provides both an assessment of confidence in a forecast for managers as they interpret
the forecasts for decision‐making, and valuable information for researchers about how to improve forecasts
(Berthet et al., 2016; Dietze, 2017a; Morss et al., 2008).
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Real‐time forecasts of water temperature with fully specified uncertainties are particularly valuable for man-
agers that oversee drinking water supply lakes and reservoirs, as waterbody temperatures can be very
dynamic due to meteorological forcing, management, and seasonality (e.g., Klug et al., 2012; Mi et al., 2019;
Schmidt et al., 2018; Sharma et al., 2015). Water temperature is closely related to many water quality metrics
and defines the physical conditions for multiple ecological processes, including microbial and algal growth,
dissolved oxygen saturation, the release of chemical constituents from sediments into the water column, and
habitat suitability for organisms, such as fish (Butcher et al., 2015; Carey et al., 2012; Delpla et al., 2009;
Jöhnk et al., 2008). As a result, depth profiles of temperature data are used to determine withdrawal depths
for water treatment, schedule dam releases for optimizing the temperature of downstream flows, and man-
age lake and reservoir water quality (Çalışkan & Elçi, 2008; Casamitjana et al., 2003; Hague &
Patterson, 2014; Huang et al., 2011; Pike et al., 2013; Weber et al., 2017).

Water temperature depth profiles also determine the strength of thermal stratification, i.e., if there are dis-
crete epilimnetic (surface) and hypolimnetic (bottom) layers or isothermal (fully mixed) conditions (Read et
al., 2011). When waterbodies transition from stratified to mixed conditions during the onset of fall turnover,
nutrients and metals that have accumulated in the hypolimnion during the summer are mixed throughout
the water column, decreasing water quality (Cooke et al., 2005; Effler & Matthews, 2008). The strength of
thermal stratification in reservoirs can also modify the response of downstream rivers to climate change
(Cheng et al., 2020). Consequently, real‐time iterative forecasts of water temperature profiles would allow
managers to preemptively respond to impending poor water quality during fall turnover and other episodic
events (e.g., storms) that alter water temperature and thermal stratification.

Here, we introduce a forecasting system (FLARE, Forecasting Lake And Reservoir Ecosystems) that gener-
ates automated 16‐day water temperature forecasts in real time (Figure 1).

FLARE is composed of (1) water temperature and meteorology sensors deployed in a lake or reservoir that
wirelessly stream data, (2) a data assimilation algorithm that uses sensor observations to update water tem-
perature predictions from a hydrodynamic model and to calibrate model parameters, and (3) an ensemble‐

Figure 1. A simplified conceptual diagram describing the major data assimilation and forecasting steps in the daily
iterative forecasting cycle for the FLARE (Forecasting Lake And Reservoir Ecosystems) forecasting system. The
forecasting cycle has two key stages in which data are assimilated each day (left dashed box) to produce the initial
conditions for a 16‐day forecast (right dashed box). EnKF = ensemble Kalman filter; NOAA = National Oceanic and
Atmospheric Administration.
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based forecasting algorithm to generate forecasts that quantify the sources of forecast uncertainty. FLARE
quantifies uncertainty from driver data (i.e., the uncertainty in future weather or inflow forecasts that are
needed to run the hydrodynamic model), initial conditions (i.e., the uncertainty observed in water tempera-
tures on the first day of the forecast), model process (i.e., the capacity of a calibrated model to reproduce
observations), and model parameters (following Dietze, 2017a). The forecasting system samples from these
sources of uncertainty to generate probability distributions for water temperature at multiple depths and can
generate probability distributions of hydrodynamic events such as the occurrence of fall turnover.

FLARE builds off of previous studies that have developed forecasting systems with data assimilation to pre-
dict water temperature (e.g., Bal et al., 2014; Baracchini, Wuest, & Bouffard, 2020; Caissie et al., 2016; Hague
& Patterson, 2014; Huang et al., 2011; Mestekemper et al., 2010; Ouellet‐Proulx, Chimi Chiadjeu, et al., 2017;
Pike et al., 2013) in four key ways. First, FLARE was built using all open‐source software and model compo-
nents and is completely automated via its cyberinfrastructure: once set up, the forecasting system automati-
cally retrieves real‐time observations for data assimilation, runs models, and triggers the delivery of daily
forecasts and system status updates. Second, unlike many real‐time water forecasting systems that depend
on governmental agencies for the collection of data used for assimilation (e.g., Ouellet‐Proulx, Chimi
Chiadjeu, et al., 2017; Pike et al., 2013), FLARE forecasts can be run and updated with water temperature
data commonly collected by local water managers. These features enable scalability to a range of waterbo-
dies without existing infrastructure. Third, FLARE daily forecasts extend up to 16 days in the future, which
allows for the evaluation of forecast performance at a longer forecast horizon than reported in the literature
by other water temperature forecasting systems, which have forecast horizons ranging from 3 days (Caissie
et al., 2016) to 10 days (Hague & Patterson, 2014). Fourth, FLARE propagates and partitions multiple sources
of forecast uncertainty, which are updated over time, allowing for the evaluation of both forecast accuracy
and the reliability of uncertainty estimation. Despite the importance of quantifying multiple uncertainty
sources, few water resource forecasting studies quantify more than one or two sources of uncertainty and
when they do, they typically only include initial conditions uncertainty (via data assimilation) and meteor-
ological uncertainty (via ensemble weather forecasts) (e.g., Baracchini, Wuest, & Bouffard, 2020; Komatsu et
al., 2007; Ouellet‐Proulx, Chimi Chiadjeu, et al., 2017; Ouellet‐Proulx, St‐Hilaire, & Boucher, 2017; Page et
al., 2018). Furthermore, they rarely partition the relative contributions of the individual sources of uncer-
tainty to the total forecast uncertainty (but see Ouellet‐Proulx, Chimi Chiadjeu, et al., 2017).

We set up FLARE to generate automated, probabilistic water temperature forecasts for a drinking water
reservoir over 16 months (475 days) to address the following questions: (1) How does forecasting perfor-
mance, as evaluated against observations and a null persistence model, differ between thermally stratified
versus mixed conditions, two key regimes of lake thermal dynamics? (2) How well does the forecasting sys-
tem predict the onset of fall turnover? and (3) What are the contributions of different sources of uncertainty
to the forecasts, and how do they vary between thermally stratified versus mixed conditions? Based on root
mean square error (RMSE) values reported from non‐forecasting applications of lake hydrodynamic models
(e.g., Bruce et al., 2018), we expectedmodel process to be an important source of forecast uncertainty (Hipsey
et al., 2020). Following Dietze (2017b), we expected meteorological driver data to also be an important con-
tributor of forecast uncertainty, which would increase throughout the 16‐day forecast horizon.

2. Methods

We developed a forecasting system (FLARE) that predicts water temperature at a daily time step for a set of
specified depths in a lake or reservoir over a 16‐day time horizon (Figure 1). The system uses data assimila-
tion of sensor observations to generate both (1) initial conditions and parameters for a physics‐based hydro-
dynamic model and (2) uncertainty estimates for a forecast that extends 16 days in the future. Each day, the
data assimilation is advanced one daily time step before launching the forecast of future conditions. We
describe the forecasting methods below and the data assimilation methods in Supporting Information S1.

2.1. Hydrodynamic Model

FLARE simulated reservoir hydrodynamics with the General Lake Model (GLM), a one‐dimensional (1‐D)
vertical stratificationmodel (Hipsey et al., 2019). We used GLMbecause (1) themodel has successfully repro-
duced observed water temperature profiles in lakes around the world with varying mixing regime, climate,
and morphology (Bruce et al., 2018); (2) GLM is an open‐source, community‐developed model and thus
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scalable to other waterbodies; and (3) GLM has low computational needs, enabling many model ensemble
members to be run quickly and efficiently, a requirement for real‐time iterative forecasting. GLM runs at
a daily time step with subdaily (hourly) meteorological drivers and daily mean inflow drivers. In FLARE,
we used the GLM output for the hour at the end of the daily step (e.g., 12:00:00).

We set all but three highly sensitive parameters equal to the values reported in the default GLM version
3.1.0a model (Hipsey et al., 2019), and FLARE updated the highly sensitive parameters at each model time
step. The three parameters that had automated tuning using data assimilation were selected using a sensi-
tivity analysis described in Supporting Information S1 and were: one parameter that scales the incoming
shortwave radiation (sw_factor) and two parameters defining the sediment temperatures in the hypolim-
nion (zone1temp, 5–9.3 m) and epilimnion (zone2temp: 0–5 m). For driver data, GLM requires hourly
meteorological data on downwelling shortwave radiation (W m−2), downwelling longwave radiation
(W m−2), air temperature (°C), wind speed (m s−1), relative humidity (%), and precipitation (m day−1) as
well as daily rates of water inflow (m3 day−1) and inflow temperature (°C) and daily rates of outflow
(m3 day−1). The full GLM configuration is provided in Supporting Information S2.

2.2. Ensemble Forecasting Approach

The FLARE system uses an ensemble approach to numerically simulate and propagate forecast uncertainty
into the future. The ensemble forecasting is based on Equation 1:

xif þ 1 ¼ G xif ; α
i
t;D

i
f

� �
þ ε (1)

where G() is the GLM model that requires a vector of water temperatures at the modeled depths as initial
conditions (xif), a vector of the three calibrated model parameters (αit), and a set of model drivers (D, which

encompassed weather, inflows, and outflows). The index i in Equation 1 represents the ith ensemble mem-
ber and the subscript f is the day (0 to 16) in the 16‐day forecast horizon. The index t is the number of days
since the initiation of forecasting and data assimilation (i.e., 0 = the day the automated forecasting system
is deployed). The index t is different from f because t increases each day throughout a multiyear forecast-
ing period, while f is reset to 0 each day before initiating a new 16‐day forecast. The ε represents the con-
tribution of process uncertainty (i.e., errors due to an imperfect representation of physical processes in a
model; Dietze, 2017a) to total forecast uncertainty and is randomly drawn from a multivariate normal dis-
tribution with a mean of 0 and a covariance matrix of Σt. The covariance matrix (Σt) represents the uncer-
tainty at each depth (the diagonals of Σt) and the covariance of uncertainty between depths (the off‐
diagonals of Σt). Σt is calculated from the residuals between the ensemble mean and the observed tempera-
tures before data are assimilated. The subscript t on Σt signifies that the covariance matrix is determined
by data assimilation of historical observations and is constant over each day f in the 16‐day forecast hor-
izon. Equation 1 is applied at the daily time step and the process uncertainty is added each day of the
forecast.

Each 16‐day forecast requires initial conditions of the water temperature at each modeled depth (xif¼0 ¼ xit,

where t is the number of days since the automated forecasting system is deployed) andmodel parameters (αit)
on day f = 0 of the forecast. The variance in xt and αt across ensemble members when the forecast is initia-
lized represents the contribution of initial conditions and parameters, respectively, to the total forecast
uncertainty. To generate these initial conditions while also calibrating the three focal parameters, FLARE
assimilates temperature sensor observations from the previous day into the GLM using an ensemble
Kalman filter (EnKF; Evensen, 2003, 2009). We used data assimilation rather than simply specifying the
initial conditions from the observations because the EnKF (1) enables the generation of initial conditions
when sensor data were not available (e.g., during maintenance), (2) mechanistically interpolates water tem-
perature between sensor depths, (3) enables the automated calibration of the three highly sensitive model
parameters, and (4) generates a historical data product of water temperature with spatial and temporal
gap filling. The EnKF method of data assimilation is well suited for nonlinear mechanistic models like the
GLM and enables ensemble‐based forecasts of future states (Baracchini, Chu, et al. 2020; Clark et al., 2008;
Dietze, 2017a; Page et al., 2018). Our implementation of the EnKF with state augmentation to calibrate para-
meters (Supporting Information S1) follows Zhang et al. (2017).
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To quantify the contribution of future meteorological conditions to the total forecast uncertainty, each of the
i water temperature ensemble members is assigned one of the ensemble meteorological forecast members
from the National Oceanic and Atmospheric Administration Global Ensemble Forecasting System
(NOAA GEFS) throughout the 16‐day forecast horizon. NOAA GEFS provides ensemble forecasts with 21
members, with each member representing slightly modified versions of the model that result in different
predictions of future weather conditions at a 16‐day time horizon. Each day that a forecast is generated,
the meteorological driver data required by the GLM from NOAA GEFS are downloaded for the 12:00:00
UTC forecast using the rNOMADS package (Version 2.4.2) in R (Bowman & Lees, 2015).

Additionally, our forecasts include the uncertainty from statistically downscaling the gridded NOAA GEFS
meteorological forecasts to local meteorological conditions. First, we downscaled the NOAA GEFS forecasts
to a local site using a linear relationship between the NOAA GEFS forecast and observed meteorology. Next,
we added random noise to each meteorological variable for each day of each NOAA GEFS ensemble mem-
ber. This random noise was generated by a multivariate normal distribution that described the covariance in
the relationship between the observed meteorology and NOAA GEFS forecasted meteorology for the
meteorological variables required by GLM. By adding random error from this multivariate normal distribu-
tion to each member of the 21‐member NOAA GEFS, we generated an ensemble of meteorological drivers
that represented both NOAA GEFS forecast and downscaling uncertainty (see Supporting Information S3
for more detail about the downscaling methods).

In addition to meteorological driver uncertainty, we include driver uncertainty from future daily inflow dis-
charge and temperature of the primary tributary to the lake or reservoir. For simplicity, we assume here that
there is only one primary inflow, but additional inflows could be easily added in applications to other water-
bodies. Our approach requires sensor observations of inflow discharge and temperature as covariates in time
series models to create forecasted inflow driver data; however, other modeling approaches using precipita-
tion or air temperature could also be substituted to generate the inflow driver data (e.g., Benyahya et al., 2007;
Ward et al., 2020). Given that the discharge and water temperature tomorrow is likely to be dependent on
today's inflow and we had inflow sensor data available, we used a simple first‐order autoregressive time ser-

ies model that predicts tomorrow's inflow discharge (Iif þ 1Þ as function of today's inflow (Iif Þ, today's daily
precipitationPi

f , and random error (ε) that is normally distributed with a mean of 0 and a standard deviation

of σinflow
rate :

Iif þ 1 ¼ β0 þ β1I
i
f þ β2P

i
f þ ε (2)

in which β0, β1,and β2 are regression coefficients. The σinflowrate is estimated using the residuals from the
regression fit. Equation 2 is iteratively applied through the 16‐day forecast horizon for each downscaled
meteorological driver ensemble member.

Similar to inflow, we forecast future inflow water temperature (T) as a function of today's water temperature

(Ti
f Þ, today's air temperature (Ai

f ), and random error (ε) that is normally distributed with a mean of 0 and a

standard deviation of σtemp
rate :

Tt
f þ 1 ¼ β3 þ β4T

i
f þ β5A

i
f þ ε (3)

β3, β4, and β5 are regression coefficients. σtemp
rate is estimated using the residuals from the regression fit. After

inflow rate is calculated for each ensemble member, the outflow for that ensemble member is set to equal
the inflow to maintain constant water levels.

2.3. Application of Forecasting System
2.3.1. Site Description
We applied and evaluated FLARE at Falling Creek Reservoir (FCR), a dimictic, eutrophic reservoir located
in Vinton, Virginia, USA (37.30°N, 79.84°W). FCR is a shallow (maximumdepth= 9.3m,mean depth= 4m),
small (surface area = 0.119 km2) reservoir (Gerling et al., 2016). The lake generally exhibits summer thermal
stratification from May to October and is ice covered for short durations during December to March
(Carey, 2019). FCR is primarily fed by one upstream tributary and was maintained at full pond
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throughout this study by the Western Virginia Water Authority (WVWA), who own and manage the reser-
voir as a drinking water supply (Gerling et al., 2014, 2016).

We used high‐frequency sensors to monitor FCR water temperature (Carey, Bookout, Woelmer, et al., 2020)
andmeteorology (Carey, Bookout, Lofton, et al., 2020) andmeasure the inflow discharge rate and water tem-
perature of the primary tributary entering FCR through a weir (Carey, Hounshell, Lofton, et al., 2020).
Descriptions of the sensor array and methods for real‐time wireless transfer of data to cloud storage are in
Supporting Information S4 and Supporting Information Table S1.
2.3.2. Description of Forecasting Analysis
Our application of the forecasting system at FCR was from 11 July 2018 to 15 December 2019. There were no
16‐day forecasts produced between 11 July and 27 August 2018 in order to use observed meteorology and
data assimilation during this period to estimate the Σt process uncertainty covariance matrix and for the
automated tuning of the three GLM parameters (see Supporting Information S1). Starting on 28 August
2018, 16‐day forecasts were produced each day until 15 December 2019. We forecasted water temperature
on 0.33‐m depth intervals starting at the surface through 9.0 m at the sediments. This resulted in 28 model
states of water temperature depths in the xmatrix (Equation 1). We had sensor observations for 11 of the 28
modeled depths (0.1, 1.0, 1.6, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0 m; Supporting Information S4).

In the data assimilation and forecasting steps of the daily workflow (Figure 1), we used N = 441 ensemble
members. Even though fewer ensemble members have been shown to be effective when applying the
EnKF in other studies (e.g., Loos et al., 2020), our ensemble size was selected to adequately sample forecasted
meteorology drivers to include uncertainty from both NOAA GEFS and its statistical downscaling. In the
forecasting step for this application (Figure 1), we generated 21 members of our downscaling ensemble for
each of the 21 NOAA GEFS ensemble members (following Supporting Information S3, Supporting
Information Table S2, and Supporting Information Table S3), resulting in a total ensemble size of
N = 441. The same ensemble size was applied to the data assimilation step to match the forecasting step.

We estimated the coefficients for the inflowdischarge and temperature forecastingmodels in Equations 2 and

3 using data from 1 January 2017 to 12 July 2018 (β0 = 0.001, b1 = 0.948, b2 = 0.358,σinflowrate = 0.001, b3 = 0.203,

b4 = 0.942, b5 = 0.043, σinflowtemp = 0.943). Both regressions had high R2 (Equation 2: R2 = 0.98; Equation 3:

R2 = 0.93). In the forecast, each of the 441 meteorological ensembles were used to separately calculate inflow
discharge and temperature. Following Equations 2 and 3, randomnoisewas added to each ensemblemember
to represent uncertainty in forecasting inflow. We set the inflow discharge and temperature at the beginning
of each 16‐day forecast (f = 0) directly from the sensors located on the primary tributary entering FCR.

Beginning 28 August 2018, 16‐day horizon forecasts were produced each day until the end of the forecasting
period on 15 December 2019. The 475 daily forecasts generated over this period included summer stratified,
fall mixed, under‐ice, and spring mixed conditions in the reservoir (Carey, Bookout, Woelmer, et al., 2020).
Our iterative daily forecasting cycle (Figure 1) entailed: (1) retrieving the previous 24 hours of
meteorological, inflow, and water temperature data from the reservoir sensor network, (2) advancing the
model states (i.e., the water temperatures at the modeled depths) one day using the observed meteorology
and inflows as drivers to the GLM model, (3) using the EnKF to assimilate observed water temperature
and update states and parameters, and (4) initiating a 16‐day forecast using updated states and parameters
as initial conditions and parameters, which started at 12:00:00 UTC of the current day. As a result of the daily
data assimilation within the forecasting cycle, parameter distributions and process uncertainty (Σt) were
updated through each iteration of the forecasting cycle. Once a 16‐day forecast was launched from the initial
conditions set by data assimilation, the parameters did not change over its 16‐day horizon.

We also used a persistence null model to forecast water temperatures from 28 August 2018 to 15 December
2019 as a baseline for evaluating forecast skill. We used a persistence null model rather than a climatology
null model because we lacked the multiple years of daily water temperature observations that would be
necessary to generate historical averages. Our null model assumed water temperature did not change over
the 16‐day horizon based on Equation 4:

xif þ 1 ¼ xif þ ε (4)

where ε is represents the contribution of process uncertainty to total forecast uncertainty and is randomly

drawn from a multivariate normal distribution with a mean of zero and a covariance matrix of Σnull
t : We
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applied the same data assimilation methods used to determine the initial conditions (xif¼0 = xit) and process

uncertainty covariance matrix (Σnull
t Þ in the forecast (Supporting Information S1) to the persistence null

forecast.
2.3.3. Evaluation of Forecasts
We used multiple metrics to evaluate forecast performance. First, we calculated RMSE and the mean
Continuous Ranked Probability Score (CRPS) for the forecasted water temperature (F) and the observed
water temperature (y) at each day in the 16‐day forecast horizon. CRPS is analogous to mean absolute error
and is used with probability distributions produced by ensemble forecasts (Gneiting et al., 2005). CRPS is
defined as:

CRPS F; yð Þ ¼
Z ∞

−∞
F uð Þ − 1u ≥ y
� �2

du (5)

where 1u ≥ y is a step function that takes the value 1 if u ≥ y and the value 0 otherwise (Gneiting et al., 2005).
We used the “verification” package in R (NCAR‐Research Applications Laboratory, 2015) to calculate CRPS.
The forecast skill was assessed by comparing the CRPS of the forecast (CRPSforecast) and the null model
(CRPSnull) using a skill score:

CRPS Skill ¼ 1 −
CRPSforecast
CRPSnull

(6)

Thus, we report three CRPS values: CRPSforecast, CRPSnull, and CRPS forecast skill, which was a normal-
ized value in which 0 indicated a forecast that performed the same as the null, one was a perfect forecast
in that it predicted observations with no error, and values less than one indicated a forecast that performed
worse than the null.

Second, bias was assessed using the absolute difference between the mean forecasted water temperature
(ft) and the observed water temperature (ot) at each day in the 16‐day forecast, following Equation 7:

Bias ¼ 1
N
∑N

t¼1 f t − otð Þ (7)

Third, the reliability of the confidence intervals was also assessed by calculating the total number of obser-
vations contained in a specific confidence interval (i.e., a reliability diagram; Bröcker & Smith, 2007). We
considered a forecast to be well‐calibrated if its 90% confidence intervals contained 90% of the observations
over the 475 days of forecasts. The confidence interval would be overconfident if fewer than 90% of obser-
vations were in this interval and would be underconfident if more than 90% observations were in this
interval. We calculated the proportion of observations in the 10th, 20th, 30th, 40th, 50th, 60th, 70th,
80th, and 90th confidence intervals for 1‐, 7‐, and 16‐day time horizons.

In our evaluation, we averaged RMSE, CRPS, bias, and reliability of confidence intervals for each day for the
entire water column, as well as individually report forecast performance statistics for the near‐surface
(1.0 m), middle of the water column (5.0 m), and near‐sediments (8.0 m) within the 16‐day forecast horizon
over the 475 daily forecasts. We primarily focused on 1.0 and 8.0 m for forecast evaluation to capture con-
trasting thermal conditions in the water column; however, we note that performance at 5.0 m was similar,
as shown below. In addition, we classified each of the 475 days as either thermally stratified or mixed to
compare relative forecast performance between the two thermal regimes. We applied the turnover criterion
of McClure et al. (2018): days with water temperatures at the 1.0 and 8.0 m at 12:00:00 UTC (the beginning of
each forecast's daily time step) that were <1°C different were categorized as mixed, and days with water tem-
peratures at 1.0 and 8.0 m that were ≥1°C different were categorized as thermally stratified. Given that there
was only intermittent ice cover on the reservoir forN= 11 days total during the forecasting period and stable
inverse thermal stratification never occurred (Carey, 2019), days with ice were classified as mixed.

In addition, we evaluated how missing temperature observations (e.g., due to potential sensor failure) influ-
ence forecast performance by simulating 1‐week gaps in water temperature observations throughout the
forecasting period. For the 16 forecasts generated on the first day of each month between 28 August 2018
to 15 December 2019, we selectively removed the preceding week's data from data assimilation. We chose
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a 1‐week data gap because it allowed us to quantify the performance of data assimilation at a site without
automated temperature sensors that instead had, e.g., a weekly manual sampling regime with a temperature
profiler or handheld temperature sensor. For each of the 16 forecasts, we compared the CRPS values from
the forecast, which used the previous week's data for data assimilation, to the forecast which had the pre-
vious week's data selectively removed.

Finally, we evaluated the ability of the forecasting system to predict the day that fall turnover was first
observed at the reservoir in both years. In the forecasts prior to turnover, we calculated the proportion of
ensemble members that predicted the 1.0‐ and 8.0‐m water temperatures to be <1°C different on each day
in the forecast. We expected this probability to increase for the day of turnover relative to other days as
the onset of turnover approached.
2.3.4. Partitioning of Uncertainty
We isolated the contribution of each uncertainty source by removing the contributions of all other uncer-
tainty sources in a set of scenarios run for each day over the forecasting period. Initial condition uncertainty
was removed from the scenarios by initializing all ensemble members at f = 0 (Equation 1) with the mean
from all ensemble members. Parameter uncertainty was removed by assigning all 441 ensemble members
to have the same ensemble means for each of the three automatically calibrated parameters. Process uncer-
tainty was removed by excluding the error term (ε) in Equation 1. NOAA GEFS meteorological driver data
uncertainty was removed by using the ensemble mean from the 21‐member NOAA GEFS ensemble instead
of each individual NOAA GEFS ensemble member. Meteorology statistical downscaling uncertainty was
removed by not sampling from the multivariate normal distribution describing the variance and covariance
in downscaling error amongmeteorology variables. Inflow driver data uncertainty was removed by not sam-
pling from the normally distributed uncertainty in Equations 2 and 3.

In our analysis, we compared the variance contributed by each isolated uncertainty source and summed the
uncertainty sources to calculate the total forecast variance separately each day in the 16‐day horizon. To
examine how the uncertainty contributions varied over time, we partitioned the uncertainty of the forecasts
generated on the first day of each month, resulting in 16 uncertainty‐partitioned forecasts during 28 August
2018 to 15 December 2019. We separately averaged the partitioned uncertainty for the N = 9 forecasts gen-
erated during thermally stratified conditions and N = 7 forecasts generated during mixed conditions.

3. Results
3.1. Observational Water Temperature Data

Falling Creek Reservoir exhibited summer thermal stratification from the beginning of the monitoring per-
iod on 11 July 2018 until the onset of fall turnover occurred on 22 October 2018 and then remained mixed
until thermal stratification began to set up on 12 March 2019, as defined by a difference of >1°C between
1.0 and 8.0 m (Figure 2a). The reservoir remained thermally stratified throughout the summer until the
onset of the second fall turnover on 24 October 2019.

We observed similar thermal dynamics between the 2 years: observed water temperatures at the reservoir's
near‐surface (1.0 m) peaked on 17 July (28.1°C) in 2018 and on 21 July (29.3°C) in 2019. In both years, fall
turnover was preceded by rapidly cooling surface water temperatures, which decreased from 22.6 to 14.7°C
at 1.0 m in the 14 days prior to 22 October 2018 and from 20.0 to 14.6°C in the 14 days prior to 24 October
2019. In the mixed periods of 2018 and 2019 (Figure 2b), the 1.0‐ and 8.0‐m depth temperature sensors
recorded water temperatures at 12:00:00 UTC that had a mean difference of 0.23°C (±0.55°C, 1 S.D).

3.2. GLM Model and EnKF Performance

The GLMmodel was able to successfully reproduce observed patterns in reservoir water temperature follow-
ing data assimilation. With daily assimilation of observed water temperatures using the EnKF and observed
(not forecasted) meteorological and inflow drivers, the RMSE for the water temperature predicted by GLM at
1.0‐ and 8.0‐mdepth was 0.06°C and 0.07°C, respectively, during the period when data assimilation occurred
(11 July 2018 to 15 December 2019; Figure 3). Data assimilation substantially improved GLM predictions, as
the RMSE for predicted water temperatures at 1.0 and 8.0 m using observed drivers but without data assim-
ilation was 1.71°C and 1.56°C, respectively (Figure 3). Data assimilation also removed a warming bias at 1 m
and reduced the rate of warming through the spring and summer of 2019 at 8.0 m to more closely align
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model predictions with observed data (Figure 3). The three tuned GLM parameters were well constrained by
data assimilation (Supporting Information Figure S1), and their values varied following expected seasonal
patterns.

3.3. Forecast Performance

Every day between 28 August 2018 and 15 December 2019, the forecasting system generated 16‐day forecasts
of water temperature for the entire water column (see Figure 4 as an example). In general, forecast accuracy
was high throughout the 16‐day forecast horizon, with the mean bias in forecasted water temperatures
within 0.30°C for 1.0 m and 0.22°C for 8.0 m of observed temperatures throughout the 475 daily forecasts,
averaged across all forecast time horizons and ensemble members (Figure 5a and Table 1). RMSE was

Figure 2. Observed water temperature (in °C) depth profiles in Falling Creek Reservoir during the forecasting period
(28 August 2018 to 15 December 2019). (a) A heat map showing the observed temperatures through the water
column for the forecasting period based on water temperature sensor observations measured every 10 min at 0.1‐, 1.0‐,
1.6‐, 2.0‐, 3.0‐, 4.0‐, 5.0‐, 6.0‐, 7.0‐, 8.0‐, and 9.0‐m depths. White values denote days with missing water temperature
sensor data as a result of sensor maintenance (15–27 August and 9 September 2018). (b) A comparison of the observed
water temperature for two depths (1.0 m: red, 8.0 m: blue). NF (No Forecasts) denotes the period in the analysis
when data assimilation was performed but no forecasts were generated. The S and M labels refer to the Stratified and
Mixed periods, respectively.
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0.22–0.40°C lower for 8.0 m forecasts than for 1.0 m forecasts aggregated across horizons and ensemble
members, ranging from 0.30°C for 8.0 m at a 1‐day horizon to 1.62°C for 1.0 m at a 16‐day horizon (Table 1).

Forecast error as indicated by the CRPSforecast increased as the forecast horizon increased, though it was nota-
ble that the CRPSforecast was consistently better than the null persistence model (CRPSnull) throughout the
16‐day horizon for 1.0 m temperatures (Figure 5b). This resulted in a CRPS forecast skill score for the 16‐
day time horizon of 0.53 when averaged across all forecasts. At 8.0‐m depth, the null persistence model
(CRPSnull) performed better than the forecasts at the 1‐ and 7‐day time horizons and only marginally worse
at the 16‐day time horizon. This resulted in a lower CRPS forecast skill score of 0.14 at 8.0 m when averaged
across all forecasts (Table 1).

Forecast confidence intervals at 1.0‐m depth were well calibrated (exactly 90% of the observations were in the
90% confidence intervals; Table 1) and generally fell along the 1:1 line between the percentage of observations
within a specific forecast confidence interval (Figure 5c). Forecast confidence intervals were less well cali-
brated at 8.0 m (56–76% of observations were within the 90% interval) and underestimated the uncertainty
across all time horizons (Table 1 and Figure 5d). Averaged across all depths, the forecast confidence intervals
were smaller than expected (79–85% of observations fell within the 90% confidence intervals; Table 1).

Forecasting performance was generally similar between the thermally stratified and mixed periods, with a few
key exceptions. At 1.0m, theCRPS forecast skill was consistently greater (up to 0.3 skill score) and biaswas lower
in stratified than mixed conditions, regardless of forecast time horizon (Table 1). In contrast, at 8.0 m, CRPS

Figure 3. Mean predictions of water temperature (in °C) at 1.0 (a) and 8.0 m (b) with (red lines) and without (blue lines) data assimilation (DA) of in situ
observations of temperature measured at 10 depths. All simulations used observed meteorological and inflow drivers. Panels (c) and (d) show the bias in
predictions at 1.0 and 8.0 m, respectively, with and without data assimilation.
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forecast skill was slightly greater at 1‐ and 7‐day horizons but there was no difference in forecast skill between
mixed and stratified conditions at a 16‐day horizon (Table 1). Finally, the confidence intervals were better
calibrated at 8.0 m for the mixed period (85% of observations in the 90% confidence interval at the 16‐day time
forecast horizon) than the stratified period (36% of observations in the 90% confidence interval; Table 1).

The forecasts were sensitive to missing sensor data during the week prior to a forecast being generated but
the overall effect on forecast performance wasminimal (Supporting Information Figure S2). Aggregated over
16 forecasts generated monthly throughout the forecasting period, the mean CRPSforecast on the first day of
the forecast horizon was ~0.2°C higher at both 1.0 and 8.0 m when the preceding week of water temperature
observations was selectively removed, in comparison to forecasts for the same time periods with no data
gaps. At 1.0 m depth, this difference in mean CRPSforecast diminished to <0.1°C after the first 6 days of
the forecast horizon. At 8.0 m, the difference in mean CRPSforecast decreased over the forecast horizon but
remained ≥0.15°C at the end of the 16‐day forecast horizon (Supporting Information Figure S2).

The forecasts successfully predicted the onset of fall turnover that occurred on 22 October 2018 up to 14 days
in advance (Figure 6a). At 14 days prior to 22 October 2018, the predicted chance of turnover occurring on
that day emerged above 50% for the first time (Figure 6a). Confidence that turnover would occur on 22
October increased 8 days prior to turnover, when its predicted chance exceeded 75%. By 19 October (three
days prior to turnover), the predicted chance of turnover on 22 October increased up to 81%, 31% higher than
any of the other potential days.

The forecasts successfully predicted the onset of fall turnover that occurred on 24 October 2019 up to 4 days
in advance (Figure 6b). The predicted chance of turnover occurring that day increased from 43% 5 days prior
to turnover to 63% 4 days prior to turnover. The predicted chance of turnover occurring on 24 October
remained above 50% as the day of turnover approached. However, the confidence in turnover date was lower
in 2019 than 2018, potentially because the reservoir temporarily restratified immediately after the initial
onset of mixed conditions in 2019 (Figure 2).

3.4. Uncertainty Partitioning

Forecast uncertainty varied over time and depth. In the thermally stratified period, the total forecast uncer-
taintywas approximately four times higher for forecasts at 1.0 than 8.0m,with striking differences in the rela-
tive importance of different sources to total forecast uncertainty (Figure 7). For both depths, model process
uncertainty was the most important contributor to total uncertainty over the first 3 days in a 16‐day forecast
horizon during stratified conditions. After 3 days, the contribution ofmeteorological driver uncertainty domi-
nated at 1.0‐m depth (>50% of uncertainty) while process uncertainty remained the dominant source of

Figure 4. An example of a 16‐day water temperature (in °C) forecast (initiated on 13 October 2018) at the near‐surface
(1.0 m) and near‐sediment (8.0 m) depths by the (a) General Lake Model (GLM) and (b) the persistence null model.
The forecast uncertainty in both panels is compared to the observations from the water temperature sensors at 1.0‐ and
8.0‐m depths.
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uncertainty at 8.0‐m depth throughout the 16‐day forecast horizon (>95% of uncertainty). At the near‐
surface, the statistical downscaling of the meteorological driver data was a more important uncertainty
source than the uncertainty due to the NOAA meteorological forecast itself throughout the 16‐day horizon.
Parameters, inflow driver data, and initial conditions were not important uncertainty sources at either depth.

In contrast to the thermally stratified period, the total uncertainty and the relative contribution of the differ-
ent sources were similar between the near‐surface (1.0 m) and near‐sediment (8.0 m) depths during mixed
conditions (Figure 7). In the mixed period, process uncertainty was the most important source for the first
5 days of the forecast before the relative importance of the combined meteorological downscaling and fore-
casts dominated. Similar to the stratified period, parameters, inflow driver data, and initial conditions were
minimal sources of uncertainty during mixed conditions.

4. Discussion

Overall, FLARE was able to forecast water temperature on average within 1.4°C (RMSE) at all depths of the
reservoir over a 16‐day horizon during a 475‐day period that encompassed both thermally stratified and
mixed conditions (Table 1). Importantly, the forecasting system was able to predict both observed

Figure 5. Water temperature forecasts for 1.0 (red) and 8.0 m (blue) had low bias, high forecast skill (relative to a null persistence model), and well‐calibrated
confidence intervals. (a) The difference between the forecasted and observed water temperatures (bias) (in °C) at 1.0 and 8.0 m averaged across all forecasts
generated during the 475‐day forecasting period. (b) The Continuous Ranked Probability Score (CRPS, a metric for evaluating ensemble forecasting that is
analogous to Mean Absolute Error) of the forecasts at the two depths averaged across the entire forecasting period in comparison to a null persistence model.
The null model assumed that water temperature did not change over the 16‐day forecast horizon. The percentage of (c) 1.0‐ and (d) 8.0‐m observations during
the forecasting period that were within the forecast confidence interval that is specified on the x axis are shown. For example, the 90% forecast confidence interval
encompasses the 5th to 95th percentile of the 441 forecast ensemble members and ideally should contain 90% of water temperature observations. Values for 1‐, 7‐,
and 16‐day forecast horizons for the 1.0‐m depth are shown.
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temperatures and identify the date of fall turnover at least four, and up to 14, days in advance. In general,
forecasting system performance was similar between stratified and mixed periods (Table 1) and did not
strongly degrade when a week of data was not available for data assimilation prior to forecast generation
(Supporting Information Figure S2). These results suggest that the system is likely robust in a range of
reservoir conditions, though additional forecasts are needed to provide a full assessment of FLARE
performance. Generally, 1‐D hydrodynamic models used for hindcasting aim to predict water temperature
within an RMSE of 2°C (e.g., Bruce et al., 2018), so the level of accuracy associated with FLARE future
forecasts over 475 days at Falling Creek Reservoir exceeds expectations (RMSE = 1.4°C aggregated across
all periods and all depths; Table 1). Below, we examine the drivers of forecast uncertainty, performance of
turnover forecasts, applications for scaling FLARE to other waterbodies, and potential improvements that
could improve the use of FLARE for water management.

4.1. Forecast Uncertainty

We found that process uncertainty was the most important source of uncertainty early in the 16‐day forecast
but that meteorological driver data uncertainty dominated by the end of the forecasting period for all but
near‐sediment depths during the thermally stratified period (Figure 7). This finding is intuitive, as the epi-
limnion is more sensitive to meteorological forcing than the hypolimnion, and during mixed conditions,
both surface and near‐sediment depths exhibit similar dynamics. We note that process uncertainty did not
decline through the forecast horizon, rather, the total uncertainty grew while the relative importance of pro-
cess uncertainty decreased. By definition, process uncertainty is not attributed to an individual component
of a model but a model's overall inability to represent complex interactions occurring in the natural environ-
ment (Dietze, 2017a). Improvements to the GLM model structure, such as improved sediment heating for-
mulations, could decrease this uncertainty source, particularly in shallower waterbodies; however, there is
likely an irreducible component of process uncertainty inherent to using a 1‐D model to simulate a 3‐D
waterbody.

The contribution of the NOAA ensemble forecast uncertainty to total forecast uncertainty was overall less
than the contribution of uncertainty from downscaling the coarse‐scale NOAA forecast to the local site.

Table 1
Forecast Evaluation Metrics for the Entire Forecasting Period (“All Conditions”), During Thermally Stratified Conditions Only, and During Mixed Conditions Only

Forecast
time
horizon Metric

All conditions (n = 475 days) Stratified conditions (n = 282 days) Mixed conditions (n = 193 days)

1.0 m 5.0 m 8.0 m All depths 1.0 m 8.0 m 1.0 m 8.0 m

1 day RMSE (°C) 0.52 0.36 0.30 0.44 0.56 0.23 0.45 0.39
CRPSforecast (°C) 0.29 0.20 0.16 0.23 0.32 0.12 0.25 0.22
CRPSnull (°C) 0.34 0.20 0.13 0.23 0.40 0.09 0.26 0.18
CRPS forecast skill (unitless) 0.16 0.00 −0.26 −0.07 0.21 −0.3 0.04 −0.23
Bias (°C) 0.07 0.05 0.04 0.03 0.07 −0.03 0.09 0.15
CI reliability (%) 90 89 76 85 93 74 85 79

7 day RMSE (°C) 1.13 0.99 0.87 1.04 0.98 0.70 1.32 1.07
CRPSforecast (°C) 0.64 0.48 0.52 0.56 0.58 0.46 0.72 0.61
CRPSnull (°C) 1.14 0.64 0.47 0.77 1.26 0.28 0.95 0.76
CRPS forecast skill (unitless) 0.44 0.25 −0.10 0.20 0.54 −0.66 0.24 0.20
Bias (°C) 0.04 0.09 0.00 0.05 −0.16 −0.27 0.34 0.39
CI reliability (%) 92 91 61 82 99 46 82 82

16 day RMSE (°C) 1.62 1.30 1.20 1.40 1.68 1.13 1.53 1.30
CRPSforecast (°C) 0.92 0.65 0.79 0.80 0.95 0.83 0.87 0.75
CRPSnull (°C) 1.93 1.19 0.92 1.40 2.11 0.56 1.68 1.45
CRPS forecast skill (unitless) 0.53 0.45 0.14 0.39 0.55 −0.48 0.48 0.49
Bias (°C) −0.03 0.12 −0.06 0.03 −0.45 −0.56 0.57 0.66
CI reliability (%) 90 90 56 79 94 36 85 85

Note. Metrics are calculated for all depths averaged together (“all depths”), as well as reported individually for the near‐surface (1.0 m), middle of the water col-
umn (5.0 m), and at the near‐sediments (8.0 m). The metrics include: RMSE (root mean square error between observations and forecasted temperatures);
CRPSforecast (Continuous Ranked Probability Score for the FLARE forecast); CRPSnull (CRPS for the persistence null forecast); CRPS forecast Skill (skill score
for the FLARE forecasting based on the comparison between the CRPSforecast and CRPSnull); bias (the difference between observations and forecasted tempera-
tures); and confidence interval (CI) reliability (the percentage of observations within the 90% confidence intervals).
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This downscaling was based on relationships between the NOAA GEFS forecasted variables and the
meteorological data measured at the reservoir (see Supporting Information S3). This highlights that future
work should focus on applying more advanced meteorological downscaling methods, such as neural
networks (Kumar et al., 2012), to build better relationships between the NOAA forecasts and the local
meteorological station. Our uncertainty results are comparable to Dietze (2017b), who partitioned the
uncertainty in forest carbon flux forecasts over 16‐day horizons and similarly found that NOAA ensemble
driver data uncertainty dominated total forecast uncertainty at the end of the 16‐day horizon, though that
study did not include NOAA forecast downscaling uncertainty. Dietze (2017b) also found that process
uncertainty was more important than the meteorological driver data uncertainty early in the 16‐day
forecast horizon. Overall, while that study and ours are just two examples of forecast uncertainty
partitioning, they provide insight from very different ecosystems (reservoir water temperatures vs. forest
carbon fluxes) and together suggest that meteorological driver data are an important contributor of
uncertainty in near‐term iterative forecasts. Moreover, our study indicates that future forecasting

Figure 6. The forecasting system was able to anticipate the day of fall turnover (a) ~14 days in advance in 2018 and (b) ~4
days in advance in 2019 (as defined by when the percent chance first exceeded 50%). Turnover is defined as the first day
in autumn when water temperatures at 1.0 and 8.0 m were <1°C at 12:00:00 UTC. Each panel shows how
the percent chance of turnover for a particular forecasted day updated daily until turnover was observed.
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applications should investigate the relative role of meteorological forecasts versus their downscaling when
quantifying total forecast uncertainty.

Throughout the forecasting period, inflow driver data, parameters, and initial conditions were minimal
sources of uncertainty, regardless of forecast horizon. During the forecasting period, the reservoir exhibited
a median water residence time of 145 days (Carey, Hounshell, Lofton, et al., 2020; Gerling et al., 2014), so it
was surprising that the inflow driver data did not contribute more to total uncertainty. However, the low
residual error in our inflow forecast model (Equation 2; R2 = 0.98) suggests that our autoregressive time ser-
ies model was able to successfully capture variability in inflow dynamics throughout the forecasting period.
Inflow driver data may contribute more uncertainty for waterbodies with multiple inflows and higher dis-
charge than we observed in our case study (e.g., Roberts et al., 2018), and for applications that use other mod-
eling approaches to generate forecasted inflow discharge and water temperature when inflow sensor data
are not available. Parameter uncertainty and initial conditions uncertainty were similarly minor, indicating
that the data assimilation with state updating and automated parameter tuning that was built into the itera-
tive forecasting cycle was able to constrain these sources of forecast uncertainty in our application.

4.2. Turnover Forecasts

FLARE was able to identify the onset of fall turnover ~14 days in advance in 2018 and approximately 4 days
in advance in 2019. This determination was made by identifying the first day when the probability of turn-
over exceeded 50% (Figure 6). This difference in performance between years may be due to differing under-
lying hydrodynamic and meteorological drivers of fall turnover. In 2018, the surface waters of the reservoir

Figure 7. The relative contribution of the individual sources of uncertainty (left axis) to the total forecast uncertainty (right axis, black dashed line) varies through
the 16‐day forecast horizon and between stratified (left column) and mixed (right column) conditions at both 1.0‐m depth (top row) and 8.0‐m depth (bottom row).
The relative contributions and total forecast variance for each day are averaged across 16 forecasts: N = 9 during summer stratification (a, c) and N = 7
during mixed conditions (b, d). Two depths are shown: 1.0 m (a and b); and 8.0 m (c and d).
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had rapidly cooled (by ~8°C) in the 14 days prior to the onset of turnover in response to cold night air tem-
peratures (down to 3°C) that continued after turnover. The day prior to turnover onset in 2018 coincided
with high wind speeds, up to 9.8 m s−1 (Carey, Bookout, Lofton, et al., 2020), which persisted after turnover
and promoted continuous mixing once turnover started. In contrast, in 2019, the reservoir restratified later
on the same day that the turnover criterion was first met due to warm daytime air temperatures (up to 18.7°C
on 24 October) and wind speeds were approximately half of what was observed in 2018. The reservoir did not
continuously exhibit isothermal conditions in 2019 until 2 November, 8 days after the turnover criterion was
initially met. TheMcClure et al. (2018) criterion of turnover was only met for 17 hr on 24 October 2019, mak-
ing it extremely challenging for the forecasting system to correctly predict turnover on that particular day.
Here, we used a previously defined criteria for turnover; other definitions of turnover could be used with dif-
ferent water temperature thresholds or time periods (e.g., the temperature difference between 1‐ and 8‐m
depth must be <1°C and maintained for 48 consecutive hours, following Woolway et al., 2014). How ever
chosen, it is important that the turnover criterion be defined a priori before turnover forecasts are generated.

4.3. Future Applications of FLARE

We anticipate that FLARE may be of interest to managers of lakes and reservoirs where forecasts of water
temperature can provide decision support. Many reservoirs, including FCR, have dynamic water extraction
schedules, which are informed by water temperature depth profiles and the magnitude of thermal stratifica-
tion (Mi et al., 2019). Thus, knowing water temperature depth profiles a priori provides managers with valu-
able information for optimizing the temperature of downstream releases, water quality management, and in
situ management prior to water treatment (Caissie et al., 2016; Huang et al., 2011; Mi et al., 2019; Pike et
al., 2013; Weber et al., 2017).

Importantly, managers could use their current water temperature sensors for setting up and running FLARE
to generate forecasts for their waterbody of interest. All software components of the FLARE system are open‐
source and the automated parameter tuning of the GLM model as part of the EnKF can assist model setup.
To deploy FLARE for an application similar to the FCR case study described here, a water utility would need
water temperature sensors and an inflow discharge sensor connected to the internet, meteorology data, and
knowledge of the waterbody's bathymetry to set up boundary conditions in a hydrodynamic model. While
our application of FLARE at FCR used the GLM model, our forecasting framework is flexible to accommo-
date other lake and reservoir hydrodynamic models. To be able to run in FLARE, the model would need to
be set up for iterative forecasting and daily data assimilation, which requires running the model for 1 day,
adjusting the model states and parameters based on sensor observations, and then restarting the model from
the adjusted states for the next day's run (Figure 1).

4.4. Limitations and Potential Improvements

While the FLARE forecasting system presented here was able to predict water temperature over the 16‐day
time horizon with low bias and an error substantially lower than a null persistence model, there are two
important potential improvements. First, FLARE is using a physics‐based, 1‐D hydrodynamic model, so
improvements to the physical parameterization and numerical solution could improve forecast skill, though
we note that a 3‐D model may be more time‐ and compute‐intensive. Alternatively, thermal stratification
models with a more simple structure (e.g., the 2‐layer model in Niemeyer et al., 2018) than GLM that lever-
age global datasets on storage‐area‐depth (Yigzaw et al., 2018, 2019) could be used to evaluate the level of
complexity required for water temperature forecasting across many waterbodies of varying size.
Furthermore, forecasting approaches that combine physics‐based models with machine learning (e.g., Jia
et al., 2019; Read et al., 2019) could potentially reduce forecast uncertainty by leveraging the power of
mechanistic models and machine learning methods. However, machine learning‐based methods must be
able to fully quantify forecast uncertainty to be comparable to our process model‐based approach (see
Daw et al., 2020). Second, our parameter uncertainty may be underestimated because we only included three
parameters in the EnKF data assimilation, though we note that our sensitivity analysis determined those
three parameters to be the most important for water temperature predictions within the GLM (Supporting
Information S1). While the ability to estimate parameters using EnKF is well‐established, the EnKFmethod
is not specifically designed to estimate parameter distributions like Bayesian Monte Carlo Markov Chain
methods (Dietze, 2017a). A current limitation to implementing a Bayesian Monte Carlo Markov Chain
approach is the computation time to execute the GLM simulation within a daily iterative forecasting
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cycle. Future work that uses emulators of GLMmay be able to speed computation and allow for more robust
estimation of the joint distribution model of parameters that represent both prior knowledge and observed
data (e.g., Fer et al., 2018).

We note four limitations of our application of FLARE at FCR. First, our implementation included only one
inflow, in which we used a first‐order autoregressive model to forecast future inflow discharge and water
temperature. Further work is needed to evaluate FLARE in waterbodies with more inflows. For those water-
bodies, FLARE could be linked to a watershed hydrology model to mechanistically link precipitation and
temperature forecasts to inflow driver data. Second, we set outflow equal to inflow to maintain a constant
water level based on observations, which does not occur in many lakes and reservoirs. Future development
of FLARE could explicitly assimilate observations of water level to constrain forecasts in more dynamic sys-
tems. Third, our data assimilation in FLARE used high‐frequency sensors measuring water temperature at
1‐m depth intervals at 10‐min resolution, an observational capacity at FCR that may not be available for all
waterbodies. While we found that a 1‐week data gap did not substantially degrade performance
(Supplemental Information Figure S2), further evaluation of FLARE should quantify how forecast quality
degrades as the vertical and temporal resolution of observations are reduced to reflect common temperature
monitoring approaches (e.g., monthly temperature depth profile measurements with a handheld sensor,
minute to hourly temporal observation at only one depth, and remote sensing measurements of surface tem-
perature). Finally, our application was limited to a period with minimal ice cover; further work is needed to
determine FLARE performance for FCR during longer ice‐covered periods and other waterbodies that
experience ice for many consecutive months.

4.5. Conclusions

Overall, our study demonstrates the utility of FLARE's daily iterative forecasting cycle (Figure 1) for forecast-
ing lake and reservoir water temperatures with fully specified uncertainties that can be applied to other
waterbodies. FLARE builds the foundation for future water quality data assimilation and forecasting
because multiple ecosystem models can easily be coupled to the GLM hydrodynamic model (e.g., Hipsey
et al., 2013; Snortheim et al., 2017), enabling predictions of dissolved oxygen, algal blooms, and biogeochem-
ical cycling with uncertainty. Importantly, FLARE provides a method for partitioning uncertainty in fore-
casts that identifies how to prioritize future research to increase confidence in forecasts. Given the
pressing need for tools to anticipate the increasing variability of freshwater ecosystems, near‐term iterative
forecasting systems such as FLARE provide the ability to anticipate future change for stakeholders, man-
agers, and policy‐makers.
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