
Edge-to-cloud Virtualized Cyberinfrastructure for
Near Real-time Water Quality Forecasting in Lakes

and Reservoirs
Vahid Daneshmand

Department of Electrical
and Computer Engineering

University of Florida
Gainesville, Florida, USA

vdaneshmand@ufl.edu

Adrienne Breef-Pilz
Department of

Biological Sciences
Virginia Tech

Blacksburg, Virginia, USA
abreefpilz@vt.edu

Cayelan C. Carey
Department of

Biological Sciences
Virginia Tech

Blacksburg, Virginia, USA
cayelan@vt.edu

Yuqi Jin
Department of Electrical

and Computer Engineering
University of Florida

Gainesville, Florida, USA
jinyuqi@ufl.edu

Yun-Jung Ku
Department of Electrical

and Computer Engineering
University of Florida

Gainesville, Florida, USA
y.ku@ufl.edu

Kensworth C. Subratie
Department of Electrical

and Computer Engineering
University of Florida

Gainesville, Florida, USA
kcratie@ufl.edu

R. Quinn Thomas
Department of Forest Resources
and Environmental Conservation

Virginia Tech
Blacksburg, Virginia, USA

rqthomas@vt.edu

Renato J. Figueiredo
Department of Electrical

and Computer Engineering
University of Florida

Gainesville, Florida, USA
renatof@ufl.edu

Abstract—The management of drinking water quality is crit-
ical to public health and can benefit from techniques and
technologies that support near real-time forecasting of lake and
reservoir conditions. The cyberinfrastructure (CI) needed to
support forecasting has to overcome multiple challenges, which
include: 1) deploying sensors at the reservoir requires the CI
to extend to the network’s edge and accommodate devices with
constrained network and power; 2) different lakes need different
sensor modalities, deployments, and calibrations; hence, the CI
needs to be flexible and customizable to accommodate various
deployments; and 3) the CI requires to be accessible and usable
to various stakeholders (water managers, reservoir operators,
and researchers) without barriers to entry. This paper describes
the CI underlying FLARE (Forecasting Lake And Reservoir
Ecosystems), a novel system co-designed in an interdisciplinary
manner between CI and domain scientists to address the above
challenges. FLARE integrates R packages that implement the
core numerical forecasting (including lake process modeling and
data assimilation) with containers, overlay virtual networks,
object storage, versioned storage, and event-driven Function-as-
a-Service (FaaS) serverless execution. It is a flexible forecasting
system that can be deployed in different modalities, including
the Manual Mode suitable for end-users’ personal computers
and the Workflow Mode ideal for cloud deployment. The paper
reports on experimental data and lessons learned from the
operational deployment of FLARE in a drinking water supply
(Falling Creek Reservoir in Vinton, Virginia, USA). Experiments
with a FLARE deployment quantify its edge-to-cloud virtual
network performance and serverless execution in OpenWhisk
deployments on both XSEDE-Jetstream and the IBM Cloud
Functions FaaS system.

This work is supported by the US National Science Foundation as part
of awards CNS-1737424, DBI-1933102, DBI-1933016, OAC-2004441, and
OAC-2004323. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

Index Terms—edge, cloud, cyberinfrastructure, Function-as-a-
Service, ecological forecasting, water quality

I. INTRODUCTION

Surface water in lakes, reservoirs, and rivers provides 64
percent of public freshwater systems [9]. Consequently, man-
aging the water quality of these ecosystems is critical for
protecting public health. Due to increased human activities,
water quality in lakes and reservoirs around the globe is
increasingly exhibiting variability outside the boundaries of
historical conditions [20], which makes it challenging to
manage water quality in the present, as well as to anticipate
changes in the future [2]. Thus, there is significant pressure
on managers responsible for providing day-to-day critical lake
and reservoir ecosystem services [4]. In response to this
challenge, near-term forecasts of water quality are increasingly
needed to inform real-time management of drinking water sup-
plies. Ecological forecasts provide managers with probabilistic
estimates of future water quality conditions in their target lake
or reservoir, allowing them to take preemptive management
steps to preempt water quality threats [4].

Water quality forecasting workflows require a lake model,
observational data, data assimilation algorithms, and cyber-
infrastructure (CI). On each time step, near-term iterative
forecast models are updated with observations using data
assimilation methods and fed back into the workflow to
generate future forecasts [27]. Forecasting workflows can build
upon a combination of empirical and process models and
observed data from various types of sensors [11]. To support
seamless and uninterrupted data assimilation of environmental
observations (e.g., at the scale of minutes) with model forecast

runs occurring regularly (e.g., daily), it is necessary to deploy
a robust yet flexible end-to-end CI encompassing sensors at
a lake/reservoir site, networking, data transfer storage, and
model execution [27]. Water quality forecasters need such a
CI to compose and orchestrate integrated model-data systems
that create forecasts [27].

While the infrastructure for national weather forecasting
systems is well-established [1], forecasting water quality in
lakes and reservoirs poses a problem with unique complexity
due to the heterogeneous characteristics of the millions of
lakes and reservoirs across the world [31]. Accurate forecasts
for these water bodies require observations from sensors
locally deployed at the site, in addition to widely-available
national-scale or global-scale remote sensing satellite data.
These sensors may be attached to buoys and/or platforms on
or near the water and may need to be deployed in remote loca-
tions with poor network connectivity. Furthermore, lakes and
reservoirs have different characteristics that require different
types of sensors and models to properly capture temporal and
spatial variability, such as the number and size of inflows and
outflows, bathymetry, winter ice conditions, trophic state, and
mixing regime [34]. In essence, there is no single solution in
terms of sensors and models that can be applied to all lakes.
Therefore, water quality forecasts need an underlying CI that
can deliver high degrees of flexibility and customization.

This customizability is very challenging for the CI since
it needs to encompass the entire end-to-end workflow, from
sensors (data capture) to the edge (data staging, processing,
and transfer), to the cloud (long-term storage, model execution,
and data assimilation). This entails dealing with the variety of
sensors in the field, constrained network connectivity at the
edge (possibly performing computations at the edge to reduce
data transfers), securely transferring the data to the cloud, and
finally deploying a customized forecasting workflow for every
lake or reservoir. In addition to being highly customizable and
robust, the CI also needs to be effectively usable by domain
experts: e.g., drinking water treatment plant operators, fresh-
water ecologists, and water utility managers. Furthermore, the
cloud computing modules of the CI should be deployable
on both public and private clouds and, in the former case,
support a Function-as-a-Service (FaaS) model that minimizes
deployment costs. This falls into what is often referred to as
the “long tail of science” and calls for an interdisciplinary
approach where the CI is co-designed with input from the
various stakeholders [3].

To address these demands, we have developed FLARE [27]
(Forecasting Lake And Reservoir Ecosystems), a novel end-
to-end platform for a flexible, customizable, end-to-end near
real-time iterative water temperature forecasting system [27].
It has been successfully deployed and operational for over two
years in a drinking water reservoir (Falling Creek Reservoir in
Vinton, Virginia, USA). It effectively predicted the beginning
of fall turnover (i.e., the process of a lake’s water turning
over from epilimnion to hypolimnion) 4–14 days in advance
in three consecutive autumns [27].

FLARE open-source platform for lake and reservoir water

quality forecasting [27] builds upon and integrates modern
open-source software frameworks to implement its desired
functionality. At its core in the cloud, it uses Docker containers
for microservice deployment and Apache OpenWhisk [42]
for orchestration of event-driven FaaS actions. At the edge,
FLARE leverages the EdgeVPN.io [25], [43] (Evio) software-
defined overlay virtual private network for edge-to-cloud trans-
fers and remote management. For storage and transfer, FLARE
uses well-known data services: Git is used for staging data
at the edge, versioning, and reliable transfer of time-series
differences from edge to cloud, and S3 is used for data staging
for FaaS services. The numerical forecasting core uses the
General Lake Model (GLM [16]) to model lake processes
(physics, chemistry, and biology) and data assimilation based
on the ensemble Kalman filter (EnKF) [13].

The modular design of FLARE (Figure 1) enables it to
be deployed for various use-case scenarios. These scenarios
range from an individual researcher beginning to develop a
workflow with a single computer, to operational forecasts
overseeing sensors/edge nodes deployed across multiple lakes
and sharing a cloud platform. Using a containerized structure
as the backbone of FLARE facilitates complex workflows
while enabling customization and expanding the use-cases.
The event-driven architecture enabled by OpenWhisk allows
increased modularity, in which complex workflows are trig-
gered based on data availability, and allows cost-efficient
deployment of FLARE in commercial FaaS clouds, such as
IBM Cloud Functions [37].

To enable seamless network connectivity among nodes
from edge to cloud, FLARE integrates EdgeVPN.io [25],
[43] (Evio), an open-source software for deploying scalable
virtual private networks across distributed edge resources.
Using Evio, a private network is established between edge
and cloud devices, providing authentication and privacy at the
network layer for both data transfers and remote management
of edge nodes. This is an essential layer of the broader
security framework needed for a trustworthy CI for water
supply management. A recent cyber-attack on Oldsmar’s water
system [48] highlights the crucial importance of security
in water quality management systems. Besides leveraging
state-of-the-art technologies, our interdisciplinary co-designed
approach ensures that FLARE integrates with frameworks
and environments well-known by ecologists, such as the R
programming language and the Git distributed version control
system supported by cloud platforms, including GitHub.

This paper makes the following contributions:
• We describe the architecture of the CI underlying

FLARE, which is novel in 1) how it creates a distributed
virtual cluster with containers on edge and cloud re-
sources supporting end-to-end water quality forecasting
workflows, 2) how it uses event-triggered functions to
deploy workflows at low cost, and 3) how it integrates
Git for distributed storage and reliable transfers of file
deltas from edge to cloud while preserving a file-based
abstraction that is convenient to FLARE’s target user
base.

Fig. 1. Overview of CI and an example end-to-end workflow in FLARE. In edge site E1, sensor data are captured and staged in a local data Git repository
within a Docker container running in E1’s sensor gateway, where local edge processing may be applied. The sensor gateways are connected to the Internet via
wireless cellular 4G LTE modems and may be firewalled and have private Internet IP addresses. The EdgeVPN.io (Evio) overlay provides connectivity across
all gateway/edge/cloud resources through Software-Defined Network (SDN) switches and overlay links. Event-driven actions trigger on-demand execution of
FLARE FaaS containers at cloud resources, orchestrated by OpenWhisk; FaaS containers access cloud storage data via Git (for time-series observation data)
and S3 (holding state in S3 buckets/objects for FaaS functions). Deployment, monitoring, and management are performed across the Evio network.

• We report on key aspects of the performance of FLARE
based on a realistic end-to-end deployment with sen-
sors and edge computing gateways deployed on-site at
Falling Creek Reservoir, virtualized resources deployed
on the XSEDE Jetstream [24], [29] academic cloud, as
well as FaaS execution on the commercial IBM Cloud
Functions [37].

II. RELATED WORK

FLARE is related to systems including DataTurbine [28],
an open-source streaming data middleware for real-time data
stream processing and visualization for environmental observ-
ing systems. It is also related to the work by Watson et
al. [32], which presents an Internet of Things (IoT) CI for
environmental sensing as a part of the Jefferson Project at
Lake George. Simmhan et al. [23] design and deploy an IoT
software platform and calibration models that provide a precise
prediction of the scientific variables from the low-accuracy
raw sensor signals for air quality monitoring. Korambath et
al. [19] introduce an edge-cloud architecture called Streaming
Workflows to collect data from sensors connected to edge
devices and pass on computation to popular on-demand cloud
services. Ramamurthy [22] introduces the Unidata CI facility,
which uses cloud computing for accessing, analyzing, and
visualizing geosciences data to develop data-driven scientific
workflows. Gutierrez-Polo et al. [14] describe the Great Lakes
Monitoring CI as an integrated resource for hydrologic sci-

entists. This system cleans and organizes the data collected
from different sources into a semi-standardized schema, stores
them in a database, and provides a data visualization user
interface. Huang et al. [18] introduce EcoPAD, a platform
for automatic data transfer and processing from sensors to
ecological forecasting in a web-based workflow. Compared to
FLARE, EcoPAD focuses on the back-end cloud execution of
forecasting models and does not extend end-to-end to deploy
and manage containers on sensor gateways and edge devices.

Key differences in FLARE with respect to these systems
include the event-driven model for end-to-end forecasting
workflows, handling of sensor data from the edge to the cloud
using versioning and file deltas for time-series data files, and
the integration of stateless microservices and virtualization
technologies in the form of containers and virtual networks.

With respect to its CI middleware, FLARE is related to
workflow systems such as Pegasus [8], which allows users
to define computational workflows for cloud execution. It is
also related to efforts in applying serverless technologies in
scientific computing [6] using a CI that allows researchers to
concentrate on novel ideas rather than systems management.
FuncX [5] is a federated FaaS framework that can be used in
the development of serverless applications.

A key difference of the serverless computing approach taken
in FLARE compared to the related work above is the ability to
deploy containers on-demand in response to events, integrated
with network virtualization that spans from edge to cloud.

While conceivably FLARE could use such platforms, we have
opted for the use of OpenWhisk [42] due to its ability to sup-
port unmodified applications in containers and its availability
in a commercial cloud [37]. Serverless computing significantly
reduces the cost of provisioning ephemeral microservices in
FaaS clouds, as opposed to long-running virtual machines in
Infrastructure-as-a-Service (IaaS) clouds. The edge-to-cloud
self-organizing VPN simplifies software/container deployment
and provides network-layer authentication and privacy for data
transfers and remote management.

III. CYBERINFRASTRUCTURE

Despite the critical need for ecological forecasts, developing
a CI that seamlessly integrates sensors, software, data reposito-
ries, and models to create daily forecasts remains a substantial
challenge [10]. The individual pieces needed for ecological
forecasting to be widely implemented for all lakes on the
globe are already in place: Millions of sensor observations
are being collected every minute and ecological models have
successfully been developed and calibrated [15], [33]. Yet,
there remains the substantial challenge of linking wireless
sensor data to models for assimilating data and forecasting
in near real-time [15], [17].

To address this challenge, we designed and developed a dis-
tributed CI to support FLARE. The CI leverages and integrates
various open-source frameworks and builds on standards. The
workflow starts with collecting sensor data with data loggers,
retrieving and staging sensor data using Git on edge gateways,
transferring the data to cloud storage, and the orchestrated
execution of containers that implement data pre-processing,
model execution, data assimilation, and visualization.

A. CI Resources

The major resources that make up the FLARE end-to-end
CI are as follows:

• Sensors: Collect water quality data. Sensors may be
deployed in the water body or watershed around the lake.
Environmental sensors gather data from the environment
and transfer them to the data loggers. The connection
between the sensors and the data loggers can be either
wired (both analog and digital) or wireless.

• Data loggers: Data loggers are responsible for reading
and buffering the raw sensor data and transfer them to the
edge gateways. The connection between the data logger
and the edge gateway can be either wired or wireless.
Data loggers popular in this industry are capable of
sending the data to a locally-connected edge gateway via
Wi-Fi or wired Ethernet [39].

• Edge gateways: Read and stage sensor data from the data
logger and transfer them from the edge to the cloud.
Edge gateways are field-hardened commodity computers
capable of running Linux and middleware and connected
to the Internet via a cellular modem.

• Cloud storage nodes: Store the data in cloud resources
to drive forecasting, including observation data and state
across FaaS invocations. In FLARE, the state consists

of a storage object encapsulated in files produced by a
function and consumed downstream. These nodes also
store raw and/or processed sensor data pushed by the
edge gateways.

• Cloud Compute nodes: Execute the serverless functions
that implement data pre-processing, assimilation, fore-
casting model, and visualization. Cloud nodes are respon-
sible for executing the forecasting engine for FLARE.

B. Containers and Microservices
Distributed computing is continuously expanding, span-

ning multiple clouds and IoT devices at the network’s edge.
Lightweight virtualization solutions, particularly containers,
are increasingly being used as a foundation for deployment.
They are faster to instantiate and have lower run-time overhead
compared to virtual machines. This makes containers suitable
for application packaging and orchestration spanning edge and
cloud resources, end-to-end. In FLARE, Docker containers
form the foundation for deploying tasks across the end-to-end
CI.

The FLARE architecture is based on microservices, which
can be defined as cohesive, independent processes interacting
via messages [12]. In essence, a microservice encapsulates
a function with well-defined inputs and outputs that can be
retrieved from and stored back into a distributed data storage
system. Microservices can thus be made “stateless”: The
microservice itself does not hold a state but rather a function
that, when executed, transforms a state. They can be invoked
on-demand and only operate as needed to perform a function,
thereby reducing costs.

Docker containers have emerged as a widely-adopted open-
source technology for microservice deployment. Containers
host microservices that run in a logically-isolated environment
while sharing a common physical server. Container-hosted
microservices enhance the modularity and manageability of a
distributed system. It happens through decomposing complex
workflows into small, independent, stateless modules using
well-defined protocols for communication and data storage and
retrieval.

C. Versioned Storage
FLARE leverages a versioned storage system (Git) to handle

reliable, efficient transfers of time-series data from the edge
to the cloud.

Git is a distributed revision control system, widely and
freely available. An important characteristic of Git is that
it promotes file revisions to first-class citizens. While Git
is typically used for collaborative software development, its
applicability is not limited to source code development. It can
be used in other environments where it is essential to track
changes, manage provenance, and provide a robust mechanism
to verify and commit updates as differences over the network.
In FLARE, we use Git as a platform to manage the transfer,
updates, and storage of time-series observation data.

One of the key motivations is that Git is an open, mature,
widely-used, and well-understood protocol, offering both re-
liable data transfers and storage. Git has several open-source

implementations (e.g., GitLab) for private deployment, as well
as free hosted services (e.g., GitHub) with which users in the
ecology community are already familiar.

In FLARE, Git is particularly useful in managing the
movement of data from the edge to the cloud. It provides a
mechanism that allows a local repository to be maintained at
the edge despite intermittent power and network connectivity,
and also provides cryptography techniques for data assurance.
Proper use of Git can ensure that no matter how many
times an edge gateway gets restarted or a cellular link gets
disconnected, when a transfer is eventually accomplished, it
is reliably committed to storage.

In FLARE, time-series data retrieved by sensor gateways
are text-based, such as a CSV (Comma-Separated Values)
file where each row has a timestamp and columns with
the various fields/observations read from sensors (a common
practice in the ecology field). With Git, we can be assured
that, although a file grows in size with appends, only the
differences are transferred. This reduces network usage, which
is essential when using cellular data plans, while keeping the
process of buffering and sending data simple. By appending
measurements to a file and using Git to transfer differences
reliably, the gateway software can be kept simple and does
not need to worry about corner cases such as failures and
restarts in the middle of multi-file transfers.

D. Serverless Execution

The microservices used by FLARE are amenable to server-
less execution in FaaS platforms. FLARE leverages Apache
OpenWhisk as a platform for serverless computing.

Apache OpenWhisk is an open-source, distributed serverless
platform. In OpenWhisk, the functional logic called Actions
can be encapsulated in containers and dynamically run in
return for related events via Triggers. That enables the user
to run applications as event-driven workflows via a series of
containers.

In FLARE, OpenWhisk is used as the cloud platform
that drives the forecasting workflow. Actions encapsulate the
various FLARE microservices for pre-processing, forecasting,
and post-processing. Events provide a basis for invocation
of the various functions to realize the end-to-end workflow.
Triggers in FLARE are fired when data becomes available
from external sources (e.g., observational data committed to
a Git repository triggers a webhook), as well as events gen-
erated upon completion of a microservice leading to triggers
downstream in the workflow.

A FLARE deployment may use a private OpenWhisk cluster
deployed on a cloud. For instance, our cluster runs on VMs
in the Jetstream academic cloud. In addition, it is possible
to deploy in a hosted cloud service, such as IBM Cloud
Functions [37], and pay only per service invocation, leading
to a cost-effective FaaS model.

E. Object Storage

FLARE uses S3 object storage to hold state across Open-
Whisk serverless invocations. The main functions that make

the FLARE workflow operate on files as inputs and outputs,
allowing FLARE to seamlessly support different modalities of
operation, as described in Section IV. In serverless operation
(Workflow Mode), FLARE aggregates inputs and outputs as
file archives that are retrieved from/committed to S3 storage at
the beginning/end of an action invocation. The files are named
according to a convention, where each different lake has an S3
bucket, each container produces data inside a directory in the
bucket, and files are tagged with a date identifier. The use of
files allows FLARE to reuse S3-compatible implementations
(e.g., the MinIO [36] server or Amazon’s S3 service [45]). The
S3 endpoint and access credentials are passed to the action via
configuration.

F. Overlay Virtual Private Network

In order for FLARE to work end-to-end, all services must be
able to communicate, regardless of their geographical location.
This presents a major challenge, as end-to-end workflows may
span resources distributed across multiple cellular, Internet,
edge, and cloud computing providers. Furthermore, as data
traverse the public Internet, it is crucial to protect privacy
and integrity in communication to avoid data leakage and
corruption by unauthorized users and provide strong authenti-
cation such that only authorized resources (e.g., drinking water
managers at a water utility) may join the CI. FLARE nodes,
such as edge gateways, often have private IP addresses and
are behind firewalls and Network Address Translators (NATs),
which add significant complexity to establish bi-directional
communication.

To address connectivity and security requirements, FLARE
uses Evio [25], [43] to connect all edge and cloud resources.
The key benefit of the VPN abstraction is that it supports
existing, unmodified software, allowing reuse of the key CI
modules that run across the virtual cluster, including Docker,
Git, OpenWhisk, and S3. It also enables remote management
of the system. Evio enables the reuse of these frameworks
without any modifications and uses standard public key cryp-
tography techniques to encrypt data for privacy and integrity,
as well as for authentication of nodes to join the end-to-end
workflow.

G. Collaborative Development

The choices made during the development of the various
CI modules in FLARE have been guided by close interdis-
ciplinary collaboration (following [3]) and reflect a balance
of capabilities and usability. One of the key outcomes of this
approach is a modular design that can be deployed in different
modalities (with different levels of complexity), depending on
the use case.

The desire to support different use cases from the ecological
forecasting community and achieve a system that is accessible
to individual researchers and can scale to an automated oper-
ational development led to several design choices reflected in
the system:

• Containers: The use of containers was perceived to be not
only beneficial from the standpoint of cloud deployment,

but also as a mechanism to deliver complex pre-packaged
software to facilitate deployment on end-users’ personal
computers.

• File abstraction: The use of a file abstraction to store
and transfer time-series data allowed seamless integration
with existing data loggers widely used in the community.
It was deemed easy to understand and use by ecologists
and allowed the CI to reuse widely-used storage services
(Git, S3) without modifications.

• Git: The use of Git as a foundation for data transfers and
storage (in combination with using a file abstraction) was
also deemed easy to understand by ecologists who are
familiar with platforms including GitHub. The ability to
track versions and commit updates while keeping history
is also proved to be valuable during manual data cleaning
efforts.

IV. FLARE APPLICATION

This section elaborates on FLARE as an application that
builds upon the CI modules described in the previous section.

A. FLARE Deployment Modalities

The use cases and resources available to a variety of
potential FLARE users may vary considerably. In one extreme,
FLARE can be used by an individual researcher developing
and calibrating a model for a new lake using a local desktop.
In another extreme, FLARE can be automated in opera-
tional forecast mode. Our design accounts for these different
modalities and builds up progressive complexity: from core
forecasting numerical packages, to containers encapsulating
packages and associated scripts, to a workflow orchestrating
container invocations and data movement.

The FLARE workflow (Figure 2) starts with the download-
ing of 16-day ensemble weather forecasts (NOAA Global En-
semble Forecasting System) for the specific lake/reservoir site.
This numerical weather forecasting model output is retrieved
from public NOAA servers. FLARE also downloads the ob-
servational sensor data for the lake/reservoir site, a process
divided into two independent steps. First, the edge gateway
commits sensor data to a Git repository, which generates a
webhook event. The event triggers an action (container) that
pulls data from the repository. Both datasets are processed to
verify data completeness and prepare inputs for forecasting.
FLARE then runs the General Lake Model from the previous
date to the current day using the EnKF to assimilate new
sensor observations and set initial conditions for a 16-day
forecast, and sets a checkpoint for the next day’s FLARE
run. The forecast generation process needs to be executed
once a day to generate a forecast for the next 16 days for
any specific site. In the last step, the FLARE visualization
container prepares a graphical output of the forecasts for
visualization.

Currently, FLARE is implemented in the following modes:
• Interactive Mode: FLARE runs as an R package on

a personal computer, and the steps above are initiated
interactively by the end-user via R or RStudio.

• Manual Mode: FLARE runs as a set of containers invoked
manually by the user via Docker.

• Workflow Mode: FLARE runs as a set of containers
invoked automatically by Apache OpenWhisk when the
data from the previous step is ready and verified.

1) Interactive Mode: The simplest deployment of FLARE
uses functions in an R package that can be combined into a
single R script and deployed in an interactive environment,
such as RStudio. This environment is familiar to many ecolo-
gists, thus providing an on-ramp path to adoption with minimal
barriers to entry. The package is structured such that modules,
naming, and data conventions are predefined, and lake example
templates are provided. End-users with a personal computer
capable of running R or RStudio can use FLARE in interactive
mode to customize their own lake forecast.

2) Manual Mode: While the interactive mode is well-suited
for development and testing, the Manual Mode is intended to
run a forecast manually (or triggered by a timer, e.g., a cron
job) by the end-users. The FLARE package, all the dependen-
cies, and helper scripts are encapsulated in containers. Users
can expect to obtain exactly the same result on any platform
or operating system capable of running Docker containers. In
the Manual Mode, FLARE containers use a shared volume
mounted from the host machine as the common space to share
files and directories with other containers. This also gives the
end-users easy access to modify configuration files as needed.
In this way, data, output, and configurations from one container
can be used as an output for another container through a local
host directory. The FLARE modules are encapsulated into the
following containers:

• flare-download-noaa: This container is responsible for
downloading forecasts of meteorological data from
NOAA, on a 6-hourly basis, for a specific geo-coordinate.
The data is downloaded from NOMADS (NOAA Op-
erational Model Archive and Distribution System) [40]
using a custom downloader module with fault-tolerant
capabilities to deal with data unavailability and timeouts
(which, in our experience, are very common).

• flare-process-noaa: This container is responsible for pro-
cessing meteorological forecast data from NOAA al-
ready downloaded by flare-download-noaa (i.e., spatial
and temporal downscaling), and for preparing data for
consumption by flare-generate-forecast.

• flare-download-observations: This container is responsi-
ble for downloading sensor data for a specific location
required for running the forecast. The data is pulled from
a Git repository that stores the time-series data pushed
from edge gateways.

• flare-process-observations: This container is responsible
for processing sensor data for a specific location required
for running the forecast, and for preparing data for
consumption by flare-generate-forecast.

• flare-generate-forecast: This container is responsible for
running the forecast, including the lake model (e.g. GLM)
and EnKF data assimilation.

Fig. 2. Overview of FLARE Workflow. Each container reads from a YAML configuration file (not depicted) to configure lake-specific parameters.

• flare-visualize: This container is responsible for visualiz-
ing forecast output using figures generated by R. Figure 3
shows a snapshot of visualization of turnover and water
temperature forecasts.

3) Workflow Mode: In this mode, instead of running mod-
ules manually or on a timer, event-driven execution is triggered
by Apache OpenWhisk to run them with predefined rules.
When a rule or a set of rules is satisfied (e.g., data is verified
and available to a downstream container), it triggers the action
to execute the corresponding container. Modules communicate
through S3 cloud storage endpoints in the Workflow Mode
rather than a shared volume on the host in the Manual Mode.
The data and configuration needed for each module can be
pulled from the cloud storage before running the module, and
the output and configuration pushed to the cloud storage after
the run is finished.

The Workflow Mode is configured as follows:
• The latest stable version of FLARE containers is up-

loaded to DockerHub. These containers are associated
with actions in OpenWhisk.

• An S3 service is configured for storage. Each
lake/reservoir is assigned a separate bucket, and each
container is assigned a bucket within it. The buckets store
YAML configuration files for each container and store
files generated by the execution of that container.

• Actions are invoked with a JSON payload that contains
the S3 endpoint and key, as well as OpenWhisk endpoint
and key.

• Containers that produce data for downstream consump-
tion push outputs to S3 storage and generate triggers for
the next action after a step that verifies data completeness.
A custom action is created to fire a trigger for flare-
generate-forecast only after two data sources (NOAA
forecasts and sensor observations) are complete.

V. EVALUATIONS

A. Deployment

Meteorological data for Falling Creek Reservoir have been
collected starting in 2015 using a research-grade meteorolog-

ical station from Campbell Scientific at 1-minute intervals,
with data stored on a CR3000 Micrologger from Campbell
Scientific. In-water sensors have collected measurements start-
ing from July 2018 at 10-minute intervals and the data are
stored on a CR6 Campbell Scientific data logger. We also
measure pressure and stream temperature for an inflow stream
every 15 minutes and store them on a CR310 Campbell
Scientific data logger. All observations are recorded in UTC-
05:00 (Eastern Standard Time) without Daylight Saving Time
changes in the data record. The types of sensors being used at
Falling Creek Reservoir are: 1) meteorological sensors: wind
monitor, rain gauge, temperature and relative humidity probe,
barometer, quantum sensor, radiometer; 2) in-water sensors:
thermistor, dissolved oxygen sensor, EXO2 multiparameter
sonde with sensors for temperature, conductivity, dissolved
oxygen, fluorescent dissolved organic matter, and total algae,
and also pressure transducer. The gathered data for each data
logger are accumulated in a single CSV file and pushed to
their respective Git repository and branch a few times per
day. AC-powered sensor gateways are up 24/7 and push their
data every 6 hours. On the other hand, battery-powered sensor
gateways are up during four 15-minute time windows each
day for pushing the data via Git and remote maintenance, if
required. The overall size of the data for the whole site is
about 1 MB per day. The deployment currently uses GitHub
as the storage service for sensor data.

B. Experiments
We designed and performed a set of experiments to eval-

uate the performance of different aspects of FLARE’s CI,
including overheads associated with the overlay virtual net-
work, performance of data transfers, and container execution
performance in both Manual Mode and Workflow Mode. The
experiment environment includes FLARE v21.01.3 [7], Evio
overlay v20.12.2 [26], and Apache OpenWhisk release 1.0.0
on Verizon Wireless 4G LTE network and Gigabit Ethernet.

C. Network Characteristics Test
We conducted a set of experiments to measure the overhead

of running Evio with respect to round-trip latencies and

Fig. 3. Output of visualization container: turnover probability (left) and water temperature forecast at different depths for the next 16 days (right)

throughput, considering both LAN and cellular 4G LTE con-
nections. We used ‘ping’ and ‘iperf’ tools between two nodes
in 5-minute periods to compare four different scenarios when
the nodes are connected by Ethernet or 4G LTE connection,
with and without Evio overlay. The results (Table I) show
that the overhead of using Evio is negligible on a 4G LTE
connection; the virtual network adds a few milliseconds of
RTT and can deliver up to 183Mbps. The standard deviation
for all the experiments is less than 15%.

TABLE I
LATENCY AND THROUGHPUT BETWEEN NODES

Eth
w/o
Evio

Eth
w/
Evio

Wi-Fi
w/o
Evio

Wi-Fi
w/
Evio

Cell
w/o
Evio

Cell
w/
Evio

RTT (ms) 0.5 1.9 33.1 33.5 79.6 88.0
BW (Mb/s) 941 183 83.8 51.8 0.6 0.5
aAverage round-trip time (RTT) and maximum bandwidth (BW) measured
using ping and iperf

D. System Resource Usage Test

We designed a set of experiments to evaluate how much
Evio utilizes system resources in edge devices. We used
‘vnstat’ and ‘pidstat’ tools to measure Evio system resource
usage in 5 minutes on a CompuLab fitlet2 edge gateway
device [38] connected with Ethernet or cellular network when
the system is idle. The results shown in Table II indicate that
the cost of running Evio overlay on system resources is slim.
The standard deviation for all the experiments is less than 5%.

E. Git Transfer Test

To assess the effectiveness of using Git for edge-cloud
data transfer size, we employed the ‘nethogs’ tool. We first

TABLE II
NETWORK, CPU, AND MEMORY UTILIZATION

LAN w/ Evio Idle Cell w/ Evio Idle
Bandwidth (Kb/s) 0.08 0.02
CPU (%) 0.12 0.20
Memory (MB) 83.6 84.2
aAverage Evio bandwidth, CPU, and memory utilization measured using
vnstat and pidstat

transferred a sample 63 MB CSV data file storing cumulative
time-series data up to day 0. Then, we appended the new
observations for day 1 (0.2 MB), pushed the file to Git again,
and compared it with the case that we push the whole day
1 data file (63.2 MB) from scratch to Git. The experiments
are done in four different scenarios with LAN and cellular
connection, with and without Evio overlay. The results (Table
III) show the transfer size is drastically reduced when Git has
to transfer just the differences instead of the whole new file.
The standard deviation for all the experiments is less than 2%.

TABLE III
GIT TRANSFER SIZE

LAN w/o
Evio

LAN w/
Evio

Cell w/o
Evio

Cell w/
Evio

Day0 All (MB) 17.9 18.5 20.1 20.6
Day1 Diffs (MB) 0.06 0.07 0.07 0.08
Day1 All (MB) 18.0 18.7 20.3 20.8
aAverage Git transfer size measured using nethogs

F. Execution Time

In order to estimate how long it takes for each FLARE
container to finish execution, in this set of experiments, we
measured execution time for every FLARE container in both

Manual Mode and Workflow Mode. The ‘generate-forecast’
container included the generation of a 1-day simulation using
observed meteorology collected by the sensor network, an
invocation of the EnKF using water temperature observations
from the sensor network, and a 16-day water temperature
forecast using 221 ensemble members. For the Workflow
Mode, we used an M1.medium virtual machine with 16 GB
of memory and six cores of Intel(R) Xeon(R) CPU E5-2680
v3 @ 2.50GHz on the XSEDE-Jetstream academic cloud. The
results (Table IV) indicate that a whole daily run of ecological
forecasts can be done in less than half an hour. The standard
deviation for all the experiments is less than 10%.

The main difference in performance between the Manual
Mode and Workflow Mode execution is due to differences
in how data movement is handled. In the Manual Mode, the
data is available locally and mounted as a volume, whereas
in the Workflow Mode, data is retrieved and stored from the
S3 object storage service. The latter introduces overheads in
data copies. The execution time difference between the running
modes is mainly due to the difference in these I/O methods.

In addition to experiments in an IaaS cloud resource,
we have been able to successfully complete a run of the
same FLARE containers from DockerHub on the IBM Cloud
Functions free tier. With a 16-day temperature forecast using
the GLM model and 221 ensemble members, the resource
allocation for each FLARE container fits within the IBM
Cloud Functions limits (10 minutes per invocation, 2 GB
maximum memory). Based on IBM’s pricing model as of this
paper’s writing ($0.000017 per second of execution, per GB
of memory allocated), the estimated cost of running 16-day
forecasts daily, for a month, would be less than $1.

TABLE IV
CONTAINERS EXECUTION TIME IN MANUAL AND WORKFLOW MODE

process-
noaa

download-
observations

process-
observations

generate-
forecast

visualize

MN (s) 15.8 47.7 62.0 321.0 12.5
WF (s) 17.9 153.3 129.4 470.9 22.5
aAverage execution time in Manual Mode (MN) and Workflow Mode
(WF) on XSEDE-Jetstream

G. Running on Solar Panel Powered Batteries

There are many scenarios where data loggers and edge
gateways in the field do not have access to the AC power
supply. It is vital to run them on long-lasting batteries or
ideally using a sustainable setup employing renewable energy
such as a solar panel. We have been able to successfully deploy
and operate FLARE edge nodes with such a setup, where
sensors, data loggers, and edge gateway are powered by an
84 Ah 12 V rechargeable battery [35] powered by a 50 W
solar panel [46].

In this setup, a timer switch is added to turn on the edge
gateways in predefined 20-minute time windows during the
day. The edge gateway, upon startup, automatically receives
the new observations from the data logger, connects to the

virtual network, and attempts to commit the differences ap-
pended to the observations file to the Git repository. If power
fails or the network disconnects during a time window, the
process is retried in the next available window.

Figure 4 shows the battery level during one week. The
system works from battery power and is properly recharged
on a daily basis. The voltage level does not drop below a safe
operating range.

Fig. 4. Solar panel powered battery level over time

VI. DISCUSSION AND FUTURE WORK

A. Data Storage Services

FLARE uses two different approaches to networked data
storage services, both with well-defined standard APIs. The
motivation is to exploit the advantages of different storage
approaches to suit different data needs.

Files that are retrieved from data loggers by sensor gateways
tend to be text-based, such as CSV files, where each row
is an observation with a timestamp and columns storing the
measurements read from the sensors. The new observations
are appended to the end of the sensor data file. Although the
Git protocol does not have a file size limit, there is a 100 MB
file size limit imposed by the GitHub provider. Our approach
allows the choice of using either a private Git server or a
public Git service such as GitHub for storing the sensor data.
In the latter case, file rotation is needed to keep the size of
the files within the size limit. In our Falling Creek Reservoir
deployment, this rotation has been performed once a year.

Aside from the sensor data, the intermediate data and
output generated by forecasting processes are generally nei-
ther incremental/append-only nor text-based. Hence, there are
no clear benefits of using the Git protocol for storing and
transferring them. For these files, the Simple Storage Services
(S3) protocol is used. We have tested the system to utilize
both private S3 servers (using MinIO containers) and hosted
services (including OpenStack Swift [41] on Jetstream).

B. Generalization and Scaling

FLARE has been successfully implemented for ecological
forecasting at Falling Creek Reservoir. The system has been

designed with modularity and extensibility in mind, and to
scale to incorporate additional sensor types and multiple lakes.
Our group is deploying FLARE across several new sites,
including two additional reservoirs in Virginia (Carvins Cove
and Beaverdam Reservoir), Lake Sunapee in New Hampshire,
Lough Feeagh in the Republic of Ireland, as well as several
lakes that are part of the U.S. National Science Founda-
tion’s National Ecological Observatory Network (NEON) [30].
FLARE supports running forecasts for all these sites by
following a generalizable workflow and reusing the Docker
containers, OpenWhisk triggers, and OpenWhisk actions that
implement the workflow. Per-lake customization support is
being added by providing the ability to pull site-specific scripts
and configurations at run-time.

Another effort in generalization is supporting other lake
models besides the General Lake Model. Ongoing work is
considering the integration of ensembles consisting of multiple
lake models by reading the model name from configuration
and pulling and running the proper files and executables at
run-time.

FLARE uses open-source software stacks and services that
allow it to be deployed in a way that can be customized by a
particular user. For instance, OpenWhisk, S3, and Git services
may be deployed on public cloud provider resources (e.g.
IBM Cloud, Amazon Web Services, or GitHub), as well as
deployed in private infrastructure (e.g. a custom OpenWhisk
deployment, MinIO S3 services, and private Git servers). The
end-user has the flexibility to choose all-private, all-public, or
mixed deployments depending on the requirements of privacy
and cost, among other factors.

We plan to investigate the use of Kubernetes [44] to or-
chestrate the deployment of OpenWhisk, storage services (S3,
Git), and edge containers across the end-to-end CI. Currently,
containers are deployed via SSH and Ansible through a
management node. We also plan to investigate the integration
of sensors and data loggers connected point-to-point to edge
gateways via LoRa [47] radios for devices in remote locations
without cell connectivity and expanding the Evio network to
reach LoRa endpoints.

VII. CONCLUSIONS

In this paper, we propose a novel end-to-end architecture
that builds on serverless computing and virtualization for
customizable, flexible ecological forecasting workflows. The
resulting system has been co-designed and has evolved it-
eratively through a close interdisciplinary collaboration and
lessons learned from a deployment spanning over more than
two years in a drinking water reservoir (Falling Creek Reser-
voir). A set of experiments conducted on local computers,
academic cloud, and commercial cloud quantitatively shows
that the overhead of using an edge-to-cloud virtual network
(Evio) to facilitate and secure deployment, management, and
data transfer is acceptable. It also shows that using Git
structure to transfer Git differences instead of whole files
substantially reduces the data transfer size, in addition to
providing a platform that is well-understood by ecologists,

supports versioning, and reliable transfers in the event of
failures. The experiments also show that the approach supports
deployment not only in a private/academic cloud but also in a
public cloud, with significant cost savings due to the serverless
execution.

ACKNOWLEDGMENT

We would like to express our gratitude to the Falling Creek
Reservoir Group field crew for keeping sensors and gate-
ways working in the field, especially Bethany Bookout, Nick
Hammond, Alexandria Hounshell, Dexter Howard, Abigail
Lewis, Mary Lofton, Ryan McClure, Heather Wander, and
Whitney Woelmer. CIBR team members (Kathleen Weathers,
Bethel Steele, Tadhg Moore) provided useful feedback. We
are grateful to the Western Virginia Water Authority for their
support and access to field sites.

REFERENCES

[1] P. Bauer, A. Thorpe, and G. Brunet, “The quiet revolution of numerical
weather prediction,” Nature, vol. 525, no. 7567, pp. 47–55, 2015, doi:
https://doi.org/10.1038/nature14956.

[2] J. D. Brookes, C. C. Carey, D. P. Hamilton, L. Ho, L. van der Linden,
R. Renner, and A. Rigosi, “Emerging Challenges for the Drinking Water
Industry,” Environmental Science & Technology, vol. 48, no. 4, pp.
2099–2101, 2014, doi: https://doi.org/10.1021/es405606t.

[3] C. C. Carey, N. K. Ward, K. J. Farrell, M. E. Lofton, A. I. Krinos,
R. P. McClure, K. C. Subratie, R. J. Figueiredo, J. P. Doubek, P.
C. Hanson, P. Papadopoulos, and P. Arzberger, “Enhancing collab-
oration between ecologists and computer scientists: lessons learned
and recommendations forward,” Ecosphere, vol. 10, no. 5, 2019, doi:
https://doi.org/10.1002/ecs2.2753.

[4] C. C. Carey, W. M. Woelmer, M. E. Lofton, R. J. Figueiredo, B. J.
Bookout, R. S. Corrigan, V. Daneshmand, A. G. Hounshell, D. W.
Howard, A. S. Lewis, R. P. McClure, H. L. Wander, N. K. Ward, and R.
Q. Thomas, “Advancing lake and reservoir water quality management
with near-term, iterative ecological forecasting,” Inland Waters, pp. 1–14,
2021, doi: https://doi.org/10.1080/20442041.2020.1816421.

[5] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “funcX: A Federated Function Serving Fab-
ric for Science,” Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing, 2020, doi:
https://doi.org/10.1145/3369583.3392683.

[6] K. Chard and I. Foster, “Serverless Science for Simple, Scalable, and
Shareable Scholarship,” 2019 15th International Conference on eScience
(eScience), 2019, doi: https://doi.org/10.1109/escience.2019.00056.

[7] V. Daneshmand, Y. Jin, Y. Ku, and R. Figueiredo,
“FLARE-forecast/FLARE-containers: 21.01.3,” doi:
https://doi.org/10.5281/zenodo.4695036.

[8] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015, doi:
https://doi.org/10.1016/j.future.2014.10.008.

[9] C. A. Dieter, Estimated use of water in the United States in 2015. Reston,
VA, USA: U.S. Department of the Interior, U.S. Geological Survey,
2018.

[10] M. Dietze, “Ecological Forecasting”. Princeton, NJ: Princeton University
Press, 2017.

[11] M. C. Dietze, A. Fox, L. M. Beck-Johnson, J. L. Betancourt, M. B.
Hooten, C. S. Jarnevich, T. H. Keitt, M. A. Kenney, C. M. Laney,
L. G. Larsen, H. W. Loescher, C. K. Lunch, B. C. Pijanowski,
J. T. Randerson, E. K. Read, A. T. Tredennick, R. Vargas, K. C.
Weathers, and E. P. White, “Iterative near-term ecological forecasting:
Needs, opportunities, and challenges,” Proceedings of the National
Academy of Sciences, vol. 115, no. 7, pp. 1424–1432, 2018, doi:
https://doi.org/10.1073/pnas.1710231115.

[12] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, Today, and
Tomorrow,” Present and Ulterior Software Engineering, pp. 195–216,
2017, doi: https://doi.org/10.1007/978-3-319-67425-4 12.

[13] G. Evensen, “The Ensemble Kalman Filter: theoretical formulation and
practical implementation,” Ocean Dynamics, vol. 53, no. 4, pp. 343–367,
2003, doi: https://doi.org/10.1007/s10236-003-0036-9.

[14] I. Gutierrez-Polo, Y. Zhao, S. Bradley, E. Roeder, M. Pitcel, K. TePas,
P. Collingsworth, and L. Marini, “Monitoring Water Quality in the
Great Lakes Leveraging Geo-Temporal Cyberinfrastructure,” 2017 IEEE
13th International Conference on e-Science (e-Science), 2017, doi:
https://doi.org/10.1109/escience.2017.50.

[15] D. Hamilton, C. Carey, L. Arvola, P. Arzberger, C. Brewer, J. Cole,
E. Gaiser, P. Hanson, B. Ibelings, E. Jennings, T. Kratz, F.-P. Lin,
C. McBride, D. de Motta Marques, K. Muraoka, A. Nishri, B. Qin,
J. Read, K. Rose, E. Ryder, K. Weathers, G. Zhu, D. Trolle, and J.
Brookes, “A Global Lake Ecological Observatory Network (GLEON) for
synthesising high–frequency sensor data for validation of deterministic
ecological models,” Inland Waters, vol. 5, no. 1, pp. 49–56, 2015, doi:
https://doi.org/10.5268/iw-5.1.566.

[16] M. R. Hipsey, L. C. Bruce, C. Boon, B. Busch, C. C. Carey, D. P.
Hamilton, P. C. Hanson, J. S. Read, E. de Sousa, M. Weber, and L.
A. Winslow, “A General Lake Model (GLM 3.0) for linking with high-
frequency sensor data from the Global Lake Ecological Observatory
Network (GLEON),” Geoscientific Model Development, vol. 12, no. 1,
pp. 473–523, 2019, doi: https://doi.org/10.5194/gmd-12-473-2019.

[17] M. R. Hipsey, D. P. Hamilton, P. C. Hanson, C. C. Carey, J. Z.
Coletti, J. S. Read, B. W. Ibelings, F. J. Valesini, and J. D. Brookes,
“Predicting the resilience and recovery of aquatic systems: A frame-
work for model evolution within environmental observatories,” Wa-
ter Resources Research, vol. 51, no. 9, pp. 7023–7043, 2015, doi:
https://doi.org/10.1002/2015wr017175.

[18] Y. Huang, M. Stacy, J. Jiang, N. Sundi, S. Ma, V. Saruta, C. G. Jung, Z.
Shi, J. Xia, P. J. Hanson, D. Ricciuto, and Y. Luo, “Realized ecological
forecast through an interactive Ecological Platform for Assimilating Data
(EcoPAD, v1.0) into models,” Geoscientific Model Development, vol.
12, no. 3, pp. 1119–1137, Mar. 2019, doi: https://doi.org/10.5194/gmd-
12-1119-2019.

[19] P. Korambath, H. Malkani, and J. Davis, “Streaming Workflows on Edge
Devices to Process Sensor Data on a Smart Manufacturing Platform,”
2019 15th International Conference on eScience (eScience), 2019, doi:
https://doi.org/10.1109/escience.2019.00088.

[20] J. Loperfido, “Surface water quality in streams and rivers: introduction,
scaling, and climate change: Chapter 5,” in Comprehensive Water
Quality and Purification, 1st ed. Calabash, NC, USA: Elsevier, 2013,
ch. 5, pp. 87-105.

[21] C. Pahl and B. Lee, “Containers and Clusters for Edge Cloud
Architectures – A Technology Review,” 2015 3rd International
Conference on Future Internet of Things and Cloud, 2015, doi:
https://doi.org/10.1109/ficloud.2015.35.

[22] M. Ramamurthy, “Toward a Cloud Ecosystem for Modeling as a
Service,” 2018 IEEE 14th International Conference on e-Science (e-
Science), 2018, doi: https://doi.org/10.1109/escience.2018.00046.

[23] Y. Simmhan, S. Nair, S. Monga, R. Sahu, K. Dixit, R. Sutaria, B.
Mishra, A. Sharma, A. SVR, M. Hegde, R. Zele, and S. N. Tripathi,
“SATVAM: Toward an IoT Cyber-Infrastructure for Low-Cost Urban Air
Quality Monitoring,” 2019 15th International Conference on eScience
(eScience), 2019, doi: https://doi.org/10.1109/escience.2019.00014.

[24] C. A. Stewart, G. Turner, M. Vaughn, N. I. Gaffney, T. M. Cockerill, I.
Foster, D. Hancock, N. Merchant, E. Skidmore, D. Stanzione, J. Taylor,
and S. Tuecke, “Jetstream: a self-provisioned, scalable science and en-
gineering cloud environment,” Proceedings of the 2015 XSEDE Confer-
ence on Scientific Advancements Enabled by Enhanced Cyberinfrastruc-
ture - XSEDE ’15, 2015, doi: https://doi.org/10.1145/2792745.2792774.

[25] K. Subratie, S. Aditya, V. Daneshmand, K. Ichikawa, and R.
Figueiredo, “On the Design and Implementation of IP-over-
P2P Overlay Virtual Private Networks,” IEICE Transactions
on Communications, vol. E103.B, no. 1, pp. 2–10, 2020, doi:
https://doi.org/10.1587/transcom.2019cpi0001.

[26] K. Subratie, R. Ganesh, P. Nagaraj, and S. Aditya,
“EdgeVPN.io Maintenance Release version 20.12.2,” doi:
https://doi.org/10.5281/zenodo.4579871.

[27] R. Q. Thomas, R. J. Figueiredo, V. Daneshmand, B. J. Bookout,
L. K. Puckett, and C. C. Carey, “A Near-Term Iterative Forecasting

System Successfully Predicts Reservoir Hydrodynamics and Partitions
Uncertainty in Real Time,” Water Resources Research, vol. 56, no. 11,
2020, doi: https://doi.org/10.1029/2019wr026138.

[28] S. Tilak, P. Hubbard, M. Miller, and T. Fountain, “The Ring Buffer
Network Bus (RBNB) DataTurbine Streaming Data Middleware for
Environmental Observing Systems,” Third IEEE International Confer-
ence on e-Science and Grid Computing (e-Science 2007), 2007, doi:
https://doi.org/10.1109/e-science.2007.73.

[29] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V.
Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott,
and N. Wilkins-Diehr, “XSEDE: Accelerating Scientific Discovery,”
Computing in Science & Engineering, vol. 16, no. 5, pp. 62–74, 2014,
doi: https://doi.org/10.1109/mcse.2014.80.

[30] R. M. Utz, M. R. Fitzgerald, K. J. Goodman, S. M. Parker, H. Powell,
and C. L. Roehm, “The National Ecological Observatory Network:
An Observatory Poised to Expand Spatiotemporal Scales of Inquiry in
Aquatic and Fisheries Science,” Fisheries, vol. 38, no. 1, pp. 26–35,
2013, doi: https://doi.org/10.1080/03632415.2013.748551.

[31] C. Verpoorter, T. Kutser, D. A. Seekell, and L. J. Tranvik, “A global
inventory of lakes based on high-resolution satellite imagery,” Geo-
physical Research Letters, vol. 41, no. 18, pp. 6396–6402, 2014, doi:
https://doi.org/10.1002/2014gl060641.

[32] C. Watson, E. M. Dow, A. P. Praino, M. Kelly, V. W. Moriarty, G. Auger,
and L. A. Treinish, “The Application of an Internet of Things Cyber-
Infrastructure for the Study of Ecology of Lake George in the Jefferson
Project,” AGU Fall Meeting Abstracts, vol. 2018, pp. H53P-1814, 2018.

[33] K. C. Weathers, P. C. Hanson, P. Arzberger, J. Brentrup, J. Brookes, C.
C. Carey, E. Gaiser, E. Gaiser, D. P. Hamilton, G. S. Hong, B. Ibelings,
V. Istvánovics, E. Jennings, B. Kim, T. Kratz, F.-P. Lin, K. Muraoka,
C. O’Reilly, K. C. Rose, E. Ryder, and G. Zhu, “The Global Lake Eco-
logical Observatory Network (GLEON): The Evolution OF Grassroots
Network Science,” Limnology and Oceanography Bulletin, vol. 22, no.
3, pp. 71–73, 2013, doi: https://doi.org/10.1002/lob.201322371.

[34] R. G. Wetzel, Limnology: lake and river ecosystems. San Diego etc.:
Academic Press, an imprint of Elsevier, 2015.

[35] “BP84 - 84 Ah 12 V Sealed Rechargeable Battery,” BP84:
84 Ah 12 V Sealed Rechargeable Battery. [Online]. Available:
https://www.campbellsci.com/bp84. [Accessed: 15-Apr-2021].

[36] I. MinIO, “High Performance, Kubernetes Native Object Storage,”
MinIO. [Online]. Available: https://min.io/. [Accessed: 12-Jul-2021].

[37] “IBM Cloud Functions - Overview,” IBM. [Online]. Available:
https://www.ibm.com/cloud/functions. [Accessed: 15-Apr-2021].

[38] “fitlet2,” fit IoT. [Online]. Available: https://fit-
iot.com/web/products/fitlet2/. [Accessed: 15-Apr-2021].

[39] “FTP Streaming,” Campbell Scientific. [Online]. Available:
https://s.campbellsci.com/documents/us/technical-papers/ftp-
streaming.pdf. [Accessed: 15-Apr-2021].

[40] N. O. A. A. N. W. S. N. C. E. P. N. C. E. P. C. Operations, “NOAA Op-
erational Model Archive and Distribution System,” NOMADS, 01-Jan-
2009. [Online]. Available: https://nomads.ncep.noaa.gov/. [Accessed:
15-Apr-2021].

[41] “Open Source Cloud Computing Platform
Software,” OpenStack. [Online]. Available:
https://www.openstack.org/software/releases/wallaby/components/swift.
[Accessed: 07-Jul-2021].

[42] “Open Source Serverless Cloud Platform,” Apache OpenWhisk
is a serverless, open source cloud platform. [Online]. Available:
http://openwhisk.apache.org/. [Accessed: 15-Apr-2021].

[43] “Open-source VPN for Edge Computing,” EdgeVPN.io. [Online]. Avail-
able: https://edgevpn.io/. [Accessed: 15-Apr-2021].

[44] “Production-Grade Container Orchestration,” Kubernetes. [Online].
Available: https://kubernetes.io/. [Accessed: 25-Jul-2021].

[45] “S3,” Amazon, 2002. [Online]. Available: https://aws.amazon.com/s3/.
[Accessed: 12-Jul-2021].

[46] “SP20 - 20 W Solar Panel,” SP20: 20 W Solar Panel. [Online]. Available:
https://www.campbellsci.com/sp20. [Accessed: 15-Apr-2021].

[47] “What Is LoRa®?,” Semtech. [Online]. Available:
https://www.semtech.com/lora. [Accessed: 25-Jul-2021].

[48] WFLA 8 On Your Side Staff, “Hacker altered chemicals in Oldsmar
water supply to ‘damaging’ levels, sheriff says,” WFLA, 09-Feb-2021.
[Online]. Available: https://www.wfla.com/news/local-news/hacker-
caught-altering-chemicals-in-oldsmar-water-supply-to-damaging-levels.
[Accessed: 15-Apr-2021].

	Introduction
	Related Work
	Cyberinfrastructure
	CI Resources
	Containers and Microservices
	Versioned Storage
	Serverless Execution
	Object Storage
	Overlay Virtual Private Network
	Collaborative Development

	FLARE Application
	FLARE Deployment Modalities
	Interactive Mode
	Manual Mode
	Workflow Mode

	Evaluations
	Deployment
	Experiments
	Network Characteristics Test
	System Resource Usage Test
	Git Transfer Test
	Execution Time
	Running on Solar Panel Powered Batteries

	Discussion and Future Work
	Data Storage Services
	Generalization and Scaling

	Conclusions
	References

