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Abstract. Near-term iterative forecasting is a powerful tool for ecological decision support
and has the potential to transform our understanding of ecological predictability. However, to
this point, there has been no cross-ecosystem analysis of near-term ecological forecasts, mak-
ing it difficult to synthesize diverse research efforts and prioritize future developments for this
emerging field. In this study, we analyzed 178 near-term (≤10-yr forecast horizon) ecological
forecasting papers to understand the development and current state of near-term ecological
forecasting literature and to compare forecast accuracy across scales and variables. Our results
indicated that near-term ecological forecasting is widespread and growing: forecasts have been
produced for sites on all seven continents and the rate of forecast publication is increasing over
time. As forecast production has accelerated, some best practices have been proposed and
application of these best practices is increasing. In particular, data publication, forecast archiv-
ing, and workflow automation have all increased significantly over time. However, adoption of
proposed best practices remains low overall: for example, despite the fact that uncertainty is
often cited as an essential component of an ecological forecast, only 45% of papers included
uncertainty in their forecast outputs. As the use of these proposed best practices increases,
near-term ecological forecasting has the potential to make significant contributions to our
understanding of forecastability across scales and variables. In this study, we found that fore-
castability (defined here as realized forecast accuracy) decreased in predictable patterns over
1–7 d forecast horizons. Variables that were closely related (i.e., chlorophyll and phytoplank-
ton) displayed very similar trends in forecastability, while more distantly related variables (i.e.,
pollen and evapotranspiration) exhibited significantly different patterns. Increasing use of pro-
posed best practices in ecological forecasting will allow us to examine the forecastability of
additional variables and timescales in the future, providing a robust analysis of the fundamen-
tal predictability of ecological variables.

Key words: data assimilation; decision support; ecological predictability; forecast automation; forecast
evaluation; forecast horizon; forecast uncertainty; iterative forecasting; near-term forecast; null model; open
science; uncertainty partitioning.

INTRODUCTION

Nearly 90 yr ago, Hodgson (1932) published what was
arguably the first near-term ecological forecast, using
demographic trends to predict herring age structure 1 yr
into the future. Hodgson concluded by stating

. . .we hope that before long these prognostications
will be issued with the same confidence as those

that are broadcast daily by the Meteorological
Office, and, once they are received with confidence
by the trade, they should be of considerable finan-
cial value (p. 118).

During the past 90 yr, advances in data availability,
computational power, and statistical methodologies have
enabled a substantial increase in the development and
application of near-term ecological forecasts (Luo et al.
2011, Petrovskii and Petrovskaya 2012, Hampton et al.
2013, LaDeau et al. 2017). Near-term ecological fore-
casting has become an increasingly powerful tool for
ecological decision support (Dietze 2017a, Henden et al.
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2020, Carey 2021) and has the potential to provide new
insights into fundamental questions about ecological
functioning and predictability (Petchey 2015, Dietze
2017b, 2018). However, to this point, there has been no
systematic analysis of the development or current state
of near-term ecological forecasting literature, making it
difficult to synthesize diverse research efforts and priori-
tize future developments for this emerging field.
Throughout the development of near-term ecological

forecasting, there have been numerous calls for the adop-
tion of standardized best practices (e.g., Clark 2001,
Pielke and Conant 2003, Dietze, 2018, Harris and Taylor
2018, Hobday et al. 2019, White et al. 2019, Carey et al.
2021). Developing and adhering to best practices
advances the contributions of forecasting to both basic
and applied research, as it allows for comparisons of fore-
cast accuracy across forecast horizons (the amount of
time into the future for which predictions are made) and
increases the reliability of forecast products as decision
support tools (Armstrong 2001). Recent interest in estab-
lishing best practices for ecological forecasting follows
similar efforts in meteorology and economics, disciplines
in which forecasting is well established (Armstrong 2001,
Hyndman and Athanasopoulos 2018).
While proposed best practices for near-term ecological

forecasting differ among papers, some common themes
related to forecast development, assessment, archiving,
and decision support can be identified (Box 1;
Appendix S1). As ecological forecasting has developed
over the past several decades, we expect that adherence
to these proposed best practices is increasing. However,
without a comprehensive review of published ecological
forecasts, it is difficult to assess which of the proposed
best practices have been adopted and which practices
should be prioritized for further advancement of the
field (e.g., see Payne 2017 for marine ecological forecast-
ing). Ideally, best practices should evolve using a
community-driven approach to enable buy-in and
robustness to many applications (following Hanson and
Weathers 2016); consequently, the list of proposed best
practices in Box 1 is not exhaustive, and some of the
practices may not be appropriate for every forecasting
application. However, these practices provide a frame-
work to begin analyzing the state of the field.
Adoption of these proposed best practices in near-

term ecological forecasting may be particularly impor-
tant to improving our understanding of forecastability
across scales and variables. As the number of published
near-term ecological forecasts has increased over the
past several decades (Luo et al. 2011, Dietze et al. 2018),
we now have an unprecedented opportunity to compare
across studies and analyze the relative forecastability
(defined here as realized forecast accuracy) of environ-
mental variables at varying forecast horizons. Under-
standing ecological predictability is a fundamental goal
in ecology (e.g., Gleason 1926, Clements 1936, Suther-
land 2013, Godfray and May 2014, Houlahan et al.
2017, and references therein) and provides valuable

information regarding the nature of ecological processes
(Petchey et al. 2015). Ecological forecasting can be a
particularly powerful test of predictability, as forecasting
requires predicting beyond the range of observed data
(Dietze et al. 2018). Therefore, comparisons of forecasta-
bility complement and extend existing theoretical and
modeling-based work that has predicted how various
factors (e.g., forecast horizon, computational irreducibil-
ity) influence the relative predictability of ecological
variables (Beckage et al. 2011, Petchey et al. 2015).
In this study, we performed a systematic analysis of

near-term ecological forecasting papers to examine the
use of our proposed best practices over time (Box 1). To
illustrate how proposed best practices can enable insights
into fundamental ecological understanding, we then com-
pared forecast accuracy across scales and variables. We
discuss the implications of our findings for further devel-
opment and adoption of best practices within the near-
term ecological forecasting research community.

METHODS

We systematically reviewed literature on near-term
ecological forecasting to determine how proposed best
practices have been implemented over time and com-
pared forecastability across ecosystems. First, we
searched the Web of ScienceTM Core Collection [v.5.34]
database (Clarivate Analytics, Philadelphia, USA) and
reviewed abstracts to identify papers that reported near-
term ecological forecasts (described in Literature search
below). Two reviewers then independently read and ana-
lyzed each selected paper using a standardized matrix of
criteria (Matrix analysis) and recorded forecast accuracy
when reported. Once collated, we analyzed the full data-
set to understand the development and current state of
ecological forecasting (Dataset description and Assess-
ment of forecasting best practice adoption). Finally, we
analyzed forecast evaluation data to assess how forecast
performance varied with forecast horizon for ecological
variables with sufficient data (Comparison of forecast
performance across scales and variables).

Literature search

Creating an all-encompassing search query to identify
near-term ecological forecasts presented three chal-
lenges: first, the term “near term” was neither universally
defined nor used in all papers that report near-term fore-
casts; second, there was no one search term that match
all papers describing ecological variables; and third,
many papers used the word “forecast” when talking
about implications of their research, despite not actually
reporting forecasting results in the paper. To address
these challenges, we began by querying the Web of
Science Core Collection [v.5.34] for “forecast*” in the
title, abstract, or keywords of papers published in 301
ecological journals, then manually screened abstracts of
all resulting papers. We conducted the Web of Science
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Box 1. Proposed best practices for ecological forecasting, drawn from peer-reviewed literature: Harris et al. (2018),
White et al. (2019), Hobday et al. (2019), and Carey et al. (2021).

Forecast requirements include traits of forecasting systems that are essential to the development of a forecast.
Decision support practices are those that are particularly helpful if the forecast will be applied as a decision sup-
port tool. Research practices include characteristics of a forecasting system that are particularly suited to
enabling the advancement of fundamental ecological understanding across studies. Importantly, these last two
tiers are not mutually exclusive: Decision support practices can also be important for ecological understanding
and vice versa.

Forecast requirements

1) Include uncertainty:

a) Meaningful representations of uncertainty are important to forecast interpretation and evaluation, so
much so that uncertainty is identified as an essential component in many ecological forecast definitions
(Clark et al. 2001, Luo et al. 2011, Dietze et al. 2018, Harris et al. 2018, Carey et al. 2021).

2) Report forecast accuracy:

a) Assessing and reporting forecast accuracy allows end users to understand the reliability of the forecasting
system (Harris et al. 2018, Hobday et al. 2019) and provides the near-term ecological forecasting research
community with increased insight into the tools and techniques needed to produce effective forecasts
(Dietze et al. 2018). Furthermore, assessing and reporting forecast accuracy contributes to our under-
standing of ecological predictability by facilitating comparisons of forecast accuracy across scales and
variables (Beckage and Gross 2011, Petchey et al. 2015).

Decision support

3) Identify an end user:

a) One of the goals of ecological forecasting is to aid in decision-making. The first step in this process is to
identify a specific end user and consider their needs throughout forecast development (Dietze et al. 2018,
Hobday et al. 2019, Carey et al. 2021).

4) Make iterative forecasts:

a) Iterative forecasts incorporate new data as they become available, providing updated predictions that can
aid in continuous decision-making and forecast improvement (Dietze et al. 2018, Hobday et al. 2019,
Carey et al. 2021).

5) Automate forecasting workflows:

a) End-to-end automation of the forecasting workflow (from data processing to forecast communication)
allows for more frequent forecast outputs and more sustainable forecasting infrastructure (Dietze et al.
2018, Hobday et al. 2019, White et al. 2019, Carey et al. 2021). This practice is particularly relevant for
forecasts with horizons of days to months that are rerun often to provide updated information.

Research

6) Make data available:

a) To ensure full forecast reproducibility and allow future research to build off of existing forecasting work-
flows, all data and code used to create forecasts should be findable, accessible, interoperable, and reusable
(FAIR; Wilkinson 2016, Dietze et al. 2018, Harris et al. 2018, White et al. 2019, Carey et al. 2021).
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search on 18 May 2020 and limited the search to articles
and proceedings papers (from this point forwards, ‘pa-
pers’) published in English. This yielded 2,711 results
(Fig. 1).
We screened the abstracts of all 2,711 papers and

selected those that met three criteria:

1) Papers had to include at least one forecast, which we
defined as a prediction of future conditions from the
perspective of the model; forecasts could be devel-
oped retroactively (i.e., “hindcasts”) but could only
use driver data that were available before the forecast
date (e.g., forecasted or time-lagged driver variables).

2) The forecast had to be near term, which we defined
as predicting ≤10 yr into the future (following Dietze
et al. 2018).

3) The forecast had to be ecological, which we defined
as predicting a biogeochemical, population, or com-
munity response variable. This definition therefore
excluded physical (e.g., streamflow or water tempera-
ture) and meteorological forecasts. Forecasts of
human disease were only included if there was an ani-
mal vector.

If the abstract indicated that the paper met all three
criteria, it was moved to the second round of screening.
Here, a second reviewer read the full paper to ensure that
at least one forecast in the paper met all three criteria.
By the end of this screening process, we identified 142

near-term ecological forecasting papers out of the 2,711
Web of Science results (Fig. 1a, b). The initial Web of
Science search did well at identifying studies with ecologi-
cal focal variables, as 74% of the initial search results were
marked as “ecological” during our review process. How-
ever, only 36% of papers from this search actually included

forecasts (predicting future conditions from the perspective
of the forecast model). Furthermore, of the ecological fore-
casts identified in this search (n = 669), only 21% met our
near-term criteria by including forecast horizons that were
≤10 yr; the majority of forecasts predicted ecological
changes over multidecadal timescales (Fig. 1b).
Because ecological forecasts may be published in jour-

nals that are not categorized as “ecological” by Web of
Science, we then searched all papers that were cited by
the 142 near-term ecological forecast papers we identi-
fied, as well as all papers that cited these studies. From
the citing and cited papers, we selected those that were
published in English and included “forecast*” in the
title, abstract, or keywords, then screened the abstracts
using our three screening criteria. Finally, a second
reviewer read all papers that passed the abstract screen-
ing to confirm that at least one forecast in the paper
met all three criteria. Searching the papers that cite and
are cited by the near-term ecological forecasting papers
from our initial search yielded proportionally more eco-
logical forecasting papers than the initial Web of Science
search. Of the 472 search results, 112 (24%) of these
papers were identified as near-term ecological forecasts
after two rounds of review (Fig. 1a, c). Furthermore,
this search highlighted predominantly near-term fore-
casts; 73% of the ecological forecasts identified in this
search included forecast horizons that were ≤10 yr
(Fig. 1c). After combining our initial search with the cit-
ing and cited papers, 254 papers were included in our
dataset for matrix review (Fig. 1a).

Matrix analysis

We analyzed each of the 254 papers using a standard-
ized matrix of questions (Appendix S2). This matrix was

7) Archive forecasts:

a) Archiving forecasts as they are created provides a means of demonstrating when forecasts were made and
tracking forecast improvement over time (Dietze et al. 2018, Harris et al. 2018, White et al. 2019, Carey
et al. 2021).

8) Use null model comparisons:

a) Comparing forecasts to simple, standard baselines (e.g., persistence or climatology null models) allows
researchers to compare forecastability across systems (Petchey et al. 2015) and evaluate the amount of
information contained in the forecasts (Dietze et al. 2018, Harris et al. 2018, White et al. 2019).

9) Compare modeling approaches:

a) Comparing multiple modeling approaches (e.g., process-based and empirical approaches, alternative
model drivers, alternative mathematical representations of mechanistic processes) can provide insight into
the nature of ecological processes and develop a better understanding of the circumstances under which
different modeling approaches are most effective (Harris et al. 2018, White et al. 2019).

Box 1. (Continued)
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co-developed over several months of iteration and dis-
cussion by all authors within an Ecological Forecasting
graduate seminar at Virginia Tech (January–May 2020).
The final matrix used for this study included 58 fields of
information about the forecast paper’s model(s), evalua-
tion, cyberinfrastructure, archiving, and decision sup-
port (Lewis 2021).
During the graduate seminar, we read and analyzed 10

papers as a group, ensuring that all reviewers understood
how to interpret and answer questions in a consistent
manner. Prior to the start of this analysis, reviewers also
screened several papers independently and checked their
responses with another reviewer, helping to ensure con-
sistency between reviewers. For the matrix analysis
described in this paper, all 254 papers were read and ana-
lyzed independently by two reviewers, and reviewers
then compared any differing answers to reach consensus
on a final set of responses for each paper.
During the matrix analysis, 76 papers were determined

to not meet our criteria of being near-term ecological
forecasts, despite having passed the initial rounds of

screening. These papers typically used one or more data
sources that became available after the forecast issue
date, which was difficult to identify without reading the
entire text, including all supplementary information, in
detail. These papers were excluded from the analysis,
leaving 178 papers in the final dataset (Fig. 1a).

Dataset description

To characterize the current state of near-term ecologi-
cal forecasting, we began by analyzing the distribution
of forecasts presented in the 178 papers across geograph-
ical locations, variables, and time scales.
We classified the spatial scale of each forecast into five

categories: point (localized to one discrete site, such as
pollen forecasts for a city or algal forecasts for a lake),
multipoint (several distinct forecast locations, such as
three different lakes), regional (localized to a broad geo-
graphic region, such as coral bleaching forecasts that
span a sea), national (spanning all of one nation, such as
nationwide production of an agricultural crop), or

FIG. 1. Systematic literature analysis methods. (a) Flow chart of literature review process. (b) and (c) Venn diagrams illustrating
the number of studies that met each of our three criteria after two rounds of review (abstract and paper reviews) for our original
Web of Science search (b) and a search of citing and cited papers (c).
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global (such as coral bleaching stress in world oceans),
and we calculated the percentage of forecasting papers
within each of these categories. We recorded latitude and
longitude of the forecast site(s) for point or multipoint
forecasts or of the approximate centroid of the site for
regional and national forecasts.
Forecast variables were divided into two categories:

organismal (population and community; e.g., white-
tailed deer populations) and biogeochemical (e.g., evap-
otranspiration), and each paper was classified within
one of 11 ecosystem types: forest, grassland, freshwater,
marine, desert, tundra, atmosphere, agricultural, urban,
global, other, for which “other” included any ecosystem
types that could not be classified within one of the other
10 categories (e.g., plant phenology across the entire
United States). We recorded the number of years of data
used to create each forecasting paper (summed across
model development, training, evaluation, etc.) and cal-
culated the percentage of papers that used long-term
datasets in their analysis, using the definition of long-
term as any dataset with more than 10 yr of data
(Lindenmayer 2012).

Assessment of forecasting best practice adoption

We synthesized proposed best practices for ecological
forecasting from four recent papers—Harris et al.
(2018), Hobday et al. (2019), Carey et al. (2021), and
White et al. (2019)—then selected all practices that were
mentioned in at least two of these papers (Appendix S1).
To analyze how adherence to the nine selected best prac-
tices has changed over time, we performed binary logistic
regressions to assess how adoption of each best practice
(binary yes/no) varied with publication year. Hodgson
(1932) was excluded from this best practice analysis as a
temporal outlier, leaving a dataset of papers published
between 1980 and 2020. We used the following criteria in
the matrix analysis to assess which proposed best prac-
tices (Box 1) were included in each forecasting paper:
Forecast requirements

1) “Include uncertainty”: uncertainty was included in
forecast outputs.

2) Report forecast accuracy”: any form of forecast eval-
uation was reported (this includes figures that com-
pare forecasts and observations, as well as any
evaluation metric).

Decision support

3) “Identify an end user”: a specific end user was men-
tioned.

4) “Make iterative forecasts”: forecasts were made
repeatedly, incorporating new data over time. For
this practice, we included all types of data assimi-
lation, including those that only updated the initial
conditions of the forecast. As a separate analysis,
we also determined whether the use of data assim-
ilation methods that updated the parameters of

the model (not just initial conditions) had
increased over time.

5) “Automate forecasting workflows”: at least one
source of new driver and/or observation data was
made available to the model in real time (<24 h from
collection) without any manual effort when the fore-
casting system was working as intended.

Research

6) “Make data available”: data availability was speci-
fied.

7) “Archive forecasts”: text specified that forecasts were
archived and available.

8) “Use null model comparisons”: forecasts were com-
pared with a null model (e.g., a persistence or clima-
tology null model).

9) “Compare modeling approaches”: at least two mod-
eling approaches that have different model structures
(not including null models) were compared.

All analyses were performed using R version 4.0.3
(RCore Team 2020).

Comparison of forecast performance across scales and
variables

To compare forecast performance across forecast vari-
ables, sites, and scales, it was necessary to identify an eval-
uation metric that is not dependent on the units or range
of the forecast variable. For reasons discussed below, we
chose R2 as our metric of forecast performance in this
analysis. Petchey et al. (2015) recommend using the length
of time until a forecast performs no better than a relevant
threshold value as one way of comparing between papers.
However, this type of analysis would require that a thresh-
old value be determined equitably for each forecast vari-
able, which would be challenging across the numerous
variables in our dataset. Performance of null models
offers one objective way of determining these threshold
values, but null models were not commonly reported in
this dataset. Another means of comparing forecast per-
formance would be to directly compare forecast accuracy
using a standardized statistical score. Commonly used
forecast evaluation metrics include root mean squared
error (RMSE), mean absolute error (MAE), the coeffi-
cient of determination (R2), and bias (Petchey et al. 2015,
Dietze 2017a). To fully assess probabilistic forecasts,
the continuous ranked probability score (CRPS) and
ignorance can also be used (Roulston and Smith 2002,
Gneiting et al. 2005). Among these, only R2 allows com-
parisons between forecasts that have different native units
or forecasts for the same variable in very different ranges.
Furthermore, more papers reported Pearson’s r or R2

(n = 56, 42%) than any other forecast performance metric
in this dataset: for comparison, only 34% included RMSE
and 20% included MAE. While the fact that R2 is
typically bias corrected makes it an imperfect metric of
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forecast performance, it remains widely reported and
uniquely suited to interstudy comparisons.
We recorded all R2 and Pearson’s r data reported in

papers in the dataset. Pearson’s r values were squared to
yield R2 (following Rousso et al. 2020). We selected all
forecast variables that had at least three papers and three
forecast horizons represented, and we plotted forecast per-
formance (in R2) as a function of forecast horizon for
these variables. To allow comparability between variables,
we limited the analysis to forecast horizons between 1 and
7 d, which were reported for all variables selected. Because
some papers reported R2 individually for each plot, site, or
year and others reported one overall evaluation per
model, we averaged all R2 across sites and years for fore-
casts that used the same model within each paper.
We used indicator variable analysis (Draper and Smith

1998) to compare the slope of R2 values over 1–7 d hori-
zons among forecast variables by performing a 50%
quantile regression that predicted R2 based upon indica-
tor (“dummy”) predictors for all forecast variables, as
well as terms for the interaction between all forecast
variables and forecast horizon. Quantile regression was
used rather than standard linear regression to account
for heteroscedasticity and non-normal data distribution.
The regression was performed using the package quan-
treg in R (Koenker et al. 2021). Indicator analysis com-
pares the slope and intercept of the first indicator
(“reference” indicator) to all subsequent indicators (Dra-
per and Smith 1998). In this case, chlorophyll was used
as the reference indicator to enable comparisons between
phytoplankton and chlorophyll, two closely related fore-
cast variables. We analyzed which terms were significant
in the model to determine how patterns in forecast per-
formance over time differed among forecast variables:
significance was determined using the “wild” bootstrap-
ping method to account for heteroskedasticity (Feng
and He 2011).

RESULTS

Dataset description

The number of ecological forecasts published each year
has increased substantially over time: more papers were
published in the last 7 yr of the dataset (2014–2020) than
in the first 82 yr (1932–2013; Fig. 2). Forecast sites for
these papers were located on all seven continents (Fig. 3a).
The majority of forecast sites were located in the northern
hemisphere (n = 211, 91%), especially the United States,
China, and Western Europe (Fig. 3a). The geographic
scale of the forecasts was most often either point (n = 66,
37%), or regional (n = 66, 37%; Fig. 3b).
More ecological forecasts predicted organismal (popu-

lation and community) variables than biogeochemical
variables. Very few papers included forecasts for both
biogeochemical and organismal focal variables (organis-
mal: n = 146, 82%; biogeochemical: n = 43, 24%; both:
n = 11, 6%; Fig. 3c). The majority of papers predicted

ecological processes in either marine (n = 49, 28%),
freshwater (n = 41, 23%), or agricultural (n = 34, 19%)
ecosystems (Fig. 3). In particular, many papers pre-
dicted fish taxa (n = 25), phytoplankton taxa (n = 20),
chlorophyll (n = 14), evapotranspiration (n = 14), pollen
(n = 10), and crop yield (n = 9).
Papers in this dataset included forecasts at a wide

range of forecast horizons and were developed using
diverse time steps, forecast horizons, and datasets.
Among the forecasts surveyed in this analysis, 75% of
papers predicted within 1 yr into the future (n = 130;
Fig. 4). In particular, many papers either predicted
2–7 d into the future on a daily time step (n = 39, 23%
of all papers) or 1 yr into the future on a yearly time step
(n = 30, 17%; Fig. 4). The median temporal duration of
data used to create a forecasting paper (summed over
model development, training, evaluation, etc.) was 15 yr
(min. = 17 d, mean = 19.2 yr, max. = 145 yr; Fig. 5),
and 60% of papers (n = 107) used more than 10 yr of
data in the forecast paper.
The 178 papers included in this analysis were pub-

lished in 114 unique journals and conference proceed-
ings (103 journals, 11 conferences). The journal with the
greatest number of papers represented in the dataset was
Ecological Applications, which published a total of 14
near-term ecological forecasting papers.

Adoption of proposed best practices is low but increasing
over time

Overall rates of best practice use are low but may be
increasing. On average, papers used three of the pro-
posed nine best practices (median and mode = 3,

FIG. 2. Number of near-term ecological forecasts published
per year. Five papers from the final year (2020) are not plotted
because data for this year are incomplete: only papers indexed
on Web of Science by the date of our search (18 May 2020) were
included in this study.
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mean = 2.83), but there was considerable variation:
seven papers did not use any of the best practices, and
one paper used eight of the best practices. The percent-
age of papers that demonstrated a given best practice
did not exceed 50% for any practice except “Report fore-
cast accuracy” (Fig. 6). All but one (“Use null model
comparisons”) of our proposed best practices have been
increasingly adopted over time. However, the increase in
adoption with time was only statistically significant
(P < 0.05) for three practices: “Automate forecasting
workflows,” “Archive forecasts,” and “Make data avail-
able” (Fig. 6, Table 1).
Of the Forecast requirement best practices, “Include

uncertainty” was demonstrated in 45% of papers and
“Report forecast accuracy” was demonstrated in 75% of

papers. Both of the Forecast requirement best practices
show a positive trend in adoption, although neither had
a statistically significant relationship with publication
year (Fig. 6, Table 1). When uncertainty was included in
forecasts (n = 80), the most commonly included uncer-
tainty sources were observation uncertainty (48%), pro-
cess uncertainty (40%), and parameter uncertainty
(35%). Driver uncertainty was included in 23% of papers
that report uncertainty, and initial condition uncertainty
was included in 18%. Of the 80 papers that reported
uncertainty, 55% did not specify a data-driven origin of
this uncertainty (e.g., ensemble model parameters, fore-
casted meteorological driver data) in the text. Only three
papers partitioned uncertainty sources (Geremia et al.
2014, Dietze 2017b, Caughlin et al. 2019), and all of

FIG. 3. Description of ecological forecasting papers identified in this study. (a) Map of all forecasts: regional and national stud-
ies are shown in large transparent points near the center of the forecast region, while point and multipoint forecasts are shown in
small opaque points. (b) Bar chart illustrating the spatial extent of the forecast for each paper: point, multipoint (several distinct
points), regional (a broad region that does not follow national bounds), national, or global (for details about how spatial extent was
determined, see Lewis et al. 2021). (c) Bar chart illustrating the class—organismal (population or community) or biogeochemical—
of the forecast variable for each paper. Fill colors illustrate ecosystem type. Forecasts that could not be matched to one of our nine
ecosystem types have been labeled “other.”
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these papers were published in or after 2014. All three
papers quantified the influence of process, initial condi-
tion, and parameter uncertainty, and one partitioned
driver uncertainty. Process uncertainty dominated total
uncertainty for two papers (Geremia et al. 2014, Dietze

2017b), while initial condition uncertainty dominated in
the third paper (Caughlin et al. 2019). Over 70% of fore-
casts that did not report forecast evaluation in the text
(n = 44) predicted at forecast horizons of at least 1 yr; in
comparison, 47% predicted at forecast horizons of at
least 1 yr in the dataset as a whole. As noted in the
Methods, the most commonly reported metric of fore-
cast performance was R2.
Overall, 20% of papers identified a specific end user,

39% of papers made iterative forecasts, and 11% of
papers included automated forecasting workflows. All
three of these proposed best practices (“Identify an end
user,” “Make iterative forecasts,” “Automate forecasting
workflows”) in the Decision support tier showed positive
relationships with publication year, but only “Automate
forecasting workflows” significantly increased over time
(Fig. 6, Table 1). Of the papers that mentioned a specific
end user (n = 35), 31% mentioned that the end user
aided in forecast development and 46% mentioned that
forecasts were in use by the end user. Data assimilation
for iterative forecasts most often updated initial condi-
tions but not parameters of the model (67% of the 69
iterative forecasts only updated initial conditions). How-
ever, data assimilation methods that updated the param-
eters of the model (not just initial conditions) have
increased significantly over time (Table 1).
Overall, there was a wide range in the percentage of

papers that used Research tier best practices. “Make data
available” was demonstrated in 25% of papers, “Archive
forecasts” was demonstrated in 8% of papers, “Use null
model comparisons” was demonstrated in 12% of
papers, and “Compare modeling approaches” was
demonstrated in 47% of papers. Two of the five Research
tier practices have increased significantly over time
(“Make data available” and “Archive forecasts”;
Table 1). “Use null model comparisons” was the only
practice that has decreased in adoption over time
(Fig. 6). For papers that described forecast archiving
(n = 15), the most common repository for archived fore-
casts was Zenodo (used in 20% of papers that archive
forecasts); other papers used websites or other archives
specific to the forecasting project. Only two of the seven
papers that mentioned archiving forecasts on a website
had links that were still functional as of 14 June 2021.
Of the papers that used null models in this study
(n = 21), 62% used persistence null models and 48%
used climatology null models. Two papers used both per-
sistence and climatology null models. Of the papers that
compared multiple modeling approaches (n = 84), a
median of three different approaches was included (not
including null models; mean = 5.4, max. = 49).

Declines in forecast performance over increasing forecast
horizons differ between variables

Forecast accuracy data (R2) from at least three papers
on 1–7 d forecast horizons were available for four fore-
cast variables: chlorophyll, phytoplankton taxa, pollen,

FIG. 4. Relationship between time step and forecast horizon
of forecasting papers. Colors and numbers within each square
indicate the number of papers corresponding to that combina-
tion of time step and forecast horizon (darker colors indicate
more common combinations). White areas indicate combina-
tions of time step and horizon that were not represented in the
dataset. Papers that did not have a defined horizon (e.g., pre-
dicting end of summer harvest) or that did not specify time
step/horizon were omitted (n = 10).

FIG. 5. Histogram illustrating the total number of years of
data used to develop each forecasting paper, summed across
model development, training, evaluation, etc. Vertical lines rep-
resent the median (left) and mean (right) number of years used.
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and evapotranspiration (ET). Forecast performance
decreased with increasing forecast horizon for all fore-
cast variables (Fig. 7, Table 2). The slope and intercept
of forecast accuracy over increasing forecast horizons
differed between variables, as revealed in our indicator
analysis: the intercepts for pollen and ET were signifi-
cantly lower than for chlorophyll, the reference indica-
tor. In comparison with chlorophyll, forecast accuracy
for pollen and ET decreased significantly more slowly
over time. Unsurprisingly, the intercept and slope of
phytoplankton were not significantly different from the
intercept and slope of chlorophyll, the reference indica-
tor (Fig. 7, Table 2).

DISCUSSION

Our systematic analysis of 178 near-term ecological
forecasting papers demonstrates that the field of near-
term ecological forecasting is widespread and growing:
forecasts have been produced on all seven continents,

and the rate of forecast publication is increasing over
time. Although the overall implementation of proposed
best practices is low, best practice use is increasing. In
particular, the use of automated forecasting workflows,
making data available, and archiving forecasts are all
increasing significantly over time. We used this dataset
of published studies to compare forecast accuracy across
scales and variables, and we found that forecast accuracy
decreased in consistent patterns over 1–7 d forecast hori-
zons. Variables that were closely related (i.e., chlorophyll
and phytoplankton) displayed very similar trends in pre-
dictability over increasing forecast horizons, while more
distantly related variables (i.e., pollen, evapotranspira-
tion) exhibited significantly different patterns.

Near-term ecological forecasting: state of the field

As publication of near-term ecological forecasts con-
tinues to accelerate, evaluating the state of the field now
can provide critical insight to help prioritize areas of

FIG. 6. Best practice adoption over time. Points demarcate whether or not an individual paper demonstrated the best practice
(1 = observed, 0 = not observed), and lines represent logistic regression results. Significance of the year term in the regression is
indicated using asterisks: * indicates P < 0.05, *** indicates P < 0.001. One paper from 1932 was excluded from this analysis.
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improvement moving forward. Below, we discuss aspects
of near-term ecological forecasting that are well devel-
oped, those that are improving over time, and areas that
may need improvement based upon the results of this
analysis.

Well developed practices in near-term ecological forecast-
ing: high rates of forecast assessment and model compar-
ison.—Only one out of the nine proposed best practices
was demonstrated in more than half of the papers in this
analysis: report forecast accuracy. In this study, high
rates of forecast assessment and reporting allowed us to
compare forecast performance across scales and vari-
ables. While R2 was the most commonly reported fore-
cast evaluation metric and served as an effective
accuracy score for this preliminary analysis, it would be
preferable to use a metric of forecast performance that is
not bias corrected. Other scale-independent metrics of
forecast performance include percentage errors (e.g.,
mean absolute percentage error; MAPE) or scaled errors

(e.g., mean absolute scaled error; MASE; Hyndman and
Athanasopoulos 2018). Percentage errors are not univer-
sally applicable because they penalize a lack of precision
more heavily in a range closer to zero (in the units of the
forecast), which is not valid for some forecast variables
(e.g., temperature in units of Fahrenheit or Celsius, net
ecosystem exchange of carbon dioxide; Hyndman and
Athanasopoulos 2018). Scaled errors may present the
most effective means of comparing forecasts with differ-
ent ranges and units, however they require choosing a
relevant null model (Hyndman and Athanasopoulos
2018), which is currently not common in near-term eco-
logical forecasting literature (Fig. 6).
Of the papers that did not assess and report any met-

ric of forecast accuracy, many (77%) predicted at fore-
cast horizons greater than or equal to 1 yr, suggesting
that part of the reason these papers did not assess fore-
cast accuracy may be the long time lag before data would
be available for forecast evaluation. In cases in which the
forecast horizon is too far into the future to evaluate
results, researchers could consider making and evaluat-
ing additional forecasts at short horizons to provide at
least an intermediate evaluation of their forecasting sys-
tem (Harris et al. 2018). Assessing hindcasts may also
provide a means of evaluating the forecasting system,
given sufficient historical data.
Notably, many papers that included forecast assess-

ment also compared multiple modeling approaches; 47%
of papers in the dataset included model comparisons,
despite the fact that this is a Research tier practice and
may not be relevant to all applications. These high rates
of model comparison may facilitate future analyses that
determine relevant model structures for a variety of eco-
logical applications (e.g., see Rousso et al. 2020).

Developments in near-term ecological forecasting:
increasing automation and use of open science prac-
tices.—Over time, near-term ecological forecasting is
becoming increasingly automated, creating forecast
products that enable real-time decision support (Dietze
et al. 2018). Forecast automation can be beneficial to
decision support because it decreases the amount of
manual effort required to create each forecast once the
automated system is set up and thereby increases the
sustainability of iterative forecasting workflows (Hobday
et al. 2019, White et al. 2019, Carey et al. 2021). How-
ever, it is important to note that automated forecasting
workflows may still require significant human effort to
maintain cyberinfrastructure over time (Carey et al.
2021). While the increase in use of iterative forecasts
over time was not statistically significant, the percentage
of papers that use iterative workflows to update model
parameters rather than just the initial conditions of the
forecast has increased significantly (Table 1). Updating
model parameters as new data are incorporated allows
the forecasting system to learn over time and potentially
make more accurate predictions in the future (Luo et al.
2011, Niu et al. 2014, Zwart et al. 2019).

TABLE 1. Logistic regression results for each proposed best
practice based on n = 177 papers (one paper from 1932 was
excluded from this analysis).

Estimate Standard error Z value P-value

Include uncertainty
Intercept �7.615 35.157 �0.217 0.83
Year 0.004 0.017 0.211 0.83

Report forecast accuracy
Intercept �59.665 38.486 �1.550 0.12
Year 0.030 0.019 1.579 0.11

Identify an end user
Intercept �86.809 52.611 �1.650 0.10
Year 0.042 0.026 1.624 0.10

Make iterative forecasts
Intercept �14.147 36.152 �0.391 0.70
Year 0.007 0.018 0.379 0.71

Make iterative forecasts (updating model parameters)
Intercept �182.741 85.680 �2.133 0.03
Year 0.090 0.043 2.111 0.04

Automate forecasting workflows
Intercept �237.502 100.550 �2.362 0.02
Year 0.117 0.050 2.344 0.02

Make data available
Intercept �252.217 69.775 �3.615 <0.001
Year 0.125 0.035 3.602 <0.001

Archive forecasts
Intercept �308.891 136.546 �2.262 0.02
Year 0.152 0.068 2.247 0.03

Use null model comparisons
Intercept 33.795 50.388 0.671 0.50
Year �0.018 0.025 �0.710 0.48

Compare modeling approaches
Intercept �41.332 35.718 �1.157 0.25
Year 0.021 0.018 1.154 0.25

Notes: Statistically significant P-values are in bold. In addi-
tion to the nine proposed best practices, statistics are included
for the use of iterative forecasting to update model parameters.
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Another area of promise is in the adoption of open
scientific practices: both data publication and forecast
archiving have increased significantly over the past
40 yr. These advances are likely to reflect a broader
movement for open scientific practices that has gained
momentum over the past decade in response to intersect-
ing the needs for greater reproducible science, knowledge
dissemination, and collaboration (e.g., Reichman and
Jones 2011, Beardsley 2014, Fecher and Friesike 2014,
Wilkinson et al. 2016, Munaf�o et al. 2017, Powers and
Hampton 2019). Further increases in the use of open sci-
entific practices have the potential to increase the

reproducibility of published forecasting literature while
fostering collaboration and accelerating the development
of the field.

Priorities for the future development of near-term ecologi-
cal forecasting: uncertainty, end user engagement, and null
models.—One of the most notable gaps identified in this
analysis is the lack of specified uncertainty in published
forecasts. Meaningful representations of uncertainty are
considered so critical to forecast interpretation and eval-
uation that many definitions of ecological forecasts
include uncertainty as an essential component (e.g.,
Clark et al. 2001, Luo et al. 2011, Dietze et al. 2018,
Harris et al. 2018, Carey et al. 2021). However, only 45%
of papers included uncertainty in their forecasts. Lack of
forecast uncertainty can be problematic in decision sup-
port because when uncertainty is not specified in a fore-
cast output, forecast users create their own, often
inaccurate, expectations of forecast uncertainty (Morss
and Demuth 2008, Joslyn and Savelli 2010).
Moving beyond specifying uncertainty to partitioning

uncertainty into its component parts (e.g., initial condi-
tion, driver, parameter, and process uncertainty) pro-
vides information to help forecast developers prioritize
improvements to their forecasting system and allows
researchers to understand the constraints to predictabil-
ity for a given ecological variable (Dietze 2017b). It is
well established that forecasting meteorological condi-
tions is a fundamentally chaotic problem, dominated by
initial condition uncertainty (Kalnay 2003). Due to sta-
bilizing feedbacks in ecological systems (e.g., carrying
capacity, functional redundancy), other components of
uncertainty are hypothesized to dominate ecological

FIG. 7. Relationship between forecast performance and forecast horizon (Horiz) for four forecast variables: chlorophyll (Chl),
phytoplankton (Phyto), pollen, and evapotranspiration (ET). Different papers are indicated by points of different colors and shapes.
Within a paper, forecasts using the same model were averaged (across sites, years, etc.). Rightmost panel: model predictions from
the quantile regression indicator analysis.

TABLE 2. Indicator variable analysis results comparing the
slope of R2 values over 1–7 d horizons among forecast
variables.

Estimate SE t P-value

Chlorophyll (reference; n = 68 data points from 8 papers)
Intercept 0.98 0.025 39.53 <0.001
Horizon �0.08 0.012 �6.78 <0.001

Phytoplankton (n = 33 data points from eight papers)
Intercept 0.04 0.055 0.71 0.48
Horizon 0.02 0.016 1.06 0.29

Pollen (n = 110 data points from three papers)
Intercept �0.29 0.043 �6.62 <0.001
Horizon 0.05 0.014 3.94 <0.001

Evapotranspiration (n = 113 data points from 10 papers)
Intercept �0.26 0.059 �4.40 <0.001
Horizon 0.05 0.015 3.46 <0.001

Notes: Chlorophyll was treated as the reference variable for
the analysis. Statistically significant P-values are in bold.
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forecasts (Dietze 2017b). This hypothesis is partially sup-
ported by our dataset: initial condition uncertainty was
the dominant source of forecast uncertainty in only one
of three papers that partitioned uncertainty in this anal-
ysis. However, because uncertainty partitioning is a rela-
tively new development in ecological forecasting, the
small number of studies that partition uncertainty cur-
rently prevents us from making conclusions about the
limiting factors for predictability across variables and
forecast horizons.
While not all of the near-term ecological forecasts

described in our dataset were designed for decision sup-
port, approximately 20% of papers mentioned a specific
end user for their forecasts. Of these, nearly half specify
that the forecasting system was in use by the specified
end user (e.g., drinking water management organization,
coral reef conservation agency, etc.). Designing forecasts
for end users involves a variety of ethical considerations,
including equity for end users, communication of fore-
cast accuracy, and stakeholder education (Hobday et al.
2019). However, it was rare for a paper to include any
explicit mention of ethical considerations made in
designing the forecast (5% of papers overall; 25% of fore-
casts that are in use by an end user). Given the power of
forecasts to inform decision support, education on how
to navigate engagement with end users, and particularly
any ethical considerations that must be made, may be
useful in improving the utility of forecasts for stake-
holder use.
In this study, we found that the use of null model

comparisons remains low and has not increased in
adoption over time, despite the importance of this prac-
tice for contextualizing forecast skill (Dietze et al. 2018,
Harris et al. 2018, White et al. 2019). For meteorologi-
cal forecasting, comparing forecasts to a climatological
null model has proved useful as a means of analyzing
the limit of predictive skill and the comparative perfor-
mance of weather forecasts across spatial and temporal
scales (Buizza and Leutbecher 2015). Parallel advances
in ecological forecasting may be enabled through
increased use of null model comparisons in the future
(Petchey et al. 2015, Hyndman and Athanasopoulos
2018).

Published forecasts provide insight into forecastability
across scales and variables

Analyzing forecastability across variables, we found
that aquatic chlorophyll and phytoplankton taxa were
more predictable than pollen and evapotranspiration at
the shortest forecast horizons (chlorophyll: 1–5 d; phy-
toplankton: 1–7 d). However, the predictability of
chlorophyll and phytoplankton decayed faster over
increasing forecast horizons than that of evapotranspira-
tion and pollen. Similar patterns in forecast performance
for chlorophyll and phytoplankton are likely to result
from the fact that these two ecological variables are clo-
sely related. Greater predictability of chlorophyll and

phytoplankton than evapotranspiration and pollen at
short forecast horizons is likely to indicate a greater
degree of autocorrelation in these processes (Reynolds
2006), but predictability quickly decays over time due to
bloom dynamics (e.g., Rigosi et al. 2011, Recknagel et al.
2016). The consistency of these patterns across 3–10
different papers for each forecast variable suggests that
the relationship between forecast performance and fore-
cast horizon could be a robust indicator of the pre-
dictability of other ecological processes.
While this analysis is preliminary, limited to four eco-

logical variables, it is among the first comparative tests
that have analyzed forecastability across scales and vari-
ables, building on two previously published studies.
Ward et al. (2014) analyzed the ability of multiple time-
series models to predict 2,379 vertebrate population
datasets. They found that increased forecast perfor-
mance (measured using MASE) was correlated with long
lifespans and large body size for fish and high trophic
level for birds over 1–5 yr forecast horizons. Addition-
ally, Rousso et al. (2020) performed a systematic review
of cyanobacterial bloom forecasting literature and ana-
lyzed the relationship between forecast performance (R2)
and forecast horizon for three types of models: artificial
neural networks, decision trees, and genetic program-
ming. They found that forecast performance decreased
over 1–30 d forecast horizons, and forecasts created
using greater amounts of historical data had superior
forecast performance. Altogether, these first analyses of
the forecastability of ecological variables highlight the
growing applicability of forecasting to inform our under-
standing of ecological predictability.
Accelerating forecast publication and increased adop-

tion of proposed best practices will increase the statisti-
cal strength of future analyses to detect trends in
forecast performance over increasing forecast horizons,
including possible non-linear patterns. In particular,
increased assessment and reporting of forecast accuracy
ensures that published papers can be included in a meta-
analysis of predictability; increased data publication
allows re-evaluation of forecasts; increased forecast
archiving addresses publication biases in forecast results;
increased use of null models allows researchers to ana-
lyze how the maximum length of time until a forecast
performs no better than the null differs among variables;
and increased quantification of uncertainty allows
researchers to compare how uncertainty sources differ
across scales and variables.

Literature search process: observations and limitations

While the rates of adoption of these proposed best
practices (Box 1) are low overall, they are not necessarily
unexpected. Different forecasting applications are likely
to require different best practices; in this analysis, we
have divided our selected best practices among three cate-
gories: Forecast requirements, Decision support, and
Research. However, this is a coarse delineation, and the
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last two tiers are not mutually exclusive: Decision support
practices can also be important for ecological under-
standing and vice versa. Ecological forecasting is an
emerging discipline and many of these methods are still
in development; notably, our list of proposed best prac-
tices was derived from papers that were all published
within the last 4 yr of the dataset (Dietze et al. 2018,
Harris et al. 2018, Hobday et al. 2019, White et al. 2019,
Carey et al. 2021; Appendix S1). Ideally, best practices
should evolve using a community-driven approach to
enable buy-in and robustness to many applications (fol-
lowing Hanson et al. 2016). Armstrong (2001) proposed
as many as 139 principles for forecasting at large, all of
which could be relevant to ecological forecasting applica-
tions. If one had to wait to publish a forecast until it satis-
fied all potential best practices, it is likely that no
forecasting papers would ever be published. Increasing
the number of published ecological forecasts benefits the
field of ecological forecasting even if forecasts do not fol-
low all proposed best practices, because the research
community gains increasingly more information about
the forecastability of ecological variables and the tools
and techniques needed to make effective forecasts (Dietze
et al. 2018). Still, as near-term ecological forecasting con-
tinues to grow, assessing the rate of best practice adop-
tion now allows researchers to identify and prioritize
areas for growth and education, simultaneously advanc-
ing the basic and applied value of ecological forecasting.
Results from our literature search process highlight

the decentralized nature of near-term ecological forecast-
ing and the challenges associated with systematically
reviewing this literature. The 178 near-term ecological
forecasting papers in this analysis came from 114 unique
journals and conference proceedings, and no one journal
published more than 15 near-term ecological forecasts
papers in this analysis. Decentralized forecast publica-
tions may present a barrier to those interested in this lit-
erature, particularly because there is no one search term
that comprehensively surveys the current near-term eco-
logical forecasting literature. Many papers do not explic-
itly use the terms “near-term” or “ecological” when
describing forecasts for a particular application, and
only 5% of the results from our initial search for the term
“forecast*” in ecology-related journal articles were iden-
tified as near-term ecological forecasts after two rounds
of review (Fig. 1). By systematically reviewing and syn-
thesizing near-term ecological forecasting literature pub-
lished to date, we aim to begin addressing this gap.
Importantly, this comprehensive analysis of near-term

ecological forecasting literature is limited to published
forecast results. Operational forecasting systems that
have not been described in peer-reviewed literature were
not included (e.g., the United States National Oceanic
and Atmospheric Administration [NOAA] has multiple
operational forecasting systems for harmful algal
blooms, fisheries, and coral reef bleaching that are avail-
able via websites). We anticipate that this exclusion may
affect results in at least three ways: first, because

unpublished operational forecasting systems are often
used for decision support, the percentage of forecasting
systems that connect to a specific end user is likely to be
underrepresented in published literature. Second, both
the need to refine forecasting models prior to paper sub-
mission and reviewer requests for forecast revisions may
make it difficult to publish genuine forecasts. Because of
this, most papers in this study are likely to be hindcasts
or forecast reanalyses. Third, because of publication
biases (Dickersin 1990, Mlinari�c and Horvat 2017), we
anticipate that average forecast performance is artifi-
cially inflated in published literature relative to unpub-
lished operational forecasts. As coordination within the
near-term ecological forecasting discipline increases, sur-
veying and comparing operational forecasts may become
increasingly possible over time.

Future needs in near-term ecological forecasting

Looking to the future, advancing the field of near-
term ecological forecasting will involve a suite of techno-
logical, organizational, and educational advances. First,
the low level of adoption of the proposed best practices
suggests that increased coordination within the ecologi-
cal forecasting research community for developing com-
mon forecasting standards (e.g., Dietze et al. 2021), best
practices, and vocabulary will advance near-term ecolog-
ical forecasting. Second, we find that incorporation of
uncertainty and use of null models are critical gaps in
ecological forecasting literature for which education may
be needed. The creation of additional educational
resources will enable more forecasts to be created and
facilitate the adoption of best practices in ecological
forecasting. Third, our analysis strongly suggests that
long-term data are an important resource for near-term
ecological forecast development and assessment. In our
dataset, 60% of published near-term ecological forecast-
ing studies used >10 yr of ecological data when develop-
ing, calibrating, and assessing their forecasts (Fig. 5).
Long-term support for data collection is likely to be nec-
essary to advance the field. Finally, our analysis indi-
cates that near-term ecological forecasting may be
disproportionately centered in the northern hemisphere,
particularly the United States, Western Europe, and
China. This result follows the disproportionate represen-
tation of these geographic regions across all sciences
(UNESCO 2015). Lack of forecast locations in other
countries, particularly in the southern hemisphere, is a
detriment to the field as a whole, as the full diversity of
ecological systems is not represented in ecological fore-
casting research to date.
While there are a variety of challenges and opportuni-

ties facing the development of near-term ecological fore-
casting, the literature indicates that the field has grown
significantly over the past 90 yr. Near-term ecological
forecasting is now widespread and the rate of forecast
publication continues to increase over time. Moving for-
ward, near-term ecological forecasting is well positioned
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to transform ecological management and provide critical
insight into the predictability of ecological variables.
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