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ABSTRACT

Lakes and reservoirs globally are experiencing

unprecedented changes in land use and climate,

depleting dissolved oxygen (DO) in the bottom

waters (hypolimnia) of these ecosystems. Because

DO is the most energetically favorable terminal

electron acceptor (TEA) for organic carbon miner-

alization, its availability controls the onset of

alternate TEA pathways (for example, denitrifica-

tion, manganese reduction, iron reduction, sulfate

reduction, methanogenesis). Low DO concentra-

tions can trigger organic carbon mineralization via

alternate TEA pathways in the water column and

sediments, which has important implications for

greenhouse gas production [carbon dioxide (CO2)

and methane (CH4)]. In this study, we experi-

mentally injected supersaturated DO into the hy-

polimnion of a eutrophic reservoir and measured

concentrations of TEAs and terminal electron

products (TEPs) in the experimental reservoir and

an upstream reference reservoir. We calculated the

electron equivalents yielded from each TEA path-

way and estimated the contributions of each TEA

pathway to organic carbon processing in both

reservoirs. DO additions to the hypolimnion of the

experimental reservoir promoted aerobic respira-

tion, suppressing most alternate TEA pathways and

resulting in elevated CO2 accumulation. In com-

parison, organic carbon mineralization in the ref-

erence reservoir’s anoxic hypolimnion was

dominated by alternate TEA pathways, resulting in

both CH4 and CO2 accumulation. Our ecosystem-

scale experiments demonstrate that the alternate

TEA pathways that succeed aerobic respiration in

lakes and reservoirs can be manipulated at the

ecosystem scale. Moreover, changes in the DO

dynamics of freshwater lakes and reservoirs may

result in concomitant changes in the redox reac-

tions in the water column that control organic

carbon mineralization and greenhouse gas accu-

mulation.
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HIGHLIGHTS

� We manipulated hypolimnetic oxygen (O2) at

the whole-ecosystem scale in a reservoir.

� Rapid O2 shifts changed terminal electron accep-

tor budgets relative to a reference system.

� Our manipulations add insight into how redox

pathways respond to varying O2 availability.

INTRODUCTION

Lakes and reservoir ecosystems globally are expe-

riencing unprecedented changes in their dissolved

oxygen (DO) concentrations due to land use and

climate change, which has important implications

for their biogeochemical cycling (Tranvik and oth-

ers 2009; Marcé and others 2010; Jenny and others

2016). For example, increases in near-surface wa-

ter (epilimnion) temperatures and eutrophication

are depleting DO in the bottom waters (hy-

polimnion) of many lakes and reservoirs (Jenny

and others 2016; Jokinen and others 2018; Vegas-

Vilarrúbia and others 2018). Simultaneously, more

frequent and powerful storms can increase mixing

of oxic epilimnetic water across the thermocline

into the hypolimnion, thereby temporarily

increasing DO availability in the metalimnion and

hypolimnion (for example, Jennings and others

2012; Klug and others 2012). These changes in DO

availability can generate intermittent conditions of

oxic, high-DO water and anoxic water with DO

below 0.5 mg l-1 in the metalimnion and hypo-

limnion.

As DO is expected to continue to change in lakes

and reservoirs in the future (Jenny and others

2016; Vegas-Vilarrúbia and others 2018), it remains

unclear to what extent alternate TEA pathways will

change, which has implications for greenhouse gas

dynamics and organic carbon burial (Figure 1).

Because DO is the most energetically favorable

terminal electron acceptor (TEA) in freshwater

ecosystems, its availability controls the onset of

anaerobic redox reactions (that is, alternate TEA

pathways) for organic carbon mineralization

(Stumm and Morgan 1996; Schlesinger 1997; Ta-

ble 1) and subsequent greenhouse gas production

of dissolved carbon dioxide (CO2) and methane

(CH4) (Stanley and others 2016). Alternate TEA

pathways (for example, denitrification, manganese

reduction, iron reduction, sulfate reduction,

methanogenesis; see Table 1, Figure 1) mineralize

organic carbon less efficiently than aerobic respi-

ration (Schlesinger 1997; Hartnett and others 1998;

Sobek and others 2009), and rates of organic car-

bon mineralization vary among alternate TEA

pathways (Schlesinger 1997). Consequently, the

rates of organic carbon burial and mineralization

that produce dissolved carbon dioxide (CO2) and

methane (CH4) in freshwaters are tightly coupled

to DO availability (Figure 1; Bastviken and others

2004a). Lakes and reservoirs receive and process

large quantities of organic carbon (Dean and Gor-

ham 1998; Cole and others 2007; Downing and

others 2008; Tranvik and others 2009; Knoll and

others 2013; Mendonça and others 2017), can have

high CO2 and CH4 production rates, and are

important greenhouse gas sources to the atmo-

sphere relative to their small surface area (Downing

and others 2008; Tranvik and others 2009; Deemer

and others 2016). Thus, it is critically important to

understand how variability in the DO conditions in

the water column will affect alternate TEA path-

ways and greenhouse gas production in lakes and

reservoirs.

Although laboratory experiments of TEA path-

ways have improved our understanding of redox

reactions in freshwater systems, expanding these

experiments to the ecosystem scale may better

represent how TEA pathways and CO2 and CH4

production may change in the future. Laboratory

studies on TEA pathways in lakes and reservoirs

have shown that alternate TEA pathways are ini-

tiated at low DO concentrations (Kelly and others

1988; Frindte and others 2015; Lau and others

2015, 2016; Corzo and others 2018). However,

laboratory studies exclude many physical, chemi-

cal, and biological drivers that occur at the

ecosystem scale (Carpenter 1996) and likely influ-

ence TEA pathways. For example, controlled lab-

oratory experiments may mask the variability of

TEA pathways occurring among different water

column layers in a lake or reservoir, which could

vary due to different DO conditions in the epil-

imnion, metalimnion, and hypolimnion. Some

lakes and reservoirs exhibit metalimnetic DO

minima during the stratified period (reviewed by

McClure and others 2018), and it is unclear to what

extent alternate TEA pathways occur in metalim-

netic DO minima compared to anoxic hypolimnia.

Ecosystem-scale manipulations are an established,
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albeit challenging, approach for creating highly

contrasting changes to help differentiate underly-

ing causal mechanisms (Carpenter and others

1996; Schindler 1998), and can provide useful data

for understanding how changing DO conditions

alter TEA pathways and greenhouse gas dynamics.

A few ecosystem-scale investigations have mon-

itored TEA pathways and CO2 and CH4 production

in the water column of lakes and reservoirs (for

example, Schafran and Driscoll 1987; Mattson and

Likens 1992; Matthews and others 2008; Matzinger

and others 2010). To the best of our knowledge,

none of these studies monitored alternate TEA

pathways and greenhouse gas production while

manipulating DO at the ecosystem scale relative to

a non-manipulated reference ecosystem. Matthews

and others (2008) and Matzinger and others (2010)

evaluated TEA pathways in the hypolimnion of one

lake but did not investigate other layers in the

water column (that is, the epilimnion or metal-

imnion). Huttunen and others (2001) added oxic

epilimnetic water to the anoxic hypolimnion of an

ice-covered lake basin and showed that increasing

hypolimnetic DO decreased CH4 concentrations

relative to a non-manipulated reference; however,

they did not specifically examine the alternate TEA

pathways. These previous ecosystem-scale experi-

mental manipulations have provided robust

assessments of changing oxygen conditions, sug-

gesting that further oxygen experiments quantify-

ing alternate TEA pathways and greenhouse gas

Figure 1. In oxic conditions (left panel), organic carbon is mineralized via aerobic respiration. In anoxic conditions (right

panel), organic carbon is mineralized via alternate terminal electron acceptor (TEA) pathways. Decreasing oxygen

availability will trigger organic carbon mineralization via alternate terminal electron acceptor pathways, which has the

potential to control the relative production of CO2 and CH4 in the water column. In oxic conditions, CO2 is expected to be

the primary product of mineralization, whereas in anoxic conditions, both CO2 and CH4 will be produced depending on

the dominant pathway, though their relative accumulation is unknown.

Table 1. Terminal Electron Acceptor Pathways of Organic Carbon Mineralization in Freshwater Ecosystems
with Their Electron equivalents (following Schlesinger 1997 and Matthews and others 2008)

Pathway Reduction Reaction GHG product Electron equivalents

Aerobic respiration O2 + 4H+ + 4e- M 2H2O CO2 4

Denitrification NO3
- + 6H+ + 5e- M ½ N2 + 3H2O CO2 5

Manganese reduction MnO2 + 4H+ + 2e- M Mn2+ + 2H2O CO2 2

Iron reduction Fe(OH)3 + 3H+ + e- M Fe2+ + 3H2O CO2 1

Sulfate reduction SO4
2- + 10H+ + 8e- M H2S + 4H2O CO2 8

Methanogenesis CH2O + 4H+ + 4e- M CH4 + H2O CH4 4

Reactions are ordered by their thermodynamic favorability from most to least favorable. Aerobic respiration, denitrification, manganese reduction, iron reduction, and sulfate
reduction all produce CO2 as a result of organic carbon mineralization; methanogenesis produces CH4. We use e- to denote electrons in the reactions.
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production can advance our understanding of how

ecosystem functioning may change in the future.

Despite the need for ecosystem-scale experi-

ments to examine how changing DO conditions

affect alternate TEA pathways, evaluating these

processes in a quantitative framework is challeng-

ing. One promising method for investigating

experimentally manipulated TEA pathways is to

calculate electron budgets (following Matthews

and others 2008) by conducting mass balance cal-

culations of depleting TEAs and accumulating TEPs

over discrete time periods over the course of the

monitoring period, and then comparing the relative

proportion of the TEA pathways to the rate of CO2

and CH4 accumulation. Determining the relative

contribution of TEA pathways to organic carbon

mineralization and electron flow (Matthews and

others 2008) under varying DO conditions among

discrete layers in the water column can reveal

patterns that would not be possible from measuring

the concentrations of TEAs and TEPs alone.

We conducted an ecosystem-scale experiment

adding supersaturated DO to the hypolimnion of a

eutrophic reservoir with a hypolimnetic oxygena-

tion (HOx) system (Gerling and others 2014). Our

goal was to determine how contrasting DO condi-

tions in different water column layers affected TEA

pathways and subsequent accumulation of CO2

and CH4. During the DO addition experiment, we

measured the concentrations of (1) TEAs: dissolved

oxygen (O2), nitrate (NO�
3 ), manganese IV (Mn4+),

iron III (Fe3+), and sulfate (SO4
2-); (2) terminal

electron products (TEPs): manganese II (Mn2+),

iron II (Fe2+), carbon dioxide (CO2), and methane

(CH4); and (3) redox potential (ORP) in the epil-

imnion, metalimnion, and hypolimnion in the

experimental reservoir. We also monitored con-

centrations of the same TEAs and TEPs and redox

potential in an upstream, non-oxygenated reser-

voir which served as a reference ecosystem. Finally,

we calculated the relative contribution of the TEA

pathways in both reservoirs using the electron

budget method (described by Matthews and others

2008), and then related changes in TEA pathways

to CO2 and CH4 accumulation rates.

METHODS

Site Description

The experimental reservoir in our study was Falling

Creek Reservoir (FCR; Figure 2), a shallow

(Zmax = 9.3 m, Zmean = 4.0 m), eutrophic reservoir

located in Vinton, Virginia, USA (37.30�N,

79.84�W; Gerling and others 2016; Munger and

others 2016; Hamre and others 2017; McClure and

others 2018). FCR is dimictic and thermally strati-

fies between April and October (McClure and

others 2018). In the absence of oxygenation, FCR

exhibits anoxia near the sediments and occasional

algal blooms during the summer stratified period

(Gerling and others 2014).

Beaverdam Reservoir (BVR, 37.31�N, 79.81�W;

Figure 2) serves as a reference reservoir for FCR

(Table 2) and has similar morphometry (during our

study, Zmax = 12 m), water chemistry, and catch-

ment land use history (Table 2) (Doubek and oth-

ers 2018; Carey and others 2018a). BVR is located

3 km upstream and provides the primary inflow

water that enters FCR via a 1.7 km-long stream

(Gerling and others 2016; Munger and others

2019). BVR also experiences anoxia near the sedi-

ments and phytoplankton blooms (Hamre and

others 2018). Both reservoirs, constructed in the

late 1800s in catchments that have almost com-

pletely reforested after agricultural abandonment

in the late 1930s, are owned and operated by the

Western Virginia Water Authority (WVWA) as

drinking water supplies (Gerling and others 2016).

The bedrock geology underlying both reservoirs

and the surrounding watershed is layered pyroxene

granulite, a metamorphic formation rich in Fe and

Mn-rich minerals (Virginia Division of Mineral

Resources 2003).

Hypolimnetic DO Manipulations

In 2012, the WVWA deployed a side-stream HOx in

FCR to mitigate water quality problems (Gerling

and others 2014; Munger and others 2016;

McClure and others 2018). The HOx increases the

DO concentrations in the hypolimnion without

disrupting the reservoir’s thermal stratification

(Gerling and others 2014). The HOx system with-

draws hypolimnetic water from 8.5 m depth and

injects � 95% O2 into the water in a contact

chamber onshore, bringing it to supersaturated

concentrations relative to the hypolimnion. The

water is then pumped back to the reservoir at the

same depth, inducing mixing of DO in the lower

hypolimnion (Gerling and others 2014). For a de-

tailed description of the HOx system, refer to Ger-

ling and others (2014). As a consequence of HOx

operation, a metalimnetic DO minimum can de-

velop around the thermocline because mixing in

the lower hypolimnion strengthens the thermal

stability of the water column (Gerling and others

2014; McClure and others 2018). Settling particu-

lates from the epilimnion will accumulate on the

strong thermal gradient between the warm water
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in the epilimnion and cold, high-density water in

the hypolimnion, intensifying the metalimnetic

oxygen depletion via microbial respiration (Kreling

and others 2017; McClure and others 2018).

For this study, the HOx was operated continu-

ously from 18 April to 11 November 2016 to

maintain high oxygen concentrations in the hy-

polimnion of FCR. The oxygen addition rate to the

hypolimnion during this time ranged between 12.5

and 20 kg d-1, with a water flow rate during oxy-

genation periods of 227 L min-1. At this flow rate,

the total hypolimnetic volume of FCR was circu-

lated through the HOx every 20–30 days (McClure

and others 2018).

Field Data Collection

We monitored the physical, chemical, and biolog-

ical conditions in both reservoirs from 12 May to 12

October 2016. We collected depth profiles of tem-

perature and DO twice weekly at the deepest site of

FCR and weekly at the deepest site of BVR using a

high-resolution (4 Hz sampling rate) SBE 19 plus

Conductivity, Temperature, and Depth (CTD) pro-

filer (Seabird Electronics, Bellevue, WA, USA). The

Figure 2. Bathymetric map of Falling Creek Reservoir (FCR), the experimental reservoir, and the reference Beaverdam

Reservoir (BVR), Vinton, Virginia, USA. The red points show the sampling sites near the dams of both reservoirs. The inset

shows a magnified view of the hypolimnetic oxygenation (HOx) system (denoted by the black line) that was used to

manipulate dissolved oxygen concentrations throughout the hypolimnion of FCR.
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CTD collected depth profiles of temperature and

DO at £ 0.1 m increments (Carey and others

2019a). We used temperature profiles from each

CTD cast to calculate thermocline depths on the

sampling days using LakeAnalyzer, a MATLAB

program (Read and others 2011). We measured

oxidation–reduction potential (ORP) using a YSI

Pro-Quatro multi-parameter probe with an at-

tached Pro Series 1002 ORP sensor (YSI Incorpo-

rated; Yellow Springs, OH, USA) that was calibrated

with Zobell solution each sampling day (Carey and

others 2018b). However, it is important to note that

ORP should not be used to determine specific TEA

pathways because ORP electrodes lack correlation

between observed ORP values and Eh computed

from coupled TEA pathways (Morris and Stumm

1967; Kehew 2000). Here, we chose to use ORP a

guide to differentiate between oxidizing conditions

(when DO is the dominant TEA) and reducing

conditions (when alternate TEAs dominate).

We collected water samples for analysis of alter-

nate TEAs (NO3
-, Mn4+, Fe3+, and SO4

2-) and TEPs

(Mn2+, Fe2+, and dissolved CO2 and CH4) with a 4-l

Van Dorn sampler (Wildlife Supply Co., Yulee, FL,

USA) from three depths in FCR that represented

the epilimnion (0.1 m), metalimnion (5.0 m), and

hypolimnion (9.0 m). We collected water samples

from BVR at similar depths (0.1, 6, and 11 m) to

represent the three layers. For simplicity, we refer

to CO2 as a TEP, even though we fully recognize

that it can also serve as a TEA for hydrogenotrophic

methanogenesis (Conrad 1989). Water for NO3
-,

SO4
2-, and Fe2+ samples was filtered through

0.7 lm GF/F glass microfiber filters into HCl acid-

washed sample bottles. Immediately after syringe-

filtering in the field, we used 0.1 ml of the filtrate

for Fe2+ analyses following Viollier and others

(2000), and then froze the remaining water. Water

samples for total Fe and Mn analysis were collected

in new HDPE bottles; water samples for soluble Fe

and Mn analysis were filtered through 0.45 lm

nylon filters into new HDPE bottles. Both total and

soluble metal samples were preserved using trace

metal grade nitric acid to pH below 2 (Munger and

others 2016). Dissolved CH4 and CO2 samples were

collected by carefully filling two replicate 20-ml

glass vials with unfiltered sample water. The vials

were immediately capped with an airtight seal free

of any headspace and kept on ice until analysis

within 24 h (following McClure and others 2018).

Laboratory Analyses

We followed standard procedures in the laboratory

to quantify concentrations of alternate TEAs and

TEPs (Carey and others 2019b, 2020). We mea-

sured NO3
- using a Lachat flow injection analyzer

(Lachat Instruments, Loveland, CO) following the

Quik-Chem Method 10-115-10-1-B with a method

detection limit of 8.05 9 10-5 mM. Samples were

analyzed for Fe and Mn concentrations using an

Inductively Coupled Plasma Optical Emission

Spectrometer (ICP-OES, Spectro ARCOS) following

EPA Method 200.7 (US EPA 1994). The method

detection limits (MDL) for this method were

7.2 9 10-5 mM for Fe and 1.8 9 10-5 mM for Mn.

We assumed that the total Fe concentration was

the sum of Fe3+ and Fe2+ and subtracted the field-

measured Fe2+ from the total Fe to calculate the

concentration of Fe3+, following Vollier and others

(2000). Similarly, we assumed that total Mn con-

centration was the sum of Mn4+ and Mn2+ and that

Mn2+ was represented by the soluble Mn concen-

tration, following the work by Munger and others

(2016, 2019) in the same reservoirs. We calculated

Mn4+ as the difference between total Mn and

Mn2+.

SO4
2- was measured using ion chromatography

(Dionex DX-120) following APHA Standard Meth-

od 3125-B with a MDL of 6.04 9 10-4 mM (APHA

Table 2. Morphological and Water Quality Characteristics of the experimentally oxygenated Falling Creek
Reservoir and reference Beaverdam Reservoir

Characteristics Falling Creek Reservoir mean ± 1 S.D. Beaverdam Reservoir mean ± 1 S.D.

Surface area (km2) 0.12 0.39

Maximum depth (m) 9.3 12.0

Mean depth (m) 4.0 6.0

Volume (m3) 3.5 9 105 1.3 9 106

Surface temperature (�C) 23.8 ± 3.5 24.6 ± 3.3

Chlorophyll a (lg l-1) 2.3 ± 1.3 2.4 ± 1.9

Turbidity (NTU) 2.0 ± 0.9 1.8 ± 0.6

Mean temperature, conductivity, chlorophyll a, and turbidity were averaged from all measurements collected at 0.1 m depth at the deepest site of both reservoirs during the
2016 sampling period.
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1992). Dissolved CO2 and CH4 samples were ana-

lyzed using methods adapted from the U.S. EPA

method RSKSOP-175 (Hudson 2004). Gas head-

space was generated in the samples and analyzed

on a flame ionization detector to calculate dissolved

CO2 and CH4 (GC-FID; SRI Instruments, Torrance,

CA) following McClure and others (2018) with an

MDL of 2.0 9 10-6 mM and 3.8 9 10-3 mM,

respectively.

TEA Pathway Budgets

We evaluated the relative contribution of the TEA

pathways to organic carbon mineralization be-

tween the metalimnion and hypolimnion over the

monitoring period by calculating electron budgets

following the method of Matthews and others

(2008). We did not determine electron budgets for

the epilimnion because it was consistently oxic

throughout the period of thermal stratification in

both reservoirs.

To calculate the electron budgets, we estimated

depletion rates of TEAs and accumulation rates of

TEPs, following Matthews and others (2008). First,

we delineated time periods over which there was

significant depletion of TEAs or accumulation of

TEPs (Figures S1–S4). A detailed description of how

we delineated the time periods of TEA depletion

and TEP accumulation is provided in the Support-

ing Information (Text S1 and Figures S1:S4). Sec-

ond, to quantify TEA and TEP rates in mass units

(mmol d-1), we multiplied each rate by the mean

volume (L) of the thermal layer in which it was

measured. The mean volumes of the hypolimnion

and metalimnion in FCR and BVR were deter-

mined using bathymetric data of the reservoirs

(Gerling and others 2014; Carey and others 2018a).

The upper and lower depths of the metalimnion

were determined also using LakeAnalyzer (Read

and others 2011), which calculated the metalim-

netic boundaries from the CTD temperature pro-

files. We converted mass rates to fluxes of TEAs and

TEPs (mmol m-2 d-1) by dividing the mass rates by

the upper surface area of the represented layer. We

adjusted the fluxes to account for any vertical dif-

fusion between the epilimnion/metalimnion and

metalimnion/hypolimnion in FCR and BVR fol-

lowing Matthews and others (2008); see Text S1 in

the Supporting Information. To determine the TEA

and TEP mass per unit area (mmol m-2), we mul-

tiplied the areal rates by the number of days within

each discrete time period.

Third, we calculated the electron equivalents for

each TEA pathway by converting mass fluxes

according to electron equivalents in Table 1 (e-

eq m-2). We used the same electron equivalents as

Matthews and others (2008); however, it should be

noted that the redox stoichiometry for some TEA

pathways (for example, sulfate reduction and

methanogenesis) can have varying electron

equivalents (Stumm and Morgan 1996). Finally,

we determined the relative contributions of each

TEA pathway to the overall electron budget by

dividing the contribution of each TEA pathway (O2,

NO3
-, SO4

2-, Mn2+, Fe2+, and CH4) by the sum of

all of the TEA pathways. This was done separately

for the metalimnion and hypolimnion in FCR and

BVR. Examining the relative contributions of each

TEA pathway among layers allowed us to deter-

mine how the TEA processes were affected by

oxygenation of FCR in comparison with the refer-

ence (BVR) and how changes in TEA pathways

affected the accumulation of CO2 and CH4.

RESULTS

Activation of the HOx system in FCR generated

well-oxygenated conditions in the hypolimnion

and anoxic conditions in the metalimnion, all

while maintaining thermal stratification (Fig-

ure 3A, C). In contrast, BVR’s hypolimnion became

anoxic soon after the onset of thermal stratification

in May and remained anoxic through the sampling

period; the metalimnion became anoxic from 11

August to 27 September (Figure 3B, D). BVR’s

seasonal mean thermocline depth was similar to

FCR’s thermocline throughout the monitoring

period (5.3 ± 1.0 m (1 S.D.) vs. 5.8 ± 1.0 m,

respectively). Both reservoirs’ epilimnia remained

oxic during the sampling period (DO ‡ 6.3 mg l-1).

Fall turnover in FCR occurred on 9 October, while

turnover had not occurred yet in BVR by the end of

the monitoring period on 21 October (Figure 3A,

B).

The well-oxygenated conditions in FCR’s hypo-

limnion resulted in higher mean ORP values

(210 ± 38 mV) in comparison with BVR’s anoxic

hypolimnion (- 90 ± 63 mV; Figure 4). BVR’s

hypolimnion reached its lowest ORP value of -

155 mV on 23 August. We observed the lowest

ORP in FCR’s metalimnion on 2 September (0 mV),

the same date as the lowest DO concentration (5 m,

Figures 3C and 4A). This was the lowest ORP value

observed among all of FCR’s layers throughout the

monitoring period. Conversely, BVR’s metalimnion

remained ‡ 20 mV during the monitoring period,

despite becoming anoxic for 1 month (Figures 3D

and 4B). FCR and BVR’s seasonal mean epilimnetic

ORP was similar during the sampling period

(170 ± 75 mV and 190 ± 83 mV, respectively).
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Seasonal TEA and TEP Patterns in FCR
and BVR

Throughout the monitoring period, almost all TEAs

and TEPs were detectable in both reservoirs in most

layers, except NO3
- (Figure 5). There were sub-

stantial seasonal differences in the TEA and TEP

concentrations among depths in FCR and BVR over

time, as described below.

In FCR’s hypolimnion, DO remained above

0.1 mM (3.2 mg l-1) for the entire monitoring

period and reached its highest concentration at

0.52 mM (16 mg l-1) on 26 August (Figure 5I). In

addition to DO, other TEAs (NO3
-, Fe3+, and

SO4
2-) were also detectable in FCR’s hypolimnion

(Figure 5I). Despite the well-oxygenated condi-

tions, we observed Mn2+ in the hypolimnion of

FCR starting 19 June, which reached a peak con-

centration of 0.02 mM on 15 August before stea-

dily decreasing until the end of the sampling period

(Figure 5J). There was not a concomitant increase

in Fe2+ or CH4 during this period (Figure 5J), but

there was a steady accumulation of CO2 in FCR’s

hypolimnion that occurred during 15 June–1

October that reached a peak concentration of

0.6 mM on 30 September (Figure 5J).

In contrast to FCR, BVR’s hypolimnion was de-

pleted of DO early in the monitoring period (Fig-

ure 5K). We also observed depletions of Mn4+ and

Fe3+ and a corresponding increase in Mn2+ and

Fe2+ throughout the monitoring period to a maxi-

mum of 0.04 and 0.31 mM, respectively (Fig-

ure 5L). Following the depletions in Mn4+ and

Fe3+, we observed depletions in SO4
2- to below

detection on 02 June (Figure 5K). Surprisingly, we

also observed elevated Fe3+ concentrations up to

0.048 mM that occurred on 26 June, one full

month after BVR’s hypolimnion became anoxic; by

late July, Fe3+ returned to low concentrations

(< 0.002 mM) (Figure 5K).

Figure 3. Temperature (A, B) and dissolved oxygen (C, D) heatmaps for Falling Creek (left column) and Beaverdam

(right panel) Reservoirs. The horizontal pink lines show the epilimnetic, metalimnetic, and hypolimnetic depths sampled

for oxidized terminal electron acceptors (TEAs) and reduced terminal electron products (TEPs). The gray dashed lines with

circles represent the upper and lower depths of the metalimnion during the monitoring period and the solid white line

with circles represents the thermocline. The color bar for the dissolved oxygen heatmaps (C, D) has a hard boundary at

0.5 mg l-1 (dark red) to indicate the boundary of anoxic and oxic conditions in the water column. The inverted white

triangles at the top of the plots shows when temperature and dissolved oxygen profiles were collected; the intervening data

were linearly interpolated.
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Figure 4. Oxidation–reduction potential (ORP) in millivolts (mV) during the monitoring period in the epilimnion (0.1 m),

metalimnion (5.0 m and 6.0 m), and hypolimnion (9.0 m and 11.0 m) in Falling Creek (A) and Beaverdam (B)

Reservoirs, respectively

Figure 5. Concentrations of terminal electron acceptors (TEAs, circles) and terminal electron products (TEPs, triangles)

from the epilimnion (0.1 m), metalimnion (5.0 m and 6.0 m), and hypolimnion (9.0 m and 11.0 m) depths in Falling

Creek (A, B, E, F, I, J) and Beaverdam (C, D, G, H, K, L) Reservoirs, respectively. Shaded areas represent periods of

anoxia (DO < 0.5 mg l-1 or 0.05 mM) that were observed at the corresponding depth. Axis colors correspond with the

colors of the lines and points in the figure (see vertical labels, denoted by different colors for each TEA and TEP). All TEA

and TEP concentrations are reported in mM for consistency.
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The alternate TEA pathways in FCR and BVR’s

metalimnia varied despite both having low oxygen

in August and September (Figure 5E–H). FCR’s

metalimnion became anoxic starting 8 August,

which was followed by peak summer concentra-

tions of Mn2+ and CH4 (6.9 9 10-3 mM and

0.18 mM, respectively) that occurred on 2

September (Figure 5E, F). Although all other TEAs

were at their lowest concentrations during this

anoxic period, we observed that Fe3+ increased to

its highest level of the sampling season (0.042 mM)

on 2 September despite the strong reducing con-

ditions. In contrast, BVR’s metalimnion was anoxic

from 11 August until 27 September (Figure 5G).

Unlike the decline in TEAs (DO and SO4
2-) and

slight increases in TEPs (Mn2+ and CH4) that we

observed in FCR’s metalimnion after the onset of

anoxia, there were no substantial changes in TEA

and TEP concentrations that occurred in BVR’s

metalimnion after it became anoxic (Figure 5G, H).

The epilimnia of both FCR and BVR remained

oxic throughout the sampling period (Figure 3C,

D), and as a result, there was no observable

depletion of TEAs or increase in TEPs (Figure 5A–

D). However, there was a substantial increase in

Mn4+ and Fe3+ in FCR’s epilimnion that occurred

during 20–30 September, whereas no such increase

was observed in BVR’s epilimnion (Figure 5A).

This 10-day period also corresponded with the last

observed date of the metalimnetic DO minimum in

FCR (Figure 3C).

TEA Pathway Electron Budgets and CO2

and CH4 Accumulation Rates

In FCR’s experimentally oxygenated hypolimnion,

aerobic respiration contributed 84% of the total

electron budget of organic carbon mineralization

during the monitoring period, while the relative

contribution from sulfate reduction was 9.3%, and

all other TEA pathways contributed no more than

6.7% (Figure 6A, Table 3). CO2 dominated green-

house gas accumulation in FCR’s hypolimnion,

with an accumulation rate of 5.6 mmol m-2 d-1

versus 0.04 mmol m-2 d-1 for CH4 (Figure 6B).

Conversely, in BVR’s anoxic hypolimnion, aerobic

respiration only represented a small proportion of

the total electron budget (7.4%), whereas the

alternate TEA pathways, particularly methano-

genesis, dominated organic carbon mineralization

(Figure 6A, Table 3). In the hypolimnion of BVR,

CO2 and CH4 accumulation rates were much more

similar, at 2.6 mmol m-2 d-1 and 2.2 mmol m-

2 d-1, respectively (Figure 6B). Denitrification

played a negligible role in the electron budget of

both reservoirs’ hypolimnia (Table 3).

Comparison of the metalimnetic electron budgets

between the manipulated and reference reservoir

revealed important differences (Figure 6A, Ta-

ble 3). In FCR’s metalimnion, aerobic respiration

contributed 84% of the electron budget, whereas

methanogenesis contributed 8.0%; all other alter-

nate TEA pathways contributed no more than

8.0%. We observed greater than tenfold higher

accumulation rates of CH4 when the metalimnetic

DO minimum formed in FCR from 1 August to 28

September (at 0.3 mmol m-2 d-1) compared to

FCR’s hypolimnion (Figure 6B). The CO2 accu-

mulation rate was 0.5 mmol m-2 d-1 during this

same time period. In BVR’s metalimnion, aerobic

respiration was the largest contributor to the

overall electron budget (98%) and the alternate

TEA pathways contributed no more than 2.0%.

The CH4 accumulation rate during the anoxic per-

iod was similar to FCR’s (0.2 mmol m-2 d-1),

whereas the CO2 accumulation rate was slightly

higher compared to FCR’s metalimnion

(0.9 mmol m-2 d-1) (Figure 6B, Table 3). As in the

hypolimnetic electron budgets, denitrification

played a negligible role in the two reservoirs’

metalimnetic electron budgets.

DISCUSSION

Our ecosystem-scale oxygenation additions altered

TEA pathways in FCR. The HOx successfully

manipulated DO conditions (Figure 3), which af-

fected the redox potential and the progression of

the alternate TEA pathways at the ecosystem scale

(Figures 4, 5 and 6, Table 3). We found that

increasing the DO in the hypolimnion of FCR

inhibited the onset of alternate TEA pathways. In

contrast, in the absence of oxygenation in BVR,

TEA pathways followed a ‘‘classical’’ sequence fol-

lowing thermodynamic favorability (Table 1).

Consequently, we observed much higher CO2 than

CH4 accumulation under well-oxygenated condi-

tions when alternate electron acceptor pathways

were inactive, in comparison with more similar

rates of CO2 and CH4 accumulation when alternate

electron acceptor pathways were active in anoxic

conditions (Figure 6B). Our ecosystem-scale

manipulations of DO and comparison of a manip-

ulated and reference freshwater reservoir add in-

sight into how redox processes in lakes and

reservoirs may change in the future as the avail-

ability of DO in the water column becomes more

variable.
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Two Contrasting Hypolimnia

The hypolimnetic DO additions in FCR promoted

aerobic respiration as the dominant organic carbon

mineralization pathway in FCR’s hypolimnion

throughout the monitoring period (Figure 6A, Ta-

ble 3). Alternate TEA pathways, including man-

ganese and iron reduction, also occurred in FCR’s

hypolimnion between July and September during

the well-oxygenated conditions. The iron and

manganese reduction likely occurred within the

anoxic sediments, where Mn4+ and Fe3+ hydrox-

ides are plentiful (Krueger and others 2020). Under

Figure 6. Bar chart (A) of the relative proportion of the total electron budget contributed by aerobic respiration,

denitrification, sulfate reduction, manganese reduction, iron reduction, and methanogenesis in the metalimnion and

hypolimnion in Falling Creek and Beaverdam Reservoirs during the monitoring period in 2016. The standard error

associated with the relative proportions of the total electron budgets can be found in Table 3. CH4 and CO2 accumulation

rates (B) were much more similar in the anoxic FCR metalimnion and BVR hypolimnion than in the oxic FCR

hypolimnion and BVR metalimnion, where CO2 accumulation dominated. Similar to Figure 5, blue-colored bars represent

TEA depletion and the red-colored bars represent TEP accumulation. Note the y-axes for the metalimnetic and

hypolimnetic layers vary.

Table 3. Comparison of the Metalimnetic and Hypolimnetic Electron Equivalent Budgets (± 1 S.E.) and
CO2 and CH4 Accumulation Rates (mmol m-2 d-1) During the 2016 Monitoring Period

Water

column layer

O2 (%) NO3
-

(%)

Mn2+

(%)

Fe2+

(%)

SO4
2-

(%)

CH4

(%)

CO2

(mmol m-2

d-1)

CH4

(mmol m-2

d-1)

FCR metalimnion 84 ± 0.86 0 0.8 ± 0.20 0.2 ± 0.09 7.0 ± 0.14 8.0 ± 1.33 0.5 0.3

BVR metalimnion 96 ± 0.07 0 0.2 ± 0.16 0.3 ± 0.06 0.7 ± 0.64 0.8 ± 0.57 0.9 0.2

FCR hypolimnion 84 ± 0.28 0 4.0 ± 0.12 1.0 ± 0.32 9.3 ± 0.14 1.7 ± 1.26 5.6 0.04

BVR hypolimnion 7.4 ± 1.14 0 3.0 ± 0.09 18 ± 0.62 2.6 ± 0.12 69 ± 1.18 2.6 2.2
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anoxic conditions in the sediment porewater, these

metal hydroxides are reductively dissolved, releas-

ing Mn2+ and Fe2+ that can diffuse into the water

column even if it is well-oxygenated (Bryant and

others 2011; Munger and others 2016; Krueger and

others 2020). Due to a rapid oxidation rate, Fe2+

was likely oxidized as soon as it reached the oxy-

genated hypolimnetic water (Munger and others

2016). Mn2+, however, accumulated in the well-

oxygenated hypolimnion (Figure 5I). This is likely

because Mn oxidizes more slowly than Fe, espe-

cially under the low pH conditions (� 5.9) in the

hypolimnion of FCR (Munger and others 2016;

Carey and others 2018b; Krueger and others 2020).

We compared our observed Mn2+ fluxes in FCR’s

hypolimnion to Krueger and others (2020) during

periods when DO was added via HOx. Krueger and

others (2020) reported soluble Mn fluxes up to

0.3 mmol m-2 d-1 during oxygenation that oc-

curred between 24 April and 14 July 2018

(� 2.5 months). We observed Mn2+ fluxes in this

study up to 0.4 mmol m-2 d-1 during oxygenation

between 18 July and 24 August in 2016. The sim-

ilar Mn2+ fluxes in both studies highlight how Mn

can consistently be released into the water column

from the sediments during well-oxygenated con-

ditions and that much of the TEP accumulation

observed in the hypolimnion results from sediment

diffusion.

Compared to FCR, a classic alternate TEA path-

way sequence was observed in BVR’s hypolimnion

after the hypolimnion became anoxic (Table 1,

Figure 5). Depletion of DO was followed rapidly by

depletion of Mn4+ and Fe3+, and then by a slightly

delayed depletion of SO4
2-. Concomitant with TEA

depletions was an increase in TEP concentrations

(Figure 5I) and low ORP values that persisted

throughout the monitoring period (Figure 4B).

Surprisingly, we also observed elevated concen-

trations of Fe3+ and Mn4+ for four consecutive

weeks when the hypolimnion was anoxic (Fig-

ure 5K), although it should be noted that these

Fe3+ and Mn4+ concentrations were considerably

lower (3.59 and 129, respectively) than Fe2+ and

Mn2+ concentrations measured during this same

time period. The presence of Fe3+ and Mn4+ in the

anoxic water column suggests that oxidation cou-

pled with the reduction of another electron

acceptor occurred under anoxic conditions.

The 4-week increase in Fe3+ and Mn4+ in BVR’s

anoxic hypolimnion provides the opportunity to

disentangle the complexities of alternate TEA

pathways at the ecosystem scale. Previous studies

have shown that the reduction of alternate TEAs

(for example, Mn4+) can be coupled with Fe2+

oxidation (Picardal 2012). This process was invoked

by Krueger and others (2020) to explain con-

comitant increases in Fe3+ and Mn2+ in benthic flux

chamber experiments conducted at FCR. This pro-

cess, coupled with evidence for light-driven

anaerobic oxidation of Mn2+ (Daye and others

2019), could explain the observed increases in both

Fe3+ and Mn4+ during the same time period (12

June to 15 July), as these increases occurred at the

time of highest water clarity observed in BVR in

2016 (Secchi depth = 3.5 m; Carey and others

2019c). It is possible that light may have been able

to penetrate into anoxic layers of the water column

and activate Mn2+ oxidation to regenerate Mn4+,

which could then be coupled to Fe2+ oxidation.

Although the light-driven oxidation hypothesis

remains to be tested, in situ observations such as

these can help catalyze future studies that link the

recent research on ‘‘new’’ redox pathways ob-

served in controlled laboratory studies with

ecosystem-scale observations.

Two Contrasting Metalimnia

We observed different TEA pathways in the met-

alimnetic DO minima that formed as a result of the

hypolimnetic DO manipulations in FCR, and nat-

urally in BVR (Figures 5 and 6, Table 3). After DO

was depleted in FCR’s metalimnion, increases in

Mn2+ and decreases in SO4
2- were observed, con-

comitant with increases in CH4. Overall, after aer-

obic respiration, methanogenesis accounted for the

largest relative proportion of the electron budget in

this layer (Figure 6A, Table 3). The transition from

aerobic respiration to methanogenesis was rapid

(Figure 5, Figure S1), suggesting that the CH4

measured in the metalimnion may have been

produced in the sediments or hypolimnion and

diffused upward (Rudd and Hamilton 1978; Bast-

viken and others 2004b; Peeters and others 2019)

or entered laterally from the littoral zone or up-

stream (DelSontro and others 2018). The lack of

other alternate TEA pathways (for example, Mn4+

reduction, Fe3+ reduction) observed in the metal-

imnetic DO minimum could have resulted from our

sampling depth profile intervals. We used 5 m to

represent the metalimnetic DO minimum despite

observing anoxia at depths as deep as 6.2 m and as

shallow as 3.8 m (Figure 3C). Thus, investigating

how alternate TEA pathways change across depth

within metalimnetic DO minima may provide fur-

ther insight into how these low-DO zones affect

lakes and reservoir biogeochemical cycling. These

results highlight that the thicknesses of the epil-

imnion, metalimnion, and hypolimnion can
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change over the season, underscoring the need for

detailed spatial and temporal sampling.

BVR’s metalimnion became anoxic within

nine days of FCR’s metalimnion also becoming

anoxic (Figure 3). However, the contribution of

alternate TEA pathways to the overall electron

budget was considerably less in BVR than in FCR

(Figure 6A, Table 3). After DO was depleted on 11

August, manganese reduction, sulfate reduction,

and methanogenesis were active, resulting in the

production of some CH4 but less overall in com-

parison with FCR’s metalimnion (Figure 6B, Ta-

ble 3). The contrasting patterns between FCR’s and

BVR’s metalimnia underscore that the progression

of TEA pathways, and as a result, the relative

contribution of TEA pathways to organic carbon

mineralization, are strongly influenced by the

timing of anoxia onset. For example, in FCR’s

metalimnion, DO was depleted by 2 August,

allowing for manganese reduction, sulfate reduc-

tion, and methanogenesis to occur before fall

turnover on 14 October. In contrast, DO in BVR’s

metalimnion was not fully depleted until 11 Au-

gust; some Mn reduction was observed after anoxic

conditions developed, but fall turnover occurred in

BVR before other TEA pathways were activated.

Understanding how metalimnetic redox path-

ways are altered by global change has important

implications for lake and reservoir biogeochem-

istry. Kreling and others (2017) showed how met-

alimnetic DO minima are fueled by downward

fluxes of organic matter (for example, surface

cyanobacteria blooms), which are anticipated to

increase in the future (Carey and others 2012). The

potential increase in metalimnetic DO minimum

zones in lakes and reservoirs will influence bio-

geochemical processes, such as nitrogen loss (De

Brabandere and others 2014). Furthermore, these

low DO zones can mix with the epilimnion during

storms, potentially degassing CO2 and CH4 accu-

mulated within the metalimnion (McClure and

others 2018). In contrast to the metalimnetic DO

minima observed in our reservoirs, some water-

bodies have also experienced an increased occur-

rence of metalimnetic DO maxima as a result of

both physical and biological processes (Wilkinson

and others 2015). Both of these metalimnetic

phenomena (DO minima and DO maxima) create

sharp redox boundaries with the overlying epil-

imnion and the underlying hypolimnion. As DO

dynamics in lakes and reservoirs change in the

future, results of DO manipulation experiments at

the ecosystem scale, such as the one described in

this study, are critically important for exploring

how ecosystem processes will respond.

Implications of Altered TEA Pathways
for Greenhouse Gas Accumulation

Due to the high rates of aerobic respiration as a

result of oxygenation, we observed up to 2.1-fold

higher CO2 accumulation rates in FCR’s hypo-

limnion than in BVR’s anoxic hypolimnion (Fig-

ure 6B, Table 3). A previous modeling study in

FCR suggested that oxygenation may mineralize

large quantities of sediment organic carbon into

CO2, which will accumulate in the hypolimnion

until turnover, when it can be emitted to the

atmosphere (Carey and others 2018c). This earlier

work supports our calculations that 84% of the

total electron budget of organic carbon mineral-

ization in FCR was attributable to aerobic respira-

tion, resulting in rates up to 5.6 mmol m-2 d-1 of

CO2 accumulation prior to turnover.

In contrast, BVR’s hypolimnion had minimal

aerobic respiration (7.4%) and was dominated by

methanogenesis (69%), resulting in CH4 accumu-

lation rates 55 times higher than in FCR’s oxic

hypolimnion (Figure 6B, Table 3). Although FCR

and BVR are both considered eutrophic, agricul-

tural practices in the watershed were curtailed

about 90 years prior to this study (Gerling and

others 2016). Older reservoirs, such as BVR and

FCR, are known to both accumulate and emit less

CH4 compared to newly inundated reservoirs

(Barros and others 2011; Prairie and others 2018).

In addition to CH4, CO2 also accumulated at

relatively high rates in BVR’s anoxic hypolimnion,

although at lower rates than in FCR’s oxic hypo-

limnion (Figure 6B, Table 3). The accumulation of

CO2 in BVR’s hypolimnion likely was due to or-

ganic carbon mineralization from the alternate TEA

pathways under anoxic conditions prior to

methanogenesis (that is, denitrification, man-

ganese reduction, iron reduction, sulfate reduction;

Table 1, Schlesinger 1997), and acetoclastic

methanogenesis (Conrad 1989). Additionally,

anaerobic oxidation of CH4 is ubiquitous in fresh-

water hypolimnia (Sivan and others 2011; Blees

and others 2014; Oswald and others 2015; Deutz-

mann 2020) and may have also contributed to the

CO2 accumulation in BVR’s anoxic hypolimnion.

Our results support observations by Huttunen and

others (2001), who measured similar production

rates of CO2 and CH4 in the hypolimnion of an

anoxic ice-covered lake basin (Figure 6B, Table 3).

The results of our oxygen manipulations

demonstrated that addition of DO alters TEA

pathways, thereby also altering the production of

greenhouse gases. However, we also found that the

total greenhouse gas (CH4 + CO2) accumulation to
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be similar between the hypolimnia of FCR and BVR

(Figure 5). This result suggests that alternating DO

conditions in the water column can change the

predominant greenhouse gas that is present but

may not affect the total accumulation of carbon-

based greenhouse gases in the water column.

Additionally, the final fate of the CH4 and CO2 that

accumulated within the metalimnion and hypo-

limnion remains unknown and warrants investi-

gation. In particular, it is unclear what proportion

of the dissolved CH4 that accumulated in BVR’s

hypolimnion and FCR’s metalimnion was emitted

to the atmosphere at fall turnover versus oxidized

in the water column (Mayr and others 2020).

Similarly, the fate of the CO2 that accumulated in

FCR’s hypolimnion due to oxygenation is also un-

known. Additional ecosystem-scale oxygenation

experiments quantifying the production and fate of

greenhouse gases will improve our understanding

of lake and reservoir TEA pathway budgets and the

subsequent diffusive emissions.

Challenges with Ecosystem-Scale Studies
of TEA Pathways

Finally, there are limitations to examining TEA

pathways using our ecosystem-scale experimental

approach. For example, we were only able to

evaluate the TEA pathways at one site per reservoir

and did not directly quantify the horizontal trans-

port of our TEA and TEP constituents from up-

stream sediments, which can be a substantial

source of TEAs into the water column (Lau and

others 2016; Deemer and Harrison 2019). Hori-

zontal transport of CH4 from methanogenesis

occurring in upstream anoxic sediments may be an

important driver of the accumulation of CH4 in the

metalimnetic DO minimum of FCR (Rudd and

Hamilton 1978; DelSontro and others 2018), but

we were unable to quantify that flux in this study.

Measurement of d13C–CH4 concentrations in the

two reservoirs in future work would help deter-

mine if the CH4 that accumulated at the deepest

sites was produced in the sediments or water col-

umn following DelSontro and others (2018).

Accounting for different methanogenesis path-

ways is important when investigating the relative

contribution of methanogenesis to electron bud-

gets. Here, we followed the precedent of Matthews

and others (2008) and assumed that the dominant

pathway of methanogenesis is acetoclastic

methanogenesis, with 4 e- in the electron budget. If

hydrogenotrophic methanogenesis (Galand and

others 2005) dominated, the relative contribution

of methanogenesis to the electron budget would be

greater because of the higher electron equivalents

from the reaction (8 e-). For future work, differ-

entiating between acetoclastic and hydro-

genotrophic methanogenesis by measuring d13C–

CH4 concentrations (Gehring and others 2015) can

improve electron budgets by informing when each

reaction is contributing most to CH4 production.

Another limitation of this study is the assignment

of specific TEA pathways at specific time periods

using TEA and TEP concentrations. Studies by

Chapelle and others (1995) have shown that dis-

solved H2 concentrations in the water column are a

better indicator of the dominant alternate TEA

pathway than measuring TEA and TEP concentra-

tions. At best, we are limited to interpreting which

TEA pathway dominated using weekly measure-

ments, which may not have captured rapid bio-

geochemical reactions (for example, McClain and

others 2003). However, throughout the monitoring

period, our weekly sampling rates were still able to

successfully capture changes in the overall TEA

dynamics from the hypolimnetic DO manipulations

in FCR.

CONCLUSIONS

Lake and reservoir ecosystems globally are experi-

encing unprecedented changes in their DO con-

centrations due to land use and climate change

(Jenny and others 2016). Our DO manipulations

are one of the few empirical ecosystem-scale stud-

ies (to the best of our knowledge) that disentangle

how DO availability in lakes and reservoirs affects

TEA pathways. TEA pathways are challenging to

quantify in situ yet have major effects governing

biogeochemical reactions occurring in the water

column (Weathers and Stayer 2013), and our study

provides insight into future TEA dynamics in

freshwater ecosystems with variable DO. For

example, lakes and reservoirs experiencing longer

durations of hypolimnetic anoxia will likely exhibit

alternate TEA pathways in the water column,

producing both CO2 and CH4. Conversely, water-

bodies that experience increasing extreme storm

events and rapid re-oxygenation of the water col-

umn will likely exhibit only aerobic respiration,

potentially producing substantial quantities of CO2

over relatively short time periods. Altogether, our

ecosystem-scale DO manipulations show that TEA

pathways will rapidly respond to changing DO

conditions and consequently alter CO2 and CH4

accumulation rates. Thus, as increased anoxic bot-

tom waters and more frequent and powerful storms

simultaneously change the DO dynamics of fresh-

water lakes and reservoirs, there will likely be
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concomitant changes in the redox reactions in the

water column that control organic carbon miner-

alization and greenhouse gas accumulation.
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