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Abstract
Lake ecosystems, as integrators of watershed and climate stressors, are sentinels of change. However, there is an inherent 
time-lag between stressors and whole-lake response. Aquatic metabolism, including gross primary production (GPP) and 
respiration (R), of stream–lake transitional zones may bridge the time-lag of lake response to allochthonous inputs. In this 
study, we used high-frequency dissolved oxygen data and inverse modeling to estimate daily rates of summer epilimnetic 
GPP and R in a nutrient-limited oligotrophic lake at two littoral sites located near different major inflows and at a pelagic site. 
We examined the relative importance of stream variables in comparison to meteorological and in-lake predictors of GPP and 
R. One of the inflow streams was substantially warmer than the other and primarily entered the lake’s epilimnion, whereas 
the colder stream primarily mixed into the metalimnion or hypolimnion. Maximum GPP and R rates were 0.2–2.5 mg O2 
L−1 day−1 (9–670%) higher at littoral sites than the pelagic site. Ensemble machine learning analyses revealed that > 30% 
of variability in daily littoral zone GPP and R was attributable to stream depth and stream–lake transitional zone mixing 
metrics. The warm-stream inflow likely stimulated littoral GPP and R, while the cold-stream inflow only stimulated littoral 
zone GPP and R when mixing with the epilimnion. The higher GPP and R observed near inflows in our study may provide 
a sentinel-of-the-sentinel signal, bridging the time-lag between stream inputs and in-lake processing, enabling an earlier 
indication of whole-lake response to upstream stressors.

Keywords  Ecosystem function · Machine learning · Littoral · Pelagic · GPP · R

Introduction

Lake ecosystems are sentinels of change in the landscape, 
since they integrate watershed and climate stressors (Adrian 
et al. 2009; Williamson et al. 2009). However, teasing out 
the complex ways in which lakes integrate landscape and 
meteorological drivers is often difficult due to long time 
lags between upland drivers and downstream responses and 
high variability within response variables (Wilkinson et al. 
2020). Volumetric lake metabolism, including gross primary 
production (GPP) and respiration (R), is an integrated met-
ric of lake ecosystem functioning and state (Solomon et al. 
2013). Lake metabolism patterns are dominated by trophic 
state, a variable that generally remains constant from year 
to year and corresponds to the long water residence times in 
lakes, from years to decades. Whereas stream metabolism 
patterns are dominated by nutrients loads, a variable that 
may change more quickly, corresponding to the shorter water 
residence times in streams, from minutes to days (Hotchkiss 
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et al. 2018). Since lake metabolism is an integrated metric 
of ecosystem state, as increasing upstream stressors drive a 
nutrient-limited lake toward a trophic state change, increases 
in-lake metabolism may be detected before more commonly 
measured variables such as phosphorus (Richardson et al. 
2017). As such, lake metabolism near stream–lake transi-
tional zones may provide a sentinel-of-the-sentinel signal, 
serving as an intermediary indication of the time-lagged 
whole-lake response to shorter-term stream inflow stress-
ors. Specifically, lake metabolism near stream–lake transi-
tional zones may help identify how different inflow streams 
contribute to in-lake response and provide key insights into 
freshwater cross-ecosystem connections (Hotchkiss et al. 
2018; Hanson et al. 2015).

Previous lake metabolism work has focused on pelagic 
metabolism to represent whole-lake conditions or on spatial 
variability in metabolism to improve accuracy of whole-lake 
estimates. Pelagic lake metabolism is generally considered 
to be representative of whole-lake processing that depends 
on lake water residence times, typically on the scale of years 
to decades (Hotchkiss et al. 2018). In addition, pelagic lake 
carbon is often autochthonous (Hotchkiss et al. 2018), and 
thus, patterns in GPP and R are generally driven by water-
column conditions (Hoellein et al. 2013). As a result, the 
magnitude of pelagic GPP and R can be an indicator of 
overall lake trophic state (Solomon et al. 2013) and the ini-
tiation of eutrophication in oligotrophic lakes (Richardson 
et al. 2017).

Littoral zone GPP and R is generally higher in compari-
son to pelagic sites (Sadro et al. 2011; Van de Bogert et al. 
2012; Cavalcanti et al. 2016; Tonetta et al. 2016). Higher 
rates of GPP and R in the littoral zone are often attributed 
to greater substrate-surface water interactions, resulting in 
the sediment release of nutrients and carbon, and other lit-
toral conditions, such as macrophytes and greater light avail-
ability (Vadeboncoeur et al. 2006; Simčič & Germ 2009; 
Cavalcanti et al. 2016; Tonetta et al. 2016). However, littoral 
sites near the mouths of inflow streams may have localized 
water residence times much shorter than the lake epilimnetic 
pelagic zone and are likely more indicative of lake connec-
tions with the upstream landscape than pelagic sites (Chmiel 
et al. 2020). Thus, another mechanism for higher GPP and R 
in littoral areas may be due to river water stimulation (Johen-
gen et al. 2008).

While stream inflows may provide key nutrient subsidies 
in nutrient-limited oligotrophic lake epilimnia (MacIntyre 
et al. 2006), the capacity for inflow streams to increase littoral 
GPP and R will also be dependent on the characteristics of 
the stream–lake transitional zone. We define the stream–lake 
transitional zone to be a hypothesized “activated ecosystem 
control point” (following Bernhardt et al. 2017), requiring the 
combination of appropriate abiotic conditions and delivery of 
limiting nutrients to stimulate disproportionately high rates 

of biogeochemical processing. First, density-based physical 
mixing in the stream–lake transitional zone will determine if 
inflowing stream water mixes with the lake surface water or 
plunges into deeper layers. In stream–lake transitional zones 
where water density differences are primarily temperature-
driven, mixing is determined by the inflowing stream water 
temperature and the temperature profile in the littoral zones, 
with warmer stream water mixing with the epilimnion and 
colder stream water sinking to deeper layers as underflow or 
entering the metalimnion as interflow (Imberger and Hamb-
lin 1982; Vincent et al. 1991; MacIntyre et al. 2006; Rueda 
and MacIntyre 2010; Cortés et al. 2014). Second, the nutrient 
(e.g., nitrogen and phosphorus) and carbon concentrations and 
stoichiometry in the inflowing streams relative to the lake will 
determine if the inflowing water provides a subsidy to GPP 
and R in the littoral zone (MacIntyre et al. 2006). The inflow-
ing stream could serve as a subsidy if it has higher nutrient and 
carbon concentrations than the littoral epilimnion, and if the 
epilimnion is nutrient or carbon limited. Conversely, metabo-
lism may decrease via a dilution effect if the inflowing streams 
have lower nutrient concentrations or via decreased light pen-
etration if the stream increases turbidity in the lake. Accord-
ingly, the spatial and temporal extent of the stream–lake tran-
sitional zone will vary depending on the stream–lake mixing 
conditions as will the magnitude of biogeochemical response.

In this study, we examined if the magnitude of littoral 
GPP and R response was related to stream–lake mixing 
conditions at two littoral sites located near major inflows to 
a nutrient-limited oligotrophic lake. In particular, we were 
interested in comparing the relative importance of stream-
related predictor variables to meteorological and in-lake 
predictor variables of GPP and R. We compared volumetric 
metabolism in the epilimnion at two littoral sites to estimates 
at a pelagic site to test if the commonly observed pattern 
of higher littoral zone GPP and R was also observed in our 
study lake. The overall aim of our study was to determine if 
GPP and R near stream–lake transitional zones was impacted 
by the water temperature and biogeochemistry of the inflow 
streams. Altered GPP and R at transitional zones may indi-
cate lake integration of stream inflows in ways that bridge 
the time-lag between upstream stressors and whole-lake 
response. New insights on stream–lake transitional zones 
may inform monitoring protocols for identifying sources 
of nutrient pollution in catchments and advance our overall 
understanding of in-lake responses to upstream stressors.

Methods

Study area description

Lake Sunapee (New Hampshire, USA; 43° 24′ N, 72° 3′ 
W) is an oligotrophic, dimictic lake. Lake Sunapee has a 
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surface area of 16.55 km2, a mean water residence time of 
3.1 years, volume of 1.88 × 108 m3, mean depth of 10 m, 
maximum depth of 33 m, mean June–August thermo-
cline depth of 7 m (Carey et al. 2014a; Richardson et al. 
2017), and ice cover generally from December–January 
to March–April (Bruesewitz et al. 2015). The glacially 
formed lake is irregularly shaped with high shoreline com-
plexity (shoreline development index of 3.6 due to the 
multiple coves or bays adjacent to the main basin). Each 
of the two focal coves in our study have two inflowing 
streams, though the primary inflow to each cove (subwa-
tersheds highlighted in Fig. 1) provide the large majority 
of surface flow to the cove. The watershed is experiencing 
increasing conversion of forest to cleared land for housing 
and urban development (Ward et al. 2020).

Lake Sunapee is classified as oligotrophic using trophic 
state indices based on pelagic chlorophyll-a, Secchi depth, 
and total phosphorus concentrations, but daily rates of 
pelagic R and GPP have been increasing since 2007, indi-
cating potential trophic state change (Carey et al. 2014a; 
Richardson et  al. 2017). Although there have been no 
detectable changes in pelagic total phosphorus concen-
trations over the past 3 decades (Steele et al. 2021), lit-
toral zone total phosphorus concentrations are increasing 
(Richardson et al. 2017). Lake Sunapee is nutrient limited 
with co-limitation of nitrogen and phosphorus (Ward et al. 
2020; Carey et al. 2014b).

Study design overview

We deployed dissolved oxygen (DO) and water tempera-
ture sensors in three different oligotrophic lake sites—one 
site in the lake pelagic zone and two littoral sites near dif-
ferent inflow streams. From these data, we quantified site-
specific metabolism and compared daily metabolism esti-
mates among sites. We used an ensemble machine learning 
approach to quantify the relative contribution of meteorolog-
ical, lake, and stream-related predictors to GPP and R esti-
mates at the two littoral sites. In addition, we conducted the 
same machine learning predictor analysis on the pelagic site 
GPP and R to identify if relationships between the streams 
and in-lake metabolism were unique to the littoral sites. 
Ensemble machine learning approaches are well-designed 
for datasets with high noise and predictor variable co-line-
arities (Crisci et al. 2012; Boehmke and Greenwell 2020), 
common features of ecological data which often complicate 
ecosystem metabolism analyses (Coloso et al. 2011; Rose 
et al. 2014; Dormann et al. 2013). We specifically focused 
on predictor variables that are commonly measured by fresh-
water monitoring programs.

Littoral site characterization and field data 
collection

From three in-lake buoy sites (Table 1; Fig. 1), we collected 
epilimnetic dissolved oxygen (1–1.75 m below the surface) 
and water profile temperature measurements during the 
summer stratified period in 2018 (June through Septem-
ber). The pelagic site buoy was established in 2007 and is 
monitored by the Lake Sunapee Protective Association. It 
is located near the deepest part of the lake, at a site which 
is 12.5 m deep and 1150 m from the closest shore. The two 
littoral sites were established for this study and strategically 
located near major inflow streams that flow into coves of 
the lake (Fig. 1), with the expectation that those coves are 
likely largely influenced by the inflow streams entering them 
and less influenced by dynamics at the deepest part of the 
lake. Both of the coves included in this study have simi-
lar morphometry, sediment substrate, very low macrophyte 
cover, and maximum depths close to the average thermo-
cline depth. Moreover, the depths at the opening of both 
coves to the main basin were generally shallower than the 
thermocline.

The sub-catchments of the two inflow sites differ substan-
tially in size and hydrology, but both are primarily forested 
and have no agricultural land (Ward et al. 2020). The northern 
sub-catchment has increasing housing development pressure 
and is the largest sub-catchment (32.6 km2) to the lake, flows 
through two lentic ecosystems (Little Lake Sunapee and Otter 
Pond) before entering Lake Sunapee, and provides ~ 50% of the 
lake’s stream inflow volume (Schloss 1990). The north inflow 

Fig. 1   Study area map: Lake Sunapee watershed and metabolism 
sample sites, New Hampshire, USA; upper bound of lake depth is 
inclusive
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is warmer than the other inflows (Ewing et al. 2021) because of 
its long residence time in the two upstream lakes and flow over 
a dam spillway before entering Lake Sunapee. Consequently, 
we refer to the littoral site adjacent to the north inflow hereafter 
as the “warm-stream littoral site.” The warm-stream littoral 
site was in the northwest cove of the lake in 7.5 m depth and 
160 m from the warm-inflow stream (Fig. 1). In contrast, the 
sub-catchment on the northeast side of the lake is much smaller 
(1.7 km2), contributing ~ 3% of the lake’s stream inflow volume 
and is characterized by cooler water temperatures and more 
variable stream discharge (Ewing et al. 2021). Consequently, 
we refer to the littoral site adjacent to the northeast inflow 
hereafter as the “cold-stream littoral site.” The cold-stream 
littoral site was in the northeast cove of the lake at 7 m depth 
and 220 m from the cold inflow stream (Fig. 1). Due to the 
large water temperature differences between the two inflow 
streams, we assumed the density differences were primarily 
due to temperature. However, future study to fully resolve dif-
ferences between the inflow streams should include density 
differences due to suspended sediments.

We monitored stream water temperature, depth, total nitro-
gen (TN), total phosphorus (TP), and dissolved organic carbon 
(DOC) in the warm stream 200 m upstream of where it entered 
the lake and the cold stream 50 m upstream of where it entered 
the lake during the study period. The locations of stream sam-
pling were determined by where we were logistically able to 
access the stream. Water temperature and depth were measured 
with in-stream HOBO Water Level Loggers (Onset Corpora-
tion, Bourne, Massachusetts) and recorded at 15-min intervals 
(Ewing et al. 2021). For the water chemistry data, grab samples 
were collected weekly June through July and once every two 
weeks August through September. When flows were elevated 
(i.e., reaching approximately halfway between baseflow stage 
and bank-full stage) due to precipitation, automated ISCO sam-
plers were triggered to collect hourly samples. We analyzed the 
water chemistry samples following the methods of Murphy and 
Riley (1962), Brenton and Arnett (1993), EPA (1993), Patton 
and Kryskalla (2003), and APHA (2005) (Supplemental Text 1).

All three lake buoys were equipped with a surface 
(1–1.75 m) DO sensor, underwater light sensor (HOBO pen-
dant loggers; Onset Corporation, Bourne, Massachusetts) and 
a thermistor chain with temperature sensors (HOBO pen-
dant loggers; Onset Corporation, Bourne, Massachusetts) at 
0.5–1 m intervals from the surface to the bottom (Table 1; 
littoral buoy data available at Ward et al. 2021; pelagic buoy 
data available at LSPA 2020b). The DO sensors at the litto-
ral sites were PME miniDOTs collecting data every 10 min 
(Precision Measurement Engineering, Vista, California) and 
the pelagic site DO sensor was a HOBO U26 collecting data 
every 15 min (Onset Corporation, Bourne, Massachusetts). 
To facilitate comparison across sites, we standardized DO 
sensor values using calibrated manual YSI ProDSS ODO/CT 
(YSI corp., Yellow Springs, Ohio) measurements collected 
weekly to monthly throughout the sampling period (Figs. S1, 
S2). Manual YSI versus high-frequency sensor temperature 
measurements were very close to 1:1, indicating similarly 
estimated DO concentrations at saturation between the YSI 
and high-frequency sensor (Fig. S2d–f), but comparisons of 
DO concentrations were offset from the 1:1 line (Fig. S2a–c). 
To enable comparisons across sites, we corrected the high-
frequency sensor DO concentrations using the corresponding 
YSI comparison DO measurements (Fig. S2a, b, c). At each 
buoy, we also collected weekly grab samples during June and 
July, and monthly samples during August and September using 
a Van Dorn water sampler (Wildco, Yulee, Florida) for TN, 
TP, and DOC at the depth of the DO sensor, following the 
same methods of analysis as the stream grab samples described 
in Supplemental Text 1.

Data analysis

Littoral site characterization

We used the field data to calculate a variety of water physi-
cal indices to compare the two littoral sites. For both littoral 
sites, we calculated three metrics of stream–lake mixing: 

Table 1   Sampling site characteristics in Lake Sunapee, NH, USA

DO dissolved oxygen

Site Description Buoy deploy-
ment duration 
(2018)

Buoy site 
depth (m)

Depth of 
DO sensor 
(m)

Distance to 
nearest inflow 
(m)

DO sensor type Thermistor depths 
(m)

Pelagic Near deepest loca-
tion of lake

24 May–21 Sept 12.5 1.0 1150 Onset HOBO U26 0.5–9.5 by 1 m 
increments

Warm-stream 
littoral

Northwest cove of 
lake, near warm-
inflow stream

3 Jun–21 Sept 7.5 1.75 160 PME miniDOT 0.1, 0.5–3.0 by 
0.5 m, 3.0–7.0 
by 1 m

Cold-stream lit-
toral

Northeast cove of 
lake, near cold 
inflow stream

1 Jun–21 Sept 7.0 1.75 220 PME miniDOT 0.1, 0.5–6.5 by 
0.5 m
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nominal intrusion depth, inflow Froude number, and transi-
tion Richardson number. Each metric required water density, 
which we calculated using observed water temperature, an 
assumed salinity of zero, and the “water.density()” function 
in the rLakeAnalyzer R package (Winslow et al. 2019). The 
nominal intrusion depth was calculated as the lake depth of 
minimum density difference between stream inflow water 
and epilimnetic lake water based on littoral buoy water tem-
perature profiles (sensu Cortés et al. 2014). On days when 
inflow stream water was denser than epilimnion water at 
each littoral site, we also characterized the plunging inflows, 
i.e., inflows with greater density due to cooler temperatures 
than the surface layer of the lake, to determine potential for 
interflow incorporation into the epilimnion using the dimen-
sionless Froude number and transition Richardson number 
(Ri12) (sensu Cortés et al. 2014). All three of these metrics 
(nominal intrusion depth, inflow Froude number, and tran-
sition Richardson number) were calculated from lake water 
temperature profiles and stream water temperature measure-
ments, and the inflow Froude number also used estimated 
stream velocity (Table S1).

We used non-parametric Mann–Whitney U tests to com-
pare nominal intrusion depth at the two littoral sites and to 
examine stream–lake differences in water density, TN, TP, 
and DOC concentrations at each littoral site to determine 
the potential for stream inflows to supplement lake nutrient 
concentrations. To supplement the site comparison of water 
density differences, a comparison of inflow Froude number 
and transition Richardson number is presented in the sup-
plement, though patterns follow established site differences 
due to water density. All analyses were conducted in R (R 
Core Team, 2021; Version 4.0.4).

GPP and R estimates

We estimated metabolism metrics using inverse modeling 
with maximum likelihood to fit gross primary production 
(GPP) and respiration (R) as model parameters to predict 
observed DO concentrations (“metab.mle()” function from 
the LakeMetabolizer R package in Winslow et al. 2016; 
sensu Van de Bogert et al. 2007; Hanson et al. 2008; Solo-
mon et al. 2013; Richardson et al. 2017). We estimated daily 
GPP and R rates in the summer stratified period, from when 
sensors were deployed in late May–early June (Table 1) until 
22 September, as fall turnover occurred on 23 September 
(defined by a density difference between 2 m from the sur-
face and 2 m above the sediments less than 0.1 kg m−3, sensu 
Andersen et al. 2017).

We used the methods of Richardson et al. (2017) and 
Brentrup et al. (2021) to estimate metabolism at the three 
sites (Supplemental Text 2). All metabolism estimates are 
published in the EDI repository (Ward et al. 2022) and we 
did not quantify model process errors. Daily rates of R and 

GPP at all sites were generally low (often 0.2–0.5 mg O2 L−1 
Day−1) and did not exhibit temporal autocorrelation (Figs. 
S4, S5), as determined by the autocorrelation “acf()” and 
partial autocorrelation “pacf()” function in the stats R pack-
age, enabling us to conduct metabolism site comparisons 
without needing to take autocorrelation into account.

We examined two aspects of site-specific GPP and R 
(detailed below). First, we determined if differences among 
the pelagic and littoral sites in our study followed previously 
established patterns; specifically, higher littoral zone GPP 
and R in comparison to pelagic epilimnetic GPP and R (e.g., 
Sadro et al. 2011; Cavalcanti et al. 2016; Tonetta et al. 2016; 
Van de Bogert et al. 2012). Second, we used an ensemble 
machine learning approach to identify potential predictors of 
GPP and R, and how those predictors might differ between 
sites. We included water temperature as a potential predictor 
variable, so did not apply temperature-scaling corrections to 
GPP and R estimates.

Site‑to‑site differences in GPP and R

To test for differences in daily GPP and R among the three 
sample locations in the lake, we used non-parametric paired 
Mann–Whitney U tests due to non-normal distributions of 
GPP and R. The paired Mann–Whitney U tests with Bon-
ferroni-corrected α for multiple comparisons identified pair-
wise differences among littoral and pelagic site epilimnetic 
GPP and R.

Littoral site GPP and R predictor analysis

To determine if littoral GPP and R were related to stream-
related drivers, we first grouped all potential predictor vari-
ables (n = 17) into three categories (Table S1, Figs. S6–S9). 
The predictor variables included: (1) meteorological pre-
dictors (n = 7): wind speed and direction, air temperature, 
degree day, cumulative degree day, surface photosyntheti-
cally active radiation (PAR) (LSPA et al. 2020a), and pre-
cipitation from the North American Land Data Assimilation 
System (Xia et al. 2012); (2) lake predictors (n = 5) were 
pelagic site Schmidt stability and littoral site epilimnion 
water temperature, seiche period, underwater light, and 
littoral site Schmidt stability. Schmidt stability and seiche 
period were calculated using MATLAB Lake Analyzer 
(Read et al. 2011), derived from water temperature profiles 
at the Pelagic Site (LSPA et al. 2020b) and the two littoral 
sites. Water temperature and underwater light data are avail-
able in Ward et al. (2021); and (3) stream-related predictors 
(n = 5): stream water temperature difference from littoral site 
epilimnion, stream depth as a proxy for discharge, nominal 
intrusion depth, inflow Froude number, and transition Rich-
ardson number (derived from Ewing et al. 2021; Ward et al. 
2021). As is common in analyzing the outputs of simulation 
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models (Snortheim et al. 2017), some predictor variables 
used in our machine learning analysis were also used as 
input variables to the metabolism model. For example, 
wind speed is included in the metabolism model to estimate 
changes in DO through atmospheric gas exchange, so that 
those changes in DO are not attributed to GPP or R rates. 
However, wind speed also drives mixing in the lake, which 
can directly affect GPP and R, and thus warrants investiga-
tion as a predictor, thereby meeting criteria for inclusion 
(Prairie and Bird 1989). We were careful in our interpreta-
tion to not weight too heavily the influence of these poten-
tially confounded predictors.

We aggregated all variables to the daily scale and added a 
lag-1 predictor variable for precipitation and stream predic-
tors to account for a one-day lag between stream conditions 
and delivery to the littoral zone of the lake (Table S1). We 
did not include grab samples and stream depth-based ISCO 
samples of TN, TP, and DOC due to the coarse timescale of 
those observations relative to the high-frequency data.

There are several challenging aspects of identifying and 
quantifying relationships between a suite of potential pre-
dictors and daily metabolism estimates. Metabolism sig-
nals tend to have high noise (Coloso et al. 2011; Rose et al. 
2014), and ecological predictors tend to have co-linearities 
that make it difficult to discern their effects (Dormann et al. 
2013). Issues of high noise and predictor co-linearities have 
been confronted by ensemble machine learning approaches 
(Crisci et al. 2012; Boehmke and Greenwell 2020), which 
give careful consideration to the model fitting process and 
validation methods (Vabalas et al. 2019).

Ensemble machine learning models are composed of mul-
tiple machine learning models, which are each referred to as 
base learners. The base learners of our ensemble machine 
learning model were: (1) random forest, due to its ability to 
work well with outliers, noisy data, and when one or two pre-
dictors may overwhelm the model prediction (Boehmke and 
Greenwell 2020); (2) regularized regression, due to its ability 
to address multicollinearity (Dormann et al. 2013) and smaller 
datasets with many predictor variables; and (3) eXtreme gra-
dient boosting (XGB), due to its ability to overcome over-
fitting issues (Boehmke and Greenwell 2020). Base learners 
need to be tuned, trained, validated, and summarized before 
their predictions are used to evaluate the potential importance 
of predictors of lake metabolism. To assess the tuning process 
itself, we conducted a nested cross-validation model fitting 
assessment to compensate for biased fit assessments com-
mon with smaller sample sizes (n = ~ 50–100; Vabalas et al. 
2019). A full description of our base-learner tuning method 
and nested cross-validation process is in Supplemental Text 
3. Final ensemble and base-learner model hyperparameters 
and model performance are in Tables S2, S3, and Fig. S10.

To quantify and visualize the predictor–response vari-
able relationships in the final ensemble model for GPP and 

for R at each littoral site, we examined variable importance 
for the top 10 predictor variables in each final ensemble 
model using a permutation method. Since variables that 
contribute to the overall model prediction in variable impor-
tance plots may not correspond to changes in magnitude of 
the response variable, we also examined specific predic-
tor–response relationships for top predictors. For this step, 
we generated partial prediction and individual conditional 
expectation (ICE) plots for the top stream-related driver 
and top non-stream-related driver identified in the variable 
importance analysis, following Boehmke and Greenwell 
(2020) (additional information in Supplemental Text 3). 
Importantly, the magnitudes of metabolism metric response 
to predictor variables were discerned through the partial 
prediction and ICE plots to identify if variables identified 
in the variable importance plots contributed to ecologi-
cally meaningful relationships. We specifically focused the 
machine learning analysis on predictors of littoral metabo-
lism to identify if littoral site GPP and R was associated 
with stream-related variables. In addition, we conducted 
the same machine learning analysis for the pelagic site to 
confirm that relationships between the streams and in-lake 
metabolism were unique to the littoral sites. All analyses 
were run in R (R Core Team, 2021; version 4.0.4) and the 
code is available in Zenodo (Ward 2021).

Results

Littoral sites

The littoral sites had contrasting stream–lake transitional 
zone characteristics. The water density of the warm stream 
was equal to or less than the density of the surface layer 
(0–2 m) at the warm-stream littoral site on 95 out of 112 
(85%) days (Fig. 2b; Mann–Whitney U = 5100, p = 0.9), 
indicating direct mixing of the inflow stream with the surface 
mixed layer in the receiving littoral zone on those days. Con-
versely, the water density of the cold stream was greater than 
the surface layer at the cold-stream littoral site on 111 of 
112 (99%) days (Fig. 2b; U = 12,058, p < 0.001). As a result, 
the nominal intrusion depth, or the lake depth of minimum 
density difference between inflow and lake water (sensu Cor-
tés et al. 2014), at the warm-stream littoral site was signifi-
cantly shallower than at the cold-stream littoral site (Fig. 2a; 
U = 925, p < 0.001). Throughout the study, the thermocline 
was generally at or near the bottom of the thermistor chain 
at the littoral sites (Fig. S3). Surface water (0–2.5 m) tem-
peratures were very similar at the warm-stream littoral site, 
cold-stream littoral site, and the pelagic site (mean = 22.8, 
23.2, and 22.7 °C, respectively; maximum = 26.6, 27.2, and 
26.2 °C, respectively; minimum = 16.8, 17.2, and 16.9 °C, 
respectively).
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Altogether, the stream–lake transitional zone physical 
metrics indicated the warm stream was more often mix-
ing with the surface water of the littoral zone, while the 
cold stream was more often entering the lake as interflow or 
underflow. Since the inflow Froude number and transition 
Richardson number primarily quantify mixing potential for 
colder inflow streams entering warmer water, we present 
the metrics here for days when each inflow stream was more 
dense than the receiving littoral surface water. For the days 
when the water density in the warm stream was greater than 
the littoral surface layer, the mean inflow Froude number was 
11.9 (SD = 4.84, maximum = 29.0, minimum = 6.6, n = 20) 
and the mean transition Richardson number (Ri12) was 5.0 
(SD = 7.2, maximum = 31.4, minimum = − 0.04, n = 20). 

The mean inflow Froude number for the cold stream was 
1.3 (SD = 0.20, maximum = 1.75, minimum = 0.84, n = 83), 
indicating a quickly plunging flow (~ 4 m of stream–lake 
interface, Johnson and Stefan 1988). The mean Ri12 for the 
cold stream was 0.54 (SD = 0.34, maximum = 1.83, mini-
mum = 0, n = 83), suggesting potential for distinct under-
flow on most days (when Ri12 << 1) and incorporation of 
the interflow into the epilimnion on other days (Ri12 ≥ 1; 
Cortés et al. 2014).

Nutrient and DOC concentrations in the inflow streams in 
comparison to the littoral sites in the lake indicate potential 
for delivery of nutrient and carbon subsidies (Fig. 2c–e). The 
mean TP, TN, and DOC concentrations in the inflow streams 
were all significantly greater than the surface water at the 
corresponding warm-stream littoral site and cold-stream lit-
toral site (Mann–Whitney U TP: U = 269.5 and 863, both 
p < 0.001, TN: U = 237.5 and 872, p = 0.01 and < 0.001, 
DOC: U = 242 and 288, both p < 0.001; Fig. 2c–e). Sur-
face water TP, TN, and DOC was not significantly different 
between the warm-stream littoral site, cold-stream littoral 
site, and pelagic site (Mann–Whitney U all p > 0.05). A 
higher n value is likely needed to differentiate any existing 
site-to-site differences in this oligotrophic lake with rela-
tively low nutrient and carbon concentrations in pelagic and 
littoral zones (n < 15 at each lake site).

Site‑to‑site differences in GPP and R

Metabolism estimates of GPP and R at the littoral sites 
were greater than at the pelagic site (Figs.  3, 4). GPP 
estimates at the warm-stream littoral site (median = 0.22, 
maximum = 2.89 mg O2 L−1  day−1, coefficient of vari-
ation (CV) = 132%) and at the cold-stream littoral site 
(median = 0.22, maximum = 0.63  mg O2 L−1  day−1, 
CV = 49%) were significantly greater than at the pelagic 
site (median = 0.18, maximum = 0.43 mg O2 L−1  day−1, 
CV = 39%; both Mann–Whitney U ≥ 3494, both p ≤ 0.004; 
Figs. 3, 4, Table 2). The highest daily rates of GPP were 
estimated at the warm-stream littoral site (Figs.  3, 4, 
Table  2), but overall, GPP at the warm-stream littoral 
site was not significantly greater than the cold-stream lit-
toral site (U = 2884, p = 0.22; Figs. 3, 4, Table 2). The R 
estimates at the warm-stream littoral site (median = 0.22, 
maximum = 2.65 mg O2 L−1 day−1, CV = 126%) were sig-
nificantly greater than at the pelagic site (median = 0.17, 
maximum = 0.56 mg O2 L−1 day−1, CV = 57%; U = 4185, 
p < 0.001; Figs. 3, 4, Table 2), but not significantly greater 
than at the cold-stream littoral site (median = 0.19, maxi-
mum = 0.61  mg O2 L−1  day−1, CV = 58%; U = 3159, 
p = 0.03, greater than Bonferroni-corrected α of 0.02 for 
three comparisons). The cold-stream littoral site R estimates 
were not significantly greater than the pelagic site R esti-
mates (U = 3165, p = 0.07).

Fig. 2   Comparison of a the cold-stream littoral site vs. warm-stream 
littoral site a nominal intrusion depth, b the water density in the 
warm-inflow stream to warm-stream littoral site and comparison of 
the water density in the cold inflow stream to cold-stream littoral 
site, c comparison of total phosphorus (TP) in both streams and lit-
toral sites, d total nitrogen (TN) in both streams and littoral sites, and 
e dissolved organic carbon (DOC) in both streams and littoral sites. 
*Indicates p value < 0.05; ns indicates not significant Mann–Whitney 
U test. Note that the y-axis in panel a is reversed to show the water’s 
surface at the top of the plot, and sediments at the bottom; solid white 
line indicates median, dashed white line indicates interquartile range
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Predictors of littoral site GPP and R

Overall, the machine learning predictor analysis identified 
that both meteorological and stream variables affected GPP 
and R at the warm-stream littoral site (Fig. 5) and GPP at 
the cold-stream littoral site. Whereas primarily stream vari-
ables affected R at the cold-stream littoral site (Fig. 6). In 
contrast, at the pelagic site, primarily meteorological vari-
ables affected GPP and R (Fig. 7).

Though meteorological variables contributed most to 
GPP at the warm-stream littoral site (62% ± 16%, 1 S.D. 
of the ensemble model), stream-related variables also 
affected GPP response (34% ± 7%; Fig. 5). The variable 
importance analysis identified that the most important pre-
dictor of warm-stream littoral site GPP was wind direction 
(37% ± 10% of the model). When wind was out of the north-
west, GPP was 0.41 mg O2 L−1 day−1 higher (122% increase) 
than when wind was from any other direction (Fig. 5c). The 
most important stream-related driver was the temperature 
difference between the stream and littoral zone epilimnion 
water (19% ± 3% of the model; Fig. 5a). Similar to the effect 
of wind direction, warmer stream water in comparison to 
littoral zone epilimnion water resulted in a 0.43 mg O2 L−1 
day−1 (126%) increase in GPP (Fig. 5e).

Similar to warm-stream littoral site GPP, the warm-
stream littoral site R was modulated by both meteorological 
variables (66% ± 11% of the model) and stream-related vari-
ables (26% ± 7%; Fig. 5). The variable importance analysis 
identified that the most important predictor of warm-stream 
littoral R was the previous day’s precipitation (precipitation 

Fig. 3   Daily estimates of GPP 
(triangles) and R (circles) at a 
the pelagic site, b the warm-
stream littoral site (note the 
different y-axis scale), c the 
cold-stream littoral site, and d 
all three sites, shown together 
for direct comparison using 
Loess curves

Fig. 4   Comparison of metabolism estimates among the pelagic 
site, cold-stream littoral site, and warm-stream littoral site in Lake 
Sunapee, NH, USA. Estimates of a gross primary production (GPP) 
and b respiration (R) are displayed on a log10 y-axis for easier vis-
ual comparison with boxplots denoting median and quartile ranges. 
Unique letters above boxplots indicate significant Mann–Whitney U 
comparisons (p < 0.02, Bonferroni-corrected α for 3 comparisons; see 
Table 2)
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lag-1; 33% ± 5% of the model; Fig. 5b). When total daily 
precipitation was greater than 2 cm, R on subsequent days 
was 0.30 mg O2 L−1 day−1 higher (104% increase) than after 
days with no precipitation (Fig. 5d). The most important 
stream-related predictor for R at this site was the water 
temperature difference between the stream and littoral zone 
epilimnion (stream minus epilimnion T; 13% ± 3% of the 
model; Fig. 5b). The partial prediction analysis for R showed 
a smaller response to stream minus epilimnion temperature 
than GPP: the warmer stream water in comparison to littoral 
zone epilimnion water resulted in a 0.17 mg O2 L−1 day−1 
(56%) increase in R (Fig. 5f).

At the cold-stream littoral site, stream variables contrib-
uted 49% (± 8%) for GPP and 69% (± 21%) for R to the 
overall ensemble machine learning predictor–response 
model for each metabolism metric (Fig. 6a, b). Similar to 
the warm-stream littoral site, the variable importance analy-
sis identified that the top predictor for cold-stream littoral 
GPP was wind direction, which contributed 23% (± 5%) to 
the overall predictor variable–response relationship in the 
ensemble machine learning model (Fig. 6a). In contrast to 
the wind direction patterns at the warm-stream littoral site 
(Fig. 5c), the highest magnitude GPP at the cold-stream lit-
toral site was associated with wind out of the south (Fig. 6c), 
though the increase of the GPP in response to wind direction 
was small (0.02 mg 02 L−1 day−1, 7% increase; Fig. 6c). The 
most important stream-related predictor for GPP was the 
dimensionless inflow Froude number, which contributed 
18% (± 2%) to the overall predictor variable–response rela-
tionship (Fig. 6a). The inflow Froude number resulted in an 
increase in GPP of 0.03 mg O2 L−1 day−1 (11% increase) 
when the inflow Froude number was greater than 1.75, 
indicating greater stream mixing with the surface water 
(Fig. 6e).

In contrast to all other GPP and R responses, the cold-
stream littoral R was driven by both stream variables 
(69% ± 21% of the model) and lake variables (21% ± 5%; 
Fig. 6b). The variable importance analysis identified that the 
top predictor for R at this site was a stream-related variable: 
the inflow Froude number, which contributed 47% (± 14%) 

to the overall predictor variable–response relationship in 
the ensemble machine learning model (Fig. 6b). As the 
inflow Froude number increased from 0.8 to 1.8, indicating 
more mixing potential with littoral zone surface water, R 
increased by 0.07 mg O2 L−1 day−1 (43% increase; Fig. 6d). 
The top non-stream-related driver was pelagic Schmidt sta-
bility, though the associated change in R was quite small 
(< 0.01 mg O2 L−1 day−1, 3% change; Fig. 6f).

The warm-stream and cold-stream littoral sites exhibited 
similar top predictor variables for GPP, but the strength of 
the predictors varied, as indicated by the partial prediction 
and ICE plots. Wind direction was the top predictor variable 
for GPP at both littoral sites (Figs. 5a, 6a); however, there 
was a much larger predictive range in the warm-stream lit-
toral GPP response (0.41 mg O2 L−1 day−1, Fig. 5c) com-
pared to the cold-stream littoral GPP response (0.02 mg O2 
L−1 day−1, Fig. 6c). Similarly, the temperature difference 
between the stream and littoral surface water was the sec-
ond-most important predictor of GPP at both sites (Figs. 5a, 
6a); however, the predictive ranges and patterns were very 
different. At the warm-stream littoral site, increases in the 
stream-epilimnion temperature difference caused an increase 
in the GPP of 0.43 mg O2 L−1 day−1 (126% increase), espe-
cially when stream temperatures were 3 °C warmer than 
the littoral lake temperature (Fig. 5e). Conversely, the tem-
perature difference was negatively related to GPP (0.02 mg 
O2 L−1 day−1, 7% decrease) at the cold-stream littoral site, 
though the stream water temperature was always cooler than 
the cold-stream littoral site (Fig. 6e).

In contrast to GPP, the top predictor variables for R 
were different between the two littoral sites (Figs. 5b, 6b), 
in which the top two predictors for warm-stream littoral 
R were meteorological variables, but the top two pre-
dictors for cold-stream littoral R were stream variables. 
Similar to cross-site patterns in GPP, the predictive range 
in the warm-stream littoral R response was larger than 
the cold-stream littoral site. For example, the top stream-
related predictor for warm-stream littoral R (but third-
most important predictor overall in variable importance 
analysis, Fig. 5b), stream minus epilimnion temperature, 

Table 2   Mann–Whitney 
U site-to-site comparisons 
of metabolic rates in Lake 
Sunapee, NH, USA

P values < 0.02 (Bonferroni-corrected α for 3 comparisons) are bolded
GPP gross primary production, R respiration, n sample size, U Mann–Whitney U test statistic

Metabolism 
metric

Site (n) Site (n) U p value

GPP Pelagic (81) Warm-stream littoral (79) 2273 0.0008
Pelagic (81) Cold-stream littoral (67) 2024 0.004
Cold-stream littoral (67) Warm-stream littoral (79) 2447 0.22

R Pelagic (81) Warm-stream littoral (79) 2253 0.0006
Pelagic (81) Cold-stream littoral (67) 2324 0.07
Cold-stream littoral (67) Warm-stream littoral (79) 2192 0.03
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corresponded to an increase of 0.18 mg 02 L−1 day−1 (70% 
increase; Fig. 5f). The top predictor for cold-stream littoral 
R, which was the stream-related variable of inflow Froude 
number, corresponded to a 0.07 mg 02 L−1 day−1 (43%) 
increase (Fig. 6d).

In sum, stream variables affected daily rates of litto-
ral lake metabolism, but were largely disconnected from 
pelagic metabolism response. Though both meteorological 
and stream variables were identified as important predic-
tors of GPP and R from the variable importance analysis at 

Fig. 5   Predictor analysis results for the warm-stream littoral site in 
Lake Sunapee, NH, USA. Predictor variable importance plots, shown 
as percent contribution to ensemble machine learning model for GPP 
a and R b; partial prediction (thick line) and individual conditional 
expectation (ICE; thin lines) plots indicate presence of predictor–
response relationships for the top non-stream-related predictor for 

GPP (c; categorical variable shown with box plot) and R (d) and the 
top stream-related predictor for GPP (e) and R (f). Each ICE line rep-
resents the focal predictor variable varying along the x-axis for each 
combination of other predictor variables observed. Partial depend-
ence line is the average of ICE lines. Grey vertical dashes on x-axis 
indicate predictor variable observations
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all three sites, the partial prediction and ICE analysis shows 
that stream variables contributed to ecologically meaning-
ful responses in littoral GPP and R (Figs. 5, 6). In contrast, 
only meteorological variables contributed to ecologically 
meaningful responses in pelagic GPP and R (Fig. 7).

Discussion

The higher rates of littoral epilimnetic GPP and R observed 
with increased epilimnetic mixing at the stream–lake inter-
face provides evidence that the stream–lake transitional zone 

Fig. 6   Predictor analysis results for the cold-stream littoral site in 
Lake Sunapee, NH. Predictor variable importance plots, shown as 
percent contribution to ensemble machine learning model for GPP 
(a) and R (b); partial prediction (thick line) and individual condi-
tional expectation (ICE; thin lines) plots indicate presence of predic-
tor–response relationships for the top non-stream-related predictor for 
GPP (c); categorical variable shown with box plot) and top predic-

tor for R (d) and the top stream-related predictor for GPP (e) and top 
non-stream-related predictor for R (f). Each ICE line represents the 
focal predictor variable varying along the x-axis for each combination 
of other predictor variables observed. Partial dependence line is the 
average of ICE lines. Grey vertical dashes on x-axis indicate predictor 
variable observations
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may function as an activated ecosystem control point (sensu 
Bernhardt et al. 2017). Accordingly, omitting these zones in 
whole-lake estimates may underestimate overall lake metab-
olism and leave an important aspect of lake metabolism spa-
tial variability unaccounted for. The connection of higher 
near-stream littoral rates of GPP and R to inflow stream 

conditions bridges the inherent time-lag between upstream 
stressors and whole-lake response. Thus, the stream–lake 
transitional zone may provide a sentinel-of-the-sentinel sig-
nal in this nutrient-limited lake (Ward et al. 2020; Carey 
et al. 2014b) showing increasing productivity and the poten-
tial for future eutrophication (Richardson et al. 2017).

Fig. 7   Predictor analysis results for the pelagic site in Lake Sunapee, 
NH. Predictor variable importance plots, shown as percent contri-
bution to ensemble machine learning model for GPP (a) and R (b); 
partial prediction (thick line) and individual conditional expectation 
(ICE; thin lines) plots are indicate presence of predictor–response 
relationships for the top non-stream-related predictor for GPP (c) 

and R (d) and the top stream-related predictor for GPP (e) and R (f). 
Each ICE line represents the focal predictor variable varying along 
the x-axis for each combination of other predictor variables observed. 
Partial dependence line is the average of ICE lines. Grey vertical 
dashes on x-axis indicate predictor variable observations
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Littoral GPP and R indicate activated ecosystem 
control points

Activated ecosystem control points require the combina-
tion of favorable abiotic conditions and delivery of limiting 
nutrients to stimulate disproportionately high rates of bio-
geochemical processing (Bernhardt et al. 2017). The dispro-
portionately high littoral GPP and R rates we observed in 
Lake Sunapee were dependent on greater stream–epilimnion 
mixing (favorable abiotic conditions) and stream nutrient 
subsidies (delivery of limiting nutrients), suggesting the 
stream–lake transitional zone functions as an activated eco-
system control point. Important context for interpretation of 
the stream–lake transitional zone as an activated ecosystem 
control point is that the lake is nutrient limited (Ward et al. 
2020; Carey et al. 2014b), and the inflow streams have sig-
nificantly higher nutrient concentrations than the receiving 
lake waters (Fig. 2).

While inputs from both warm and cold streams were 
shown to increase littoral metabolism, the mechanisms 
appear to differ. The physical mixing metrics indicated the 
warm-stream inputs entered into the surface mixed layer of 
the lake (sensu Vincent et al. 1991) and cold-stream inputs 
may have partially been entrained into the surface waters, 
creating conditions in which both streams likely provided 
nutrient subsidies (following MacIntyre et al. 2006). Though 
we were unable to measure daily stream and littoral zone 
nutrients and did not observe consistent patterns between 
our intermittent stream nutrient observations and estimated 
GPP and R (Figs. S11, S12), the GPP and R increases with 
greater stream mixing potentially support a nutrient-subsidy 
effect, following previous studies (Imberger and Hamblin 
1982; Rueda and MacIntyre 2010; Cortés et al. 2014). Since 
the warm-stream inflow had lower nutrient concentrations 
than the cold-stream inflow, it is likely that a stronger signal 
of GPP and R stimulation would be found in a warm-inflow 
stream with higher nutrient concentrations. In addition, the 
different stream inflows may contribute different types of 
organic matter, resulting in different metabolic responses 
(Marcarelli et al. 2011).

Common pelagic epilimnetic metabolism predictors, such 
as water temperature and PAR, did not significantly con-
tribute to the littoral GPP and R responses, highlighting the 
unique dependence of the littoral sites on the stream–lake 
mixing conditions. If the study were extended to include 
seasons of lake thermal mixing and ice cover, the more com-
monly considered in-lake and meteorological predictors may 
become more important for littoral GPP and R response. 
The significance of wind as a predictor of GPP response at 
both littoral sites (Figs. 5c, e, 6c, e) is likely a function of 
the cove and subbasin morphometry of the lake (Fig. 1). The 
warm-stream littoral site is most protected from wind expo-
sure when wind is out of the northwest and the cold-stream 

littoral site is most protected from wind out of the south or 
southeast, corresponding to the wind direction associated 
with the highest rates of GPP at each littoral site. With mini-
mal wind-induced mixing and surface disturbance, the water 
column may be more favorable for or decrease the horizon-
tal variability of phytoplankton (Stockwell et al. 2020; Cyr 
2017). Lower wind-induced mixing may enable the stream 
to affect littoral conditions more directly through nutrient 
subsidy or transport of DO from the stream to the littoral 
site. Similarly, precipitation effects could increase DO trans-
port from the stream to the littoral zone, and depending on 
the timescale of influence relative to 24-h metabolism rates 
derived from diel DO curves, the estimated GPP and R rates 
may be affected. A more thorough consideration of hydrody-
namic interactions would require detailed lake physics mod-
eling of the spatial and temporal extent of the stream–lake 
transitional zone under different wind exposures and stream 
discharge.

Further research is needed to resolve the extent to which 
stream–lake transitional zones function as activated ecosys-
tem control points. For example, a more detailed horizontal 
and vertical spatial analysis of metabolism in the lake would 
inform if the GPP and R rates observed in this study contrib-
ute “disproportionately” to whole-lake metabolism (Sadro 
et al. 2011). Both stream–lake transitional zone littoral sites 
were selected based on their similar depth, substrate, and 
lack of macrophytes to control for littoral zone influences 
on metabolism, however, including non-stream littoral sites 
could help clarify understanding of the unique influence of 
the streams on littoral GPP and R. In addition, a detailed 
physical tracking of the stream plumes (Rueda and MacIn-
tyre 2009; Vincent et al. 1991) and GPP and R response in 
the lake would be required to identify the spatial and tem-
poral dynamics of the stream–lake transitional zone as an 
ecosystem control point (Krause et al. 2017).

Linking lake metabolism to upstream stressors 
through the stream–lake transitional zone

The partial dependence of littoral GPP and R on stream-
related predictors supports previous studies finding water 
residence time as a controlling variable (e.g., Catalán et al. 
2016; Casas-Ruiz et al. 2017; Hotchkiss et al. 2018). Littoral 
metabolism near inflowing streams may provide a key inter-
mediary measure linking small stream and large lake resi-
dence times. Pelagic metabolism estimates, which are more 
representative of water-column conditions in lakes with 
multi-year residence times (Hoellein et al. 2013; Hotchkiss 
et al. 2018), may not detect near-real time tributary effects 
on water quality in lakes like Lake Sunapee. Following the 
scaling of dominant metabolism behavior across water resi-
dence times (Hotchkiss et al. 2018), summer seasonal aver-
age chlorophyll-a in Lake Sunapee is more dependent on 
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climate-related variables (long-term response to climate) 
whereas summer maximum chlorophyll-a is more dependent 
on external nutrient load (short-term response to streams) 
(Ward et al. 2020).

Though it is well documented that metabolism can have 
high spatial variability in lakes (Sadro et al. 2011; Van de 
Bogert et al. 2012; Cavalcanti et al. 2016; Tonetta et al. 
2016), some of the variability may be due to upstream stress-
ors. Assessing variability in GPP and R at littoral sites near 
inflows may more accurately reflect land use changes hap-
pening in different sub-catchments. The contribution of indi-
vidual streams to pelagic GPP and R is also likely dependent 
on water residence time near the inflow. Major storm events 
increase stream–lake connectivity, lowering water residence 
time in sub-basins, and delivering nutrients and DOC to the 
pelagic zone (Gallardo et al. 2012; Vachon and del Giorgio 
2014; Zwart et al. 2017).

The littoral zone response to stream stressors is likely 
highly variable and context dependent. Though stream nutri-
ent subsidies can stimulate littoral GPP and R, increased 
DOC or suspended solids may limit GPP by reducing water 
clarity (Kelly et al. 2018; Olson et al. 2020). High inflow 
DOC can cause light limitation and decrease GPP, but the 
median cold-stream inflow DOC concentration of 8.6 mg 
L−1 is at the lower end of concentrations where DOC-
induced light limitation could be expected (Finstad et al. 
2014; Thrane et al. 2014; Seekell et al. 2015). Therefore, 
there is continued potential for GPP stimulation with greater 
inflow DOC concentrations (Kelly et al. 2018) at the cold-
stream littoral site. Elevated DOC and TP concentrations 
at our littoral sites may be particularly acute following pre-
cipitation events. The disproportionately high amount of 
dissolved organic and particulate matter transport that can 
occur during high stream flow events (Newbold et al. 1997) 
may create optimum conditions for the stream–lake transi-
tional zone to function as an activated ecosystem control 
point (Bernhardt et al. 2017). Given the likely short water 
residence times in the littoral sites we selected, further work 
characterizing the dynamic nutrient, DOC, suspended sedi-
ment, and light conditions at these sites may be key in link-
ing landscape drivers to lake responses in space and time.

Machine learning provides new insights 
on ecosystem metabolism

The identification of covariate relationships between litto-
ral zone metabolism metrics and stream-related predictor 
variables was uniquely enabled by our ensemble machine 
learning approach. Metabolism datasets are typically noisy 
(Coloso et al. 2011), especially in oligotrophic lakes, since 
they capture multiple processes including photosynthesis, 
autotrophic and heterotrophic respiration, and integrate 
from a volume of water surrounding the sensor (Staehr et al. 

2010). Further, many predictor variables for metabolism are 
collinear (Giling et al. 2017), for example, wind and water-
column stability. Our ensemble machine learning approach 
used regularized regression as a base-learner model, which 
includes a penalty function to reduce conflated signals of 
collinear predictor variables (Boehmke and Greenwell 
2020), with improvements over commonly used statisti-
cal methods, such as multiple regression in differentiating 
the effects of multiple collinear predictor variables (Lucas 
2020).

The ensemble machine learning model exhibited system-
atic bias, resulting in a smaller range of GPP and R predic-
tions than the range of metabolism model estimated GPP 
and R (Fig. S10). If the machine learning model were used 
in a predictive capacity, bias correction techniques should be 
applied to improve estimation of the tails of the distribution 
(Belitz and Stackelberg, 2021). In addition, unmeasured pre-
dictor variables may contribute to the observed variability 
in metabolism metrics. For example, both the concentra-
tions and forms of nitrogen and phosphorus entering the 
stream–lake transitional zone are likely important, especially 
in oligotrophic lakes where co-limitation is common (Lewis 
et al. 2020). Since water temperature and season are known 
to affect metabolism, the lower range in machine learning 
predicted GPP and R may also be due to the comparatively 
narrow range of predictor and response variable magnitudes 
observed during the summer stratified period only (e.g., 
less than 10 °C range in epilimnetic water temperature, in 
comparison to the 25 °C range across the entire year; see 
Brentrup et al. 2021). Lake Sunapee’s epilimnion is auto-
trophic in the summer and heterotrophic in the winter, where 
the dominant environmental predictors of GPP and R may 
vary with season (Brentrup et al. 2021). Similarly, the rela-
tive importance of stream–related drivers likely varies with 
season. The loss of thermal stratification in the lake would 
increase surface mixing with the cold stream; however, this 
effect may be dampened by the greater volume of receiving 
lake water and may be less relevant to nutrient availability 
than the vertical mixing within the lake. Further, food web 
processes, ranging from microbial community dynamics 
(Warnecke et al. 2005) and associated internal recycling of 
nutrients (Fenchel 2008) to fish consumer effects on nutri-
ent processing (Vanni et al. 2013), likely also affect Lake 
Sunapee’s GPP and R (Stewart et al. 2018).

Overall, the machine learning approach enabled us to 
conduct our exploratory analysis with novel predictor vari-
ables for highly noisy littoral metabolism, including col-
linear variables with no prior assumptions about the shape 
of the predictor–response relationship and existence of 
interactive effects. The machine learning approach would 
only be strengthened with the addition of predictor vari-
ables discussed above and extension of the study through 
space and time.
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Implications for Lake Sunapee

The results of this study provide insight into how 
stream–lake connections may affect Lake Sunapee in the 
future. As of 2020, the Lake Sunapee region has already 
experienced a 1.4 ℃ increase in mean annual air tempera-
ture over pre-1970 annual averages (Ward et al. 2020) and 
is facing increasing development pressure (LSPA et al. 
2020c). Cold-stream inflows to Lake Sunapee may warm 
through both a decreased canopy cover resulting in more 
direct warming of the stream from sunlight (Nelson et al. 
2009; Kaushal et al. 2010) and an increase in the relative 
contribution of surface versus groundwater to streamflow 
(LeBlanc et al. 1997). As cold-stream inflows warm, they 
will mix more directly with the lake epilimnion, stimulat-
ing higher GPP and R near the stream–lake transitional 
zone. Though groundwater-based streams may be less sen-
sitive to climate and land use effects than surface water 
streams (Luce et al. 2014), storm events have the poten-
tial to create short periods when cold, groundwater-based 
streams are dominated by surface flow (Shanley and Peters 
1988). If cold streams warm faster than the lake epilim-
nion and enter the lake more as surface flow, the stream 
water and associated solutes will have a higher potential 
to stimulate surface littoral GPP and R. In particular, if the 
cold stream in our study warms faster than the lake epilim-
nion, the significantly higher stream nutrient and DOC 
concentrations (Fig. 2c–e) will further stimulate GPP and 
R. The increased productivity will potentially contribute 
to declines in localized water quality in the cove.

While changes in the depth of stream–lake mixing will 
change the location of peak GPP and R due to the nutrient-
subsidy effect, the implications of different depths of mix-
ing on whole-lake metabolism are complex. For example, 
stream water entering a lake at different depths results in 
different mixing of organic matter quality and may ini-
tiate a “priming effect,” increasing the total availability 
of organic matter at the depth of mixing (Bouffard and 
Perga 2016). In addition, stratified lakes may have an auto-
trophic epilimnion and a heterotrophic hypolimnion dur-
ing the summer (Staehr et al. 2012) and, thus, changes in 
the depth of stream–lake mixing during the summer may 
alter the relative contributions of each zone to overall lake 
metabolism.

Conclusions

Our study, examining epilimnetic GPP and R in two lit-
toral and one pelagic location of a lake, demonstrates 
that metabolism near stream–lake transitional zones are 
uniquely related to stream variables. Therefore, GPP and R 
signals from the stream–lake transitional zones, within the 

context of this nutrient-limited lake showing early indi-
cations of eutrophication (Ward et al. 2020; Richardson 
et al. 2017), may provide a sentinel-of-the-sentinel signal. 
While littoral metabolism is generally higher than pelagic 
metabolism, directly linking these disproportionately 
high GPP and R rates in stream–lake transitional zones to 
stream-related drivers through time may bridge the inher-
ent time-lag between upstream stressors and whole-lake 
responses. Estimates of whole-lake metabolism, particu-
larly in nutrient-limited lakes should specifically include 
littoral locations near stream–lake transitional zones 
where GPP and R may be disproportionately high. Use 
of high-frequency dissolved oxygen sensors for examin-
ing sensitive ecosystem function metrics such as metabo-
lism is developing quickly for management applications 
(Jankowski et al. 2021). As such, for lakes approaching 
a trophic state change, where mitigation of nutrient pol-
lution is a key management goal (Jeppesen et al. 2010), 
monitoring lake water quality with more sensitive metrics 
of change (i.e., GPP, R) will be particularly helpful. Stra-
tegically estimating these metabolism metrics near inflows 
may help reveal the connection between upstream inputs 
and downstream lake processing, providing key insights 
into how lakes act as sentinels to changes in the surround-
ing catchment and informing strategic monitoring to pre-
vent future declines in water quality.
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