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Abstract

Near-term ecological forecasts provide resource managers advance notice of

changes in ecosystem services, such as fisheries stocks, timber yields, or water

quality. Importantly, ecological forecasts can identify where there is uncer-

tainty in the forecasting system, which is necessary to improve forecast skill

and guide interpretation of forecast results. Uncertainty partitioning identifies

the relative contributions to total forecast variance introduced by different

sources, including specification of the model structure, errors in driver data,

and estimation of current states (initial conditions). Uncertainty partitioning

could be particularly useful in improving forecasts of highly variable

cyanobacterial densities, which are difficult to predict and present a persistent

challenge for lake managers. As cyanobacteria can produce toxic and unsightly

surface scums, advance warning when cyanobacterial densities are increasing

could help managers mitigate water quality issues. Here, we fit 13 Bayesian
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state-space models to evaluate different hypotheses about cyanobacterial den-

sities in a low nutrient lake that experiences sporadic surface scums of the

toxin-producing cyanobacterium, Gloeotrichia echinulata. We used data from

several summers of weekly cyanobacteria samples to identify dominant

sources of uncertainty for near-term (1- to 4-week) forecasts of G. echinulata

densities. Water temperature was an important predictor of cyanobacterial

densities during model fitting and at the 4-week forecast horizon. However, no

physical covariates improved model performance over a simple model includ-

ing the previous week’s densities in 1-week-ahead forecasts. Even the best fit

models exhibited large variance in forecasted cyanobacterial densities and did

not capture rare peak occurrences, indicating that significant explanatory vari-

ables when fitting models to historical data are not always effective for fore-

casting. Uncertainty partitioning revealed that model process specification and

initial conditions dominated forecast uncertainty. These findings indicate that

long-term studies of different cyanobacterial life stages and movement in the

water column as well as measurements of drivers relevant to different life

stages could improve model process representation of cyanobacteria abun-

dance. In addition, improved observation protocols could better define initial

conditions and reduce spatial misalignment of environmental data and cyano-

bacteria observations. Our results emphasize the importance of ecological fore-

casting principles and uncertainty partitioning to refine and understand

predictive capacity across ecosystems.

KEYWORD S
algae, Bayesian model, blooms, ecological forecasting, hindcast, lake, oligotrophic,
phytoplankton, scums, state-space model, uncertainty partitioning, variance partitioning

INTRODUCTION

Near-term ecological forecasts, defined as daily to decadal
predictions of the state of ecosystems (Clark et al., 2001;
Dietze et al., 2018), can be helpful to resource managers
in systems ranging from fisheries stocks to disease
outbreaks in protected species populations (Hobbs
et al., 2015; Kuikka et al., 2014). For example, near-term
forecasts have been used to provide projections for alter-
nate management decisions in salmon fisheries and for-
ests (Kuikka et al., 2014; Thomas et al., 2018, 2020), help
managers allot fisheries take quotas (or avoid bycatch;
Hobday et al., 2019), and provide advance notice of
public safety hazards such as red tides (McGowan
et al., 2017; Stumpf et al., 2009). Effective near-term fore-
casts include fully specified uncertainty by quantifying
the total variance around a prediction and identifying the
relative contributions of different sources of uncertainty
(Dietze et al., 2018; Table 1).

Uncertainty in ecological forecasts may arise from
several different sources, including initial conditions

uncertainty, parameter uncertainty, process uncertainty,
observation uncertainty, driver or covariate data uncer-
tainty, and random effects uncertainty (Dietze, 2017a;
Table 1). Partitioning the variance associated with a fore-
cast into these components allows for more targeted
efforts to understand and improve forecasts to inform
management of natural resources (Bauer et al., 2015;
Page et al., 2018). For example, the dominant contributor
to uncertainty in weather forecasts is from initial condi-
tions because the atmosphere’s internal instability
amplifies even small errors in estimates of current states,
and the physical processes controlling weather given a
set of current conditions are relatively well defined
(Dietze, 2017b). This has directed weather forecasters to
prioritize efforts to better measure current (initial) atmo-
spheric conditions (Bauer et al., 2015). In contrast, the
dominance of process uncertainty in a forecast indicates
that researchers need to consider alternative model struc-
tures and additional or different explanatory variables to
describe the biological or ecological process of interest
(e.g., Page et al., 2017; Thomas et al., 2018).
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Estimating uncertainty has become more common in
ecological analyses that generate forecasts (see studies in
Appendix S1: Table S1 for examples). However, formal
uncertainty partitioning that includes all the potential
sources of forecast uncertainty is less common and
methods are not standardized, making it difficult to com-
pare how different components of uncertainty contribute
across ecological systems or among focal state variables.
For example, while studies by Gertner et al. (1996), Valle
et al. (2009), Wang et al. (2009), and Thomas et al. (2018)
(Appendix S1: Table S1) all forecast metrics of forest bio-
mass and productivity, differences in how they estimate

and partition uncertainty limit synthetic understanding
of how uncertainties in process structure or parameter
estimation, for instance, limit confidence in forest pro-
ductivity forecasts.

Forecasting freshwater cyanobacterial dynamics
has been a persistent challenge for researchers and
water quality managers (Janssen et al., 2019; Rousso
et al., 2020), and to our knowledge uncertainty par-
titioning analysis has not been used to support forecast-
ing capacity in this system. Cyanobacteria are increasing
in many lakes and reservoirs worldwide due to climate
and land-use change, posing substantial problems for

TAB L E 1 Terms associated with partitioning uncertainty in ecological models and forecasts

Term Definition Example

Credible interval Range of values within which a parameter or
model prediction falls with a specified
probability; does not include observation
uncertainty

Range of chlorophyll a values within which 95%
of possible latent values forecasted for
tomorrow fall; incorporates initial
conditions, process, parameter, and driver
data uncertainty

Driver data uncertainty Uncertainty in the estimate or measurement of
driver data (environmental predictors of the
forecasted state)

Uncertainty in observations of soil temperature
needed to drive a soil respiration model;
uncertainty in weather forecasts

Hindcast Predictions with specified uncertainty of a past
time period using data (withheld from model
calibration) that are iteratively assimilated into
the model (Jolliffe & Stephenson, 2003)

Making model predictions for tick abundances
observed 2 years ago using a model
calibrated to observations from 10 years
prior

Initial conditions uncertainty Uncertainty associated with the starting
conditions of a forecasting model run

Uncertainty in initial focal states, such as fish
abundance, chlorophyll a, or soil carbon
stock

Observation uncertainty Difference between the observed data and the
true (latent) state that the model is designed to
predict; does not propagate forward, so it does
not affect the credible interval

Calibration uncertainty in a temperature sensor;
sampling uncertainty when estimating
species abundance

Parameter uncertainty Variance around the model parameter estimates Uncertainty in the growth rate parameter in a
timber yield model

Predictive interval Range of values within which predicted
observations are expected to fall with a
specified probability; includes observation
uncertainty in addition to other uncertainties
and so is larger than the credible interval;
should be used when comparing models to
observed data

Range of chlorophyll a values within which 95%
of possible observation values forecasted for
tomorrow fall

Process uncertainty Uncertainty due to model specification (ecological
processes that are simplified, absent, or
incorrectly represented by the model) or
inherent stochasticity in the system

Uncertainty arising from not including an
important life history stage in a population
growth model; uncertainty arising from
demographic stochasticity in plankton
communities

Random effects uncertainty Uncertainty associated with estimation of random
effects, which are used to describe shared
variance across groups in space and time

Uncertainty in the value of a random site effect
representing the degree to which beetle
communities vary together across different
sampling sites in a metacommunity model

Note: Definitions are adapted from Dietze (2017a) unless otherwise specified.
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drinking water managers and other stakeholders (Carey,
Ibelings, et al., 2012; O’Neil et al., 2012; Paerl et al.,
2011). Many cyanobacterial taxa create toxic and
unsightly scums that cause taste and odor problems and
clog filters at drinking water treatment plants; conse-
quently, knowing when cyanobacterial density is likely to
increase could allow managers to take preemptive action
to mitigate deleterious water quality effects (Ibelings
et al., 2016; Stroom & Kardinaal, 2016).

Despite substantial research on drivers of cyanobacterial
dominance (e.g., Carey, Ibelings, et al., 2012; Paerl &
Otten, 2013) and technological developments permitting
high-frequency observations of cyanobacterial density (e.g.,
Catherine et al., 2012; Le Vu et al., 2011), cyanobacterial
abundance predictions often deviate substantially from
observations (Hamilton et al., 2009; Rigosi et al., 2010;
Rousso et al., 2020). Cyanobacterial densities can change
rapidly on timescales of days to weeks (Carpenter et al.,
2020; Dokulil & Teubner, 2000; Huisman & Hulot, 2005;
Rolland et al., 2013), with densities in many lakes
remaining relatively low for much of the year and then rap-
idly increasing from one sample period to the next
(e.g., Bormans et al., 2005; Carey et al., 2014; Rolland
et al., 2013), making prediction difficult. In a review of
process-based phytoplankton succession models, Rigosi
et al. (2010) observed that prediction errors of 40% or more
were common for biomass of individual phytoplankton
groups, such as cyanobacteria, and that the timing of maxi-
mum phytoplankton biomass was often mis-predicted by as
much as one month. A systematic literature review of cya-
nobacteria bloom models by Rousso et al., 2020 compared
the coefficient of determination (R2) between predicted and
observed values that were reported for data-driven models,
such as artificial neural networks and decision trees, and
found that at a 1-week forecast horizon, R2 values ranged
from �0.1 to 0.9, with most models falling between 0.5 and
0.65. Hamilton et al. (2009) had good success in forecasting
cyanobacteria bloom probability at a one-month timestep
but did not attempt to forecast cyanobacterial density as a
response variable. Moreover, few cyanobacterial forecasting
studies have examined forecast uncertainty (Janssen et al.,
2019; but see Hamilton et al., 2009; Huang et al., 2013;
Massoud et al., 2018; Page et al., 2017), and fewer still have
conducted uncertainty partitioning.

Cyanobacterial blooms are often associated with high
nutrient levels (Dokulil & Teubner, 2000), and much of
the effort to predict cyanobacterial densities has been
focused on nutrient-rich lakes (reviewed by Rousso
et al., 2020). As a result, prediction efforts in low-nutrient
lakes have lagged behind and understanding why
cyanobacterial densities change over the short term in
such lakes is especially challenging. Consequently, teas-
ing apart the different sources of uncertainty and their

relative importance to cyanobacterial forecast precision
may help prioritize research efforts in economically
important oligotrophic waterbodies. Increases in cyano-
bacteria densities have been documented in north tem-
perate low-nutrient lakes throughout the United States
(Carey, Ewing, et al., 2012; Sterner et al., 2020), Canada
(Winter et al., 2011), and Europe (Freeman et al., 2020),
and these increases are often associated with significant
economic losses and public health concerns (Dodds
et al., 2009; Mueller et al., 2016; Stoddard et al., 2016).
High water quality in oligotrophic lakes provides sub-
stantial economic benefit through recreational use and
high lakeside property values (Mueller et al., 2016;
Wilson & Carpenter, 1999). Moreover, some oligotrophic
systems are permitted as drinking water sources with
reduced filtration requirements when their water quality
meets U.S. Environmental Protection Agency (U.S. EPA)
standards, thereby reducing water treatment costs (U.S.
EPA, 1991; Kauffman, 2016).

Prior studies provide several hypotheses for what envi-
ronmental drivers likely trigger cyanobacterial growth or
accumulation of cyanobacterial surface scums apart from
nutrient concentrations, including higher temperatures,
which result in increased growth (Hamilton et al., 2009;
Paerl & Huisman, 2008); light-induced triggering of cell ger-
mination and growth (Karlsson-Elfgren et al., 2004;
Roelofs & Oglesby, 1970); water column mixing resulting in
more recruitment of dormant cells from the sediment
and/or dilution of surface water cyanobacterial density,
which can occur due to temperature changes, precipitation
events, or wind (Carey et al., 2014; de Eyto et al., 2016;
Jennings et al., 2012; Kuha et al., 2016); strong thermal
stratification resulting in greater incidence of surface scums
(Carey, Ibelings, et al., 2012); and wind-driven aggregation
of cells or colonies in nearshore zones (Cyr, 2017; Roelofs &
Oglesby, 1970). The development of forecast models with
uncertainty partitioning is needed to compare and evaluate
these hypotheses in a predictive framework.

While there are a variety of techniques that can be
used to develop forecast models with partitioned uncer-
tainty, Bayesian state-space models (SSMs) are particu-
larly suitable (Clark, 2007; Dietze, 2017a; Hobbs &
Hooten, 2015). State-space models focus on estimating
the true, latent state of the system by explicitly account-
ing for observation and process uncertainty. These
dynamic models are structured so that each modeled
latent state is a function of the previous latent state, inde-
pendent of observations at other time points (Hobbs &
Hooten, 2015, Dietze, 2017a; Figure 1). Importantly,
Bayesian state-space models estimate latent states as dis-
tributions (Hobbs & Hooten, 2015). This feature permits
forecasters to sample from the most recent SSM esti-
mated latent state to quantify uncertainty in the current
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state conditions that will be used to initiate a subsequent
forecast. Thus, initial conditions change each time a fore-
cast is produced to reflect the updated estimate of
“today’s” state of the system (Dietze, 2017b; Thomas
et al., 2020). Furthermore, Bayesian SSMs use distribu-
tions rather than fixed values to represent all unknown
values, including parameters and as-yet-unobserved
future values for driver variables, allowing for quantifica-
tion of uncertainty associated with each of these compo-
nents and missing data.

We developed and evaluated a suite of Bayesian SSMs
with different structures and tested different environmen-
tal variables hypothesized to be important in driving
cyanobacterial density, including water temperature,
thermal stability, wind, and precipitation. We fit each
model to historical weekly cyanobacterial densities of
Gloeotrichia echinulata measured from 2009 to 2014
in Lake Sunapee, New Hampshire, USA. We then gener-
ated “forecasts” of cyanobacterial density for 2015–2016,
which we hereafter refer to as hindcasts because
although they were generated as forecasts from the per-
spective of the model, the forecast period had already
occurred (see “hindcast” definition in Table 1). We
assessed and conducted uncertainty partitioning of our
hindcasts to address the following questions: (1) Which
model structures and environmental covariates best pre-
dict oligotrophic lake cyanobacterial density over 1–4
week forecast horizons? (2) What are the dominant
sources of uncertainty in oligotrophic lake cyanobacterial
forecasts? And (3) how do the relative contributions of
different sources of uncertainty vary among models with
differing complexity and environmental covariates? We

discuss how our results can inform future efforts to fore-
cast oligotrophic lake cyanobacterial density and relate to
patterns of predictive uncertainty observed in other
ecosystems.

METHODS

Focal cyanobacterium

Gloeotrichia echinulata is a colonial, filamentous cyano-
bacterium commonly found in oligotrophic north tem-
perate lakes in North America and Europe (Carey,
Ewing, et al., 2012; Freeman et al., 2020; Karlsson-
Elfgren et al., 2005; Winter et al., 2011). G. echinulata can
form surface scums and produce toxins during the warm
summer months (Carey, Ewing, et al., 2012; Karlsson-
Elfgren et al., 2005). In the fall and winter, G. echinulata
enters a dormant life stage on lake sediments in response
to adverse environmental conditions, resulting in a sea-
sonal cycle wherein vegetative G. echinulata is first
observed in the water column in late spring, water col-
umn densities peak in the summer, and then densities
decrease as G. echinulata enters dormancy in the fall
(Roelofs & Oglesby, 1970).

Occurrence of G. echinulata surface scums in oligotro-
phic, north temperate lakes appears to have increased
in recent decades (Carey et al., 2008; Carey, Ewing,
et al., 2012; Winter et al., 2011), motivating researchers to
improve understanding and prediction of G. echinulata
density in these ecosystems. While nutrients are often a
driver of cyanobacterial growth in eutrophic lakes
(Dokulil & Teubner, 2000), current understanding of
dynamics in oligotrophic lakes suggests that physical
drivers (i.e., water temperature, light, wind) may be
important for determining G. echinulata densities (Carey
et al., 2014; Cyr, 2017; Karlsson-Elfgren et al., 2004;
Roelofs & Oglesby, 1970), and we focus on these physical
variables as predictors of G. echinulata density in this
study.

Study site

We sampled G. echinulata surface abundance and col-
lected environmental data weekly in May–October from
2009 to 2016 at two nearshore sites in Lake Sunapee,
New Hampshire, USA, a recreational lake with high
property values that also serves as a public drinking
water supply (Figure 2). Lake Sunapee is a large, oligotro-
phic lake (43�240 N, 72�20 W, maximum depth = 33.7 m,
surface area = 16.69 km2, volume = 1.94 � 10 m3, mean
depth = 11.6 m; Ward et al., 2020). While high-nutrient

F I GURE 1 Directed acyclic graph (DAG) of a Bayesian state-

space model, where yt is the observed cyanobacterial density at time

t, xt are driver data (physical covariates) at time t, mt is the

estimated true, or latent, cyanobacterial density at time t, β is a

vector of parameters in the process model (slope, intercept, etc.),

and τproc and τobs are the precisions of normal distributions

representing process error and observation error, respectively.

Parameters are modeled as distributions in the parameter model.

Parameters, along with driver data, determine the predicted latent

states in the process model, which are fitted to observations using

the data model
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(eutrophic) lakes can have total phosphorus (TP) concen-
trations ≥24 μg/L and total nitrogen (TN) concentrations
ranging from �400–1600 μg/L (Carlson, 1977; Carlson &
Simpson, 1996; Gibson et al., 2000), mean TP concentra-
tion in the surface waters of oligotrophic Lake Sunapee
between 2009–2016 was 1.37 � 17.4 μg/L (mean � SD;
Steele et al., 2021) and mean TN concentration from 2009
to 2012 was 172 � 25 μg/L (Cottingham, 2020). Lake
Sunapee mean Secchi depth was 7.0 � 2.0 m (Steele
et al., 2021). Lake Sunapee typically thermally stratifies

from June–September with a mean seasonal thermocline
depth of 7–9 m from 2009 to 2016 (Lake Sunapee Protec-
tive Association (LSPA), Weathers, et al., 2020). The
watershed (�107 km2 not including lake surface area) is
80% forested, but shoreline development has been
increasing in recent decades (Cobourn et al., 2018).

Our research team began a weekly G. echinulata
monitoring program at two sampling sites in collabora-
tion with the LSPA in 2005 (Carey et al., 2008, 2014).
Multiple sites were sampled to represent the high spatial

F I GURE 2 Map of Lake Sunapee, New Hampshire, USA with locator map (inset). Data from Site 1 were used for Bayesian state-space

models, data from Site 2 were used to inform priors for Site 1 models, and data from Site 3 provided lake-level covariates for Site 1 models.

Land use data was obtained from the New Hampshire Geographically Referenced ANalysis and Information transfer system (GRANIT) land

cover assessment in 2001
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variability in G. echinulata densities among sites, with
both high and low densities often observed concurrently
at different sites (Cottingham et al., 2020a). The focal
sampling site for this study (Site 1; Figure 2) was chosen
because it frequently exhibits high local densities of
G. echinulata, which are of concern to the LSPA. We used
data from a second nearshore site (Site 2) only to gener-
ate informed priors for G. echinulata observation error
and nearshore water temperature. Data from Site 2 were
not used to inform estimates of G. echinulata density
latent states or included in any hindcasting analyses due
to the high variability of G. echinulata density among
sites and our aim of estimating local site densities rather
than a lake-wide mean density. We focused our analyses
on 2009–2016 for this study because those years had
at least 20 weeks of sampling data (Cottingham
et al., 2020a). We used data from 2009 to 2014 for model
fitting to provide as much data as possible for parameter
estimation while still reserving enough data to conduct
hindcasts over multiple years (2015–2016). During our
8-year study period there were six missing weekly
G. echinulata observations, four of which occurred during
the 2015–2016 hindcasting period. Notably, while
G. echinulata is increasingly reported across a number of
low nutrient lakes in the northeastern United States
(Carey, Ewing, et al., 2012; Winter et al., 2011), Lake Sun-
apee has the longest duration of weekly G. echinulata
monitoring data available for any oligotrophic lake, to
the best of our knowledge. Thus, the Lake Sunapee
dataset provides a unique opportunity to examine envi-
ronmental drivers and sources of uncertainty in hindcasts
of G. echinulata density over time.

G. echinulata data collection and sample
processing

Gloeotrichia echinulata surface abundance at both near-
shore sites was sampled each week in the top 1 m of the
water column by combining two vertical tows from 1 m
to the surface using a 30 cm diameter, 80-μm mesh
plankton net (Wildlife Supply Co., Yulee, Florida, USA).
G. echinulata were transferred from the net and preserved
in opaque plastic bottles using Lugol’s iodine (Carey
et al., 2014). Total G. echinulata samples were counted
using a Leica MZ12 dissecting microscope (Leica, Buffalo
Grove, Illinois, USA). Density was quantified according to
the number of colonies and filament bundles (immature,
developing colonies) per liter rather than biovolume follow-
ing protocols used in previous studies of G. echinulata
(Barbiero & Welch, 1992; Karlsson-Elfgren et al., 2005;
Roelofs & Oglesby, 1970). We then converted abundance
to density by dividing the total number of colonies and

filament bundles in each sample by the volume ofwater sam-
pled by the plankton net (Carey et al., 2014). All data are pub-
licly available through the Environmental Data Initiative
repository (Cottingham, 2020; Cottingham et al., 2020a,
2020b; Lake Sunapee Protective Association (LSPA), Steele,
et al., 2020; Lake Sunapee Protective Association (LSPA),
Weathers, et al., 2020; Lofton et al., 2022; Steele et al., 2021).

Physical driver data

To study the effect of temperature on G. echinulata
growth, water temperature was monitored hourly using
Onset loggers at our nearshore sampling sites (Sites 1 and
2; Figure 2; Cottingham et al., 2020b). Growing degree
days (GDD), a measure of heat accumulation during the
growing season, were calculated using these water
temperatures for each day when G. echinulata was sam-
pled. To investigate effects of thermal stratification on
G. echinulata surface density, water temperature profiles
from the Global Lake Ecological Observatory Network
(GLEON) buoy, deployed in the lake by the LSPA since
2007 (Site 3; Figure 2), were used to calculate Schmidt
stability, a measure of thermal stratification strength that
indicates the amount of energy required to homogenize
temperature across the water column (Idso, 1973; LSPA,
Weathers, et al., 2020). To examine whether wind could
drive nearshore aggregation of G. echinulata colonies,
wind data from the LSPA/GLEON buoy (Site 3) were
aggregated from minute and hourly scales to calculate
daily summary statistics (LSPA, Steele, et al., 2020). Solar
radiation data from the North American Land Data
Assimilation System Phase 2 (NLDAS-2) forcing data set
(https://ldas.gsfc.nasa.gov/nldas; Lofton et al., 2022) and
photosynthetically active radiation (PAR) data from the
LSPA/GLEON buoy (LSPA, Steele, et al., 2020) were simi-
larly aggregated to determine whether surface water light
availability was an important predictor of G. echinulata den-
sity. Finally, we calculated summary statistics of daily pre-
cipitation data from the Parameter-elevation Relationships
on Independent Slopes Model (PRISM) model (http://www.
prism.oregonstate.edu; Lofton et al., 2022) to examine the
effect of storm events and subsequent water column mixing
on G. echinulata pelagic populations (see Appendix S1:
Section S1 and scripts in Data S1: 1_Get_data/) for further
information on environmental data processing). To align
potential physical driver data most closely with weekly
G. echinulata density observations, we used daily summary
statistics (e.g., daily mean water temperature; daily sum of
precipitation) of each driver on the day of G. echinulata
sampling each week in our state-space models, except when
otherwise specified, such as when we examined lagged
values or moving averages.
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Selection of physical covariates for
Bayesian models

In keepingwith a Bayesian approach, where previous knowl-
edge of a system is incorporated into the current analysis, we
leveraged the expertise of our working group and published
research to develop a list of 82 candidate physical variables
hypothesized to influence G. echinulata densities (Carey
et al., 2014; Carey, Ibelings, et al., 2012; Cyr, 2017; de Eyto
et al., 2016; Hamilton et al., 2009; Jennings et al., 2012;
Karlsson-Elfgren et al., 2004; Kuha et al., 2016; Paerl &
Huisman, 2008; Roelofs &Oglesby, 1970).

We then performed a standardized variable selection pro-
cess to determinewhich potential drivers to include in Bayes-
ian state-space models (Appendix S1: Section S2 and
Data S1: 2_Covariate_correlation_analysis/2_Covariate_cor-
relation.R). We used Spearman correlations to prioritize
inclusion in our Bayesian models and applied a Holm-
Bonferroni correction to p values to account for multiple
comparisons and prevent false positive identification of
significant associations. The full list of covariate summary
statistics is in Appendix S1: Table S2. This approach identi-
fied eight variables significantly associated with weekly
G. echinulata densities (based on the model fit period of
2009–2014) for further evaluation: daily minimum water
temperature on the sampling day (MinWaterTemp),
daily minimum water temperature with a 1-week lag
(MinWaterTempLag), seven-day moving average of water
temperature (WaterTempMA), weekly difference in median
Schmidt stability (ΔSchmidt), daily maximum Schmidt sta-
bility with a 1-week lag (SchmidtLag), daily mean of a wind
direction indicator variable with a two-day lag (WindDir; see
Appendix S1: Section S1 and Data S1: 1_Get_data/
1_Get_buoy_wind.R for details on wind indicator variable
calculation), growing degree days (GDD), and daily sum of
precipitation (Precip).

Development of Bayesian state-space
models

During model development, a total of 18 Bayesian SSMs
were fit to data collected from Site 1, and these SSMs
increased in complexity from a random walk with no
covariates to models containing one or two of the eight
prioritized physical driver variables (Table 2; see model
code in DataS1: 4.1_JAGS_models/). Models were devel-
oped to reflect the ecology and observed density patterns
of G. echinulata, which typically exists at low densities
interspersed with rare, high-density events during the
growing season and is dormant or at extremely low densi-
ties during winter (Carey, Ewing, et al., 2012; Cottingham
et al., 2020a; Karlsson-Elfgren et al., 2005; Roelofs &

Oglesby, 1970). As a result, the expected density of
G. echinulata during our study period was considered to
be a low-density state, perhaps lower than the mean of
our observed data, which includes rare, high-density
events. For the purposes of model comparison, we consid-
ered four baseline models: first, a random walk process
model (RW model; Table 2); second, a random walk model
with an offset that allows the model to achieve a non-zero
equilibrium (OffsetRW model); third, a model with an
autocorrelation term (AC model); and fourth, a model
including both an offset and an autocorrelation term
(BaseLM model). Importantly, while the offset term (β0;
Table 2) permits models to achieve a non-zero equilibrium,
our hindcasts are conducted over short timescales (1–
4 weeks) such that we do not expect our models to achieve
equilibrium over the course of the forecast horizon. All four
baseline models included an informed prior distribution for
observation error that was developed using data from Site
2 (Appendix S1: Section S3). We also assessed a random
walk model with a random year effect as a possible base-
line model, but because we were unable to estimate a non-
zero year effect (Appendix S1: Table S3), we did not include
a random year effect in subsequent models.

The structure of our BaseLM process within the full
Bayesian SSM is provided in the following equations
(Equations 1–3):

Data model : yt �N mt,τobsð Þ ð1Þ

Process model : mt �N β0þβ1�mt�1ð Þ,τproc
� � ð2Þ

Parameter model : β
!�N 0

!
, τ!β

� �
, τproc

�Gamma αproc,βproc
� �

,

τobs �Gamma αobs,βobsð Þ,
m0 �N �5,100ð Þ ð3Þ

where yt is the current observation of G. echinulata den-
sity, mt is the current latent state of G. echinulata density,
τobs is the precision of the normal distribution specifying
the objective function or data model, β

!
is the vector of

coefficients of the linear model process where β0 is a bias
term and β1 is an autocorrelation term, τproc is the preci-
sion of the normal distribution specifying process uncer-
tainty, 0

!
and τ!β are respectively the vectors of mean and

precision for process coefficient normal priors, αproc and
βproc are respectively the shape and rate for the gamma
prior on precision in the process model, αobs and βobs are
respectively the shape and rate for the gamma prior on
precision in the data model (informed using data from
Site 2), m0 is the latent state of G. echinulata density at
t = 0 (which is the beginning of the sampling season each
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year). The mean and precision for the normal distribu-
tion prior on m0 were informed by expert opinion (author
H. Ewing).

We developed a series of one-covariate models by
extending our BaseLM to include a single physical covari-
ate from those identified in our selection process
(MinWaterTemp, MinWaterTempLag, WaterTempMA,
ΔSchmidt, SchmidtLag, WindDir, Precip, and GDD;

Table 2; Appendix S1: Table S4). The influence of GDD
on G. echinulata was visibly nonlinear in our preliminary
analyses (Appendix S1: Figure S1), so a quadratic term
was included in the model to evaluate the influence of
GDD on G. echinulata growth. We subsequently devel-
oped two-covariate models based on which covariates
were estimated to have non-zero coefficients during
fitting of single-covariate models (Schmidt+Wind,

TAB L E 2 List of Bayesian state-space models and covariates used in hindcast analysis

Model name Model description Process model Covariates

RW Random walk mtþ1 �N mt ,τproc
� �

OffsetRW Random walk with
an offset constant

mtþ1 �N β0þmtð Þ,τproc
� �

AC State-space model with
autocorrelation term

mtþ1 �N β1�mtð Þ,τproc
� �

BaseLM State-space model with both
offset and autocorrelation

mtþ1 �N β0þβ1�mtð Þ,τproc
� �

MinWaterTemp BaseLM with a single linear
covariate

mtþ1 �N β0þβ1�mt þβ2�xtð Þ,τproc
� �

Minimum water temperature
on sampling day

MinWaterTempLag BaseLM with a single linear
covariate

mtþ1 �N β0þβ1�mt þβ2�xtð Þ,τproc
� �

Minimum water temperature
1 week prior to the

sampling day

WaterTempMA BaseLM with a single linear

covariate
mtþ1 �N β0þβ1�mt þβ2�xtð Þ,τproc

� �
7-day Moving average of water

temperature including the
sampling day

SchmidtLag BaseLM with a single linear
covariate

mtþ1 �N β0þβ1�mt þβ2�xtð Þ,τproc
� �

Maximum Schmidt stability
1 week prior to the
sampling day

WindDir BaseLM with a single linear
covariate

mtþ1 �N β0þβ1�mt þβ2�xtð Þ,τproc
� �

Proportion of daily wind
measurements blowing

towards Site 1 with a 2-day
lag

GDD BaseLM with a single
quadratic covariate

mtþ1 �N β0þβ1�mt þβ2� xt þβ3� x2t
� �

,τproc
� �

Growing degree days

Schmidt+Wind BaseLM with two linear
covariates

mtþ1 �N β0þβ1�mt þβ2�x1t þβ3� x2tð Þ,τproc
� �

Maximum Schmidt stability
1 week prior to the
sampling day and

proportion of daily wind
measurements blowing
towards Site 1 with a 2-day
lag

Temp+Wind BaseLM with two linear
covariates

mtþ1 �N β0þβ1�mt þβ2�x1t þβ3� x2tð Þ,τproc
� �

Minimum water temperature
on sampling day and

proportion of daily wind
measurements blowing
towards Site 1 with a 2-day
lag

Wind+GDD BaseLM with one linear and
one quadratic covariate

mtþ1 �N β0þβ1�mt þβ2� x1t þβ3�x2t þβ4� x22t
� �

,τproc
� �

Proportion of daily wind
measurements blowing

towards Site 1 with a 2-day
lag and growing degree
days

Notes: mt is the latent state of Gloeotrichia echinulata density at time t, N() represents a normal distribution with mean and precision (τproc; precision is the
inverse of the variance). X, x1, and x2 are environmental covariates in single-covariate and two-covariate models. β

!
represents parameters for the process

model equations. Models that were fit to 2009–2014 data but subsequently excluded from the hindcast analysis due to coefficient estimates close to 0 can be
found in Appendix S1: Table S4.
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Temp+Wind, Schmidt+Temp, Schmidt+GDD, Wind+-

GDD; Table 2; Appendix S1: Table S4).
We fit each model over a 6-year period from 2009 to

2014, assessed model performance during a 2-year
hindcasting period of 2015–2016, and then conducted
uncertainty partitioning.

Model fitting using 2009–2014 data

We fit each SSM to weekly observations collected in
2009–2014 using the R packages rjags and runjags (rjags
v.4-8, runjags v. 2.0.4-2; Denwood & Plummer, 2019;
Plummer et al., 2019), which call the associated package for
Just Another Gibbs Sampler (JAGS v. 4.3.0; https://
sourceforge.net/projects/mcmc-jags/). All modeling and
analyses were conducted in the R statistical environment
(R version 4.0, R Core Team, 2020; Data S1: 4.2_Calibrate_
Bayesian_models/4.2_Calibrate_Bayesian_models.R). We
natural log-transformed G. echinulata densities to avoid
prediction of negative concentrations and standardized all
covariates using Z scores to facilitate model convergence.
We ran three Markov chain Monte Carlo (MCMC) chains
for each model, with an adaptation period of 5000 itera-
tions, a burn-in of 10,000 iterations, and a sample size of
50,000 iterations, which we thinned to 7500 samples for
hindcasting and model assessment. We evaluated conver-
gence using the potential scale reduction factor of the
Gelman-Rubin statistic, sometimes referred to as bR, where
a value approaching 1 indicates that the model has con-
verged well on a parameter estimate both within and
among MCMC chains (Appendix S1: Tables S5 and S6).
Missing data occurred for several of our candidate envi-
ronmental drivers, so NA values were imputed using a
missing data model with a Gaussian prior with mean and
variance of observations from the same week across the
model fitting period (2009–2014). Each model was struc-
tured around the sampling season, extending from the
last week in May to the first week in October for 20weeks
per year, with a single, inter-season time step between
October and May. To accommodate the gap in data collec-
tion between sampling seasons, the latent state of
G. echinulata density at the start of each sampling season
was drawn from a prior informed using expert opinion
(author H. Ewing). We used an informed prior for start-of-
season G. echinulata densities each year to ensure reason-
able early season estimates and accommodate the possibility
(and expert opinion) that springtime densities would not
necessarily be similar to early fall densities the previous
year (Carey et al., 2014; de Senerpont Domis et al., 2013;
Hampton et al., 2016; Özkundakci et al., 2015; Phillips &
Fawley, 2002; Wiedner & Nixdorf, 1998). Models with one
or more covariates for which we were unable to estimate

non-zero coefficients during model fitting were excluded
from the hindcasting analysis (Appendix S1: Table S4).

Hindcasting using 2015–2016 data

To assess the forecast skill of our Bayesian state-space
models, we constructed an uncertainty partitioning algo-
rithm in R (Figure 3) to produce 1-week-ahead through
4-week-ahead hindcasts of G. echinulata density in
2015–2016 with the propagated uncertainty estimates from
each model (Data S1: 4.3_Hindcasting/4.3_Hindcasting.R).
The primary purposes of this algorithm were to (1) facilitate
calculation of the relative contributions of various sources
of uncertainty to total hindcast uncertainty, and (2) to retain
the important temporal autocorrelation of hindcasted
covariates such as water temperature by using an ensemble
approach (described below). We focus on results from the
1-week-ahead and 4-week-ahead hindcasts here for brevity;
however, full model output is available in the Environmen-
tal Data Initiative repository (Lofton et al. 2022).

We assimilated data by iteratively adding 1 week of
data to our model input dataset and re-running our SSMs
to update parameter estimates and initial state conditions
(“today’s” G. echinulata density) for hindcasts (Figure 3
Step 1). The posterior distribution for each parameter
and initial condition was then fed into an uncertainty
partitioning algorithm (Figure 3 Step 2 a, b), outside of
JAGS. This algorithm ran the process model 4 weeks into
the future while conducting Monte Carlo uncertainty
propagation (Figure 3 Step 3). Importantly, the algorithm
produced hindcasts using different combinations of uncer-
tainty sources (e.g., just parameter uncertainty, or parame-
ter and initial conditions uncertainty, etc.), which was
needed for uncertainty partitioning.

We hindcasted “future” driver data for each physical
covariate using data observations from 2009 to 2014 for
the 2015 hindcasts and from 2009 to 2015 for the 2016
hindcasts. These historical driver time series were res-
ampled with replacement for each of the 7500 hindcast
model iterations. We chose to hindcast covariates using
an ensemble of historical observations, rather than imput-
ing them within our JAGS model, to account for temporal
autocorrelation in driver data (Figure 3, Step 2c). As
hindcasts were running, driver data from 2015 to 2016
were assimilated along with G. echinulata observations
and thereby used to update posteriors throughout the
hindcasting period. As a check on our methods for gener-
ating physical covariate hindcasts (e.g., water temperature
hindcasts), we also generated G. echinulata density
hindcasts using the observed values of drivers in 2015–
2016, and compared the results to hindcasts generated
using hindcasted drivers (Appendix S1: Table S7; Data S1:
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4.3_Hindcasting/4.3_Hindcasting_known_covars.R). For
this method-check exercise, any missing driver data from
2015 to 2016 (5.7% of observations) were gap-filled using
the mean of observations during the same week across all
previous years.

Following observations that model ensembles can pro-
vide more skilled predictions than a single model even
when some ensemble members are low performing
(Johansson et al., 2019), we also used the output of the
uncertainty partitioning algorithm to generate a simple,
unweighted model ensemble to determine if it could out-

perform our individual models (see Appendix S1: Section S4
and Data S1: 7_Model_ensemble/7_Model_ensemble.R).

Our primary criterion for hindcast model assessment
was based on predictive loss, calculated using the root
mean square error (RMSE) of predictions and the vari-
ance of the predictive interval (defined in Table 1) via the
following equation:

Predictive loss¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2þpredictive interval variance

q
:

ð4Þ

F I GURE 3 Hindcasting workflow diagram. The dotted line indicates the transition between the data assimilation (updating model fits)

and hindcasting (including uncertainty partitioning) stages of the workflow. Step 1: Data is assimilated by iteratively adding 1 week of

Gloeotrichia echinulata and physical driver data to the model input dataset and re-running SSMs in JAGS to update parameter estimates and

initial state conditions (“today’s” G. echinulata density) for hindcasts. Step 2: Draws from the posterior distribution for each week’s updated
initial condition (2a.1, 2a.2) and parameters (2b), as well as from the historical driver data time series in 2009–2014 (2c), are used to generate

hindcast input data. During the first week of the sampling season initial conditions are drawn from an informed prior using data from

Maine lakes (2a.1); during all other weeks of the season the initial conditions are drawn from the most recent estimated latent state of the re-

calibrated JAGS model output (2a.2). Step 3: Hindcast input data is fed into an uncertainty partitioning algorithm, outside of JAGS, which

runs the process model 4 weeks into the future
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The model with the smallest predictive loss at a particu-
lar forecast horizon indicates the best-performing model
at that horizon (Gelfand & Ghosh, 1998). Similar to
Akaike Information Criterion (AIC), specific values of
predictive loss are not assigned a particular interpreta-
tion; rather, there is a range of differences that are mean-
ingful (Clark, 2007; Gelfand & Ghosh, 1998). To assess
differences in predictive loss among models, we sub-
tracted the predictive loss of the best-performing model
from the predictive loss of all other models to calculate
change in predictive loss (ΔPL), with smaller ΔPL indi-
cating better-performing models and the best-fit model
having a ΔPL of 0. We note that ΔPL should be inter-
preted within the context of the magnitude of predictive
loss across models (i.e., if predictive loss is high across
models, small differences in ΔPL may be less meaning-
ful) as well as the distribution of the predicted variable
(in our case, logged G. echinulata density; Appendix S1:
Figure S2). For our study, we considered a difference in
ΔPL >0.1 ln(colonies/L) to be a meaningful difference
between models.

To further assess model skill, we also calculated the
RMSE, standard deviation of the predictive interval (pre-
dictive SD), the percent of observations falling within the
95% predictive interval (coverage), the mean difference
between median predicted and observed values (bias),
and the difference in model timesteps between when
maximum G. echinulata density was observed during the
hindcasting period and when each model predicted maxi-
mum G. echinulata density (peak timing, where �1 indi-
cates the model predicted maximum G. echinulata density
one timestep early and 1 indicates the model predicted max-
imum density one timestep late; Table 3; Data S1: 6_Out-
put_analysis/6B_Hindcast_output_analysis.R).

Uncertainty partitioning of 2015–2016
hindcasts

We used the uncertainty partitioning algorithm to conduct
uncertainty partitioning of our 2015–2016 cyanobacterial
density hindcasts via a one-at-a-time-ahead approach, where
all sources of uncertainty were initially held at fixed values
and then sequentially added back into the hindcasts
(Data S1: 4.4_Uncertainty_partitioning/4.4_Uncertainty_
partitioning.R). For example, all model parameter values
were initially set to the mean of the posterior distribution of
the re-fitted model for all 7500 hindcasting iterations; then,
when we wanted to add parameter uncertainty to our
hindcasts, we allowed parameter values to be drawn from
the full posterior distribution, resulting in a variety of possi-
ble parameter values and subsequent estimation of uncer-
tainty in those parameters. We added sources of uncertainty

to our hindcasts in the following order:G. echinulata starting
conditions (initial condition) uncertainty, parameter uncer-
tainty, driver data uncertainty, and process uncertainty. The
order of uncertainties is important because different sources
of uncertainty can interact with each other (Dietze, 2017b).
We were then able to calculate the relative contribution of
each uncertainty source to total hindcast variance based on
the incremental increase in variance as each source of uncer-
tainty was added. Not all models included all the potential
sources of uncertainty (e.g., the randomwalkmodel does not
have driver data uncertainty because it does not include any
physical covariates).

Observation uncertainty is not included in our par-
titioning results because it does not propagate and there-
fore does not affect uncertainty about the latent state of
the system (Dietze, 2017a). However, to examine the rela-
tive importance of observation error in our study system,
we assessed the estimated value of τobs, which is the pre-
cision (1/SD2) of the normal distribution used to fit
G. echinulata latent states to G. echinulata observations
in the data model component of our SSMs (Figure 1;
Equation 1).

All novel code associated with our analysis is publi-
shed via Zenodo and included in the code supplement to
this manuscript (10.5281/zenodo.5189281; Data S1).

RESULTS

Variability in G. echinulata density

Median G. echinulata density during the summertime
study period from 2009 to 2016 was 0.25 � 8.2 colonies/L
(median � SD; Figure 4). During the model fitting period
(2009–2014), G. echinulata density ranged from an
annual maximum density of 1.2 colonies/L in 2012 to
81.6 colonies/L in 2013. Notably, while the model fitting
years included two periods of high G. echinulata density
with visible surface scums (44.3 colonies/L in August
2010 and 81.6 colonies/L in September 2013), maximum
density during the 2015–2016 hindcasting period was
only 14.1 colonies/L (Figure 4). Visualizations of physical
drivers of G. echinulata density included in SSMs are pro-
vided in the Supplement (Appendix S1: Figures S3–S10).

Assessment of models fit to
G. echinulata data

Gloeotrichia echinulata growth was dependent on
G. echinulata density at the previous timestep, as indi-
cated by a converged coefficient value ranging from 0.63
to 0.83 � 0.04 to 0.10 (mean � SD) for the β1 parameter
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across models (Appendix S1: Table S5; see Table 2 for
description of β1 parameter). Parameter estimates from
fitted models indicated that G. echinulata growth was
positively associated with increases in water temperature,
high Schmidt stability, and a higher daily proportion of
wind blowing towards the focal nearshore site (see
Appendix S1: Tables S5 and S6 for model coefficient
values). The coefficient on the quadratic term for growing
degree days based on water temperature (GDD) con-
verged at �0.58 � 0.17 (Appendix S1: Table S6), indicat-
ing that increases in GDD at high values (i.e., late in the
sampling season) were associated with decreasing
G. echinulata growth.

Some variables that seemed promising based on the a
priori covariate selection protocol had estimated model
coefficients close to 0 in SSMs fit to 2009–2014 data
(Precip, ΔSchmidt; Appendix S1: Table S6), indicating a
limited association with G. echinulata growth. As a result,
these models were excluded from the hindcasting
analysis.

Using covariates that had non-zero coefficients during
fitting of single-covariate models (MinWaterTemp,
SchmidtLag, WindDir, GDD), we subsequently fit 5
two-covariate models (Schmidt+Temp, Temp+Wind,
Schmidt+Wind, Schmidt+GDD, Wind+GDD). We were
unable to estimate non-zero coefficients for Schmidt

stability in the Schmidt+Temp and Schmidt+GDD
models (Appendix S1: Table S6), and so these two models
were excluded from the hindcasting analysis.

Physical drivers did not improve on
BaseLM model for 1-week-ahead hindcasts

All single and two-covariate models as well as the
BaseLM and AC models had improved performance over
the baseline RW and OffsetRW models for 1-week-ahead
hindcasts based on predictive loss and ΔPL (Table 3).
The BaseLM model had the smallest predictive loss (indi-
cating best performance and a ΔPL of 0 ln(colonies/L))
and the lowest RMSE (Table 3 and Figure 5; models not
shown in Figure 5 can be found in Appendix S1:
Figures S11 and S12). The baseline AC model also per-
formed well at the 1-week horizon (ΔPL of 0.01 ln (colo-
nies/L)) and had higher coverage and lower bias than the
BaseLM model, demonstrating the importance of an
autocorrelation term in predicting G. echinulata density.
The magnitude of ΔPL between models with covariates
and the best-performing BaseLM model were mostly
small (ΔPL <0.1 ln(colonies/L)), indicating that models
with covariates performed similarly to the BaseLM model
at the 1-week horizon (i.e., addition of explanatory

TAB L E 3 Hindcasting results across models for the 2015–2016 hindcasting period

RMSE, ln
(colonies/L)

Predictive
SD, ln
(colonies/L)

Predictive
loss, ln
(colonies/L)

Δ predictive
loss (ΔPL),
ln (colonies/L) Coverage (%)

Peak timing
(timesteps)

Bias
(colonies/L)

Model name 1 week 4 weeks 1 week 4 weeks 1 week 4 weeks 1 week 4 weeks 1 week 4 weeks 1 week 4 weeks 1 week 4 weeks

RW 1.89 2.23 1.63 3 2.5 3.74 0.25 1.36 97.2 100 1 14 �0.43 �0.97

OffsetRW 1.88 2.1 1.62 2.99 2.49 3.65 0.24 1.27 97.2 100 1 14 �0.04 0.26

AC 1.68 1.5 1.5 2.21 2.26 2.67 0.01 0.29 100 100 1 14 �0.65 �1.18

BaseLM 1.67 1.61 1.51 2.09 2.25 2.64 0 0.26 94.4 100 1 14 �0.92 �1.51

MinWaterTemp 1.81 1.6 1.43 1.84 2.31 2.43 0.06 0.05 94.4 96.8 14 12 �0.93 �1.41

MinWaterTempLag 1.79 1.63 1.45 1.8 2.31 2.43 0.06 0.05 97.2 87.1 14 12 �1 �1.45

WaterTempMA 1.78 1.6 1.44 1.83 2.3 2.43 0.05 0.05 94.4 90.3 14 12 �0.95 �1.43

SchmidtLag 1.74 1.59 1.46 2.04 2.27 2.59 0.02 0.21 97.2 100 14 12 �0.9 �1.42

WindDir 1.77 1.55 1.5 1.99 2.32 2.52 0.07 0.14 94.4 100 1 14 �0.96 �1.51

GDD 1.83 1.59 1.43 1.84 2.32 2.43 0.07 0.05 94.4 96.8 14 14 �1.08 �1.4

Schmidt+Wind 1.82 1.55 1.46 1.98 2.33 2.51 0.08 0.13 94.4 100 14 13 �0.93 �1.43

Temp+Wind 1.88 1.56 1.43 1.8 2.37 2.38 0.12 0 91.7 93.5 14 14 �0.95 �1.42

Wind+GDD 1.88 1.55 1.43 1.82 2.36 2.39 0.11 0.01 91.7 93.5 14 13 �0.92 �1.35

Ensemble 1.80 1.56 1.46 1.89 2.32 2.45 0.07 0.07 97.2 96.8 14 14 �0.97 �1.43

Notes: RMSE, root mean square error; predictive variance, mean variance of the predictive interval; predictive loss,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2þpredictive variance

p
; Δ predictive

loss, the difference between predictive loss for each model and the best-performing model for that forecast horizon; coverage, the percentage of observations
falling within the 95% predictive interval; peak timing, the number of weeks between peak G. echinulata density during the hindcasting period and when the

model predicted peak density; bias, mean difference between median predicted and observed values. Note that all assessment metrics are conducted on log-
transformed data except for mean bias.
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F I GURE 4 Time series of G. echinulata density at site 1 in Lake Sunapee from 2009 to 2016 (a, c); panels (b) and (d) show a reduced

scale to better illustrate variability at low density

F I GURE 5 Time series of median predicted and observed G. echinulata density (colonies/L) for 1-week-ahead hindcasts in 2015 for null

models (a–d) and best-performing models (d–e, as the null BaseLM model was also a best-performing model; Table 3). Similar figures for

2016 hindcasts and models not shown here may be in found in the supplemental material (Appendix S1: Figures S11, S12 and S15)
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physical covariates did not improve hindcast skill). The
exceptions were the Temp+Wind and Wind+GDD
models, which had decreased hindcast skill compared to
the BaseLM model (ΔPL of 0.11 and 0.12 ln(colonies/L),
respectively; Table 3).

No model correctly predicted the week or magnitude
of peak G. echinulata density during the hindcasting
period, which was observed on 10 September 2015. The
four baseline models (RW, OffsetRW, AC, and BaseLM)
and one covariate model (WindDir) predicted peak den-
sity one timestep after it occurred (i.e., peak timing = 1,
meaning the model predicted peak density 1 week late;
Table 3), likely due to dependency of G. echinulata density
predictions on density at the previous timestep.

Relative model performance at the 1-week horizon
did not change when hindcasts were conducted using
observed values of drivers from 2015 to 2016 rather than
hindcasted drivers; the BaseLM and AC models were still
the best-performing models (Appendix S1: Table S7).

Water temperature models more skilled
than BaseLM at 4-week forecast horizon

Models containing water temperature covariates out-
performed the BaseLM model at the 4-week horizon
(Table 3; Figure 6; models not shown in Figure 6 may be
found in Appendix S1: Figures S13 and S14). The best-
performing model according to ΔPL at the 4-week horizon
was Temp+Wind. While some models had a lower
RMSE than Temp+Wind (AC, WindDir, Schmidt+Wind,
Wind+GDD), Temp+Wind had the lowest predictive SD,
indicating a narrower predictive interval around the median
predicted value and therefore the smallest predictive loss
(Figure 6 and Table 3). Other models containing water tem-
perature covariates (MinWaterTemp, MinWaterTempLag,
WaterTempMA, GDD, Wind+GDD) also performed well at
the 4-week horizon, all with ΔPL ≤0.05 ln(colonies/L)
(Table 3). Covariatemodels containing nowater temperature
covariates (WindDir, SchmidtLag, Schmidt+Wind) had

F I GURE 6 Time series of median predicted and observed G. echinulata density (colonies/L) for 4-week-ahead hindcasts in 2015 for null

models (a–d) and best-performing models (d–e, as the null BaseLM model was also a best-performing model; Table 3). Similar figures for

2016 hindcasts and models not shown here may be in found in the supplemental material (Appendix S1: Figures S13, S14 and S15). Note the

y-axis change between Figures 5 and 6 to accommodate larger credible and predictive intervals at the 4-week forecast horizon
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higher predictive SD (i.e., wider predictive intervals) and
therefore decreased performance (all ΔPL >0.1 ln(colonies/
L)) compared to water temperature covariate models. All
four baseline models (RW, OffsetRW, AC, BaseLM) had a
ΔPL >0.2 ln(colonies/L) at the 4-week horizon.

Despite the improvement of water temperature
models over the BaseLM model, no model successfully
predicted the week of peak G. echinulata density at the
4-week horizon (Figure 6). Patterns in predictive skill
across models at the 4-week horizon did not change
when hindcasts were generated using observed values for
drivers, with one exception: models containing GDD as a
covariate were relatively less skilled when hindcasts
used known rather than hindcasted drivers as input
(Appendix S1: Table S7). The unweighted model ensem-
ble did not improve on the top-performing models at
either the 1-week or 4-week forecast horizon, with a ΔPL
of 0.07 ln(colonies/L) at both horizons (Table 3;
Appendix S1: Section S4, Figure S15).

Process uncertainty dominated hindcast
credible intervals

Process error represented the largest proportion of uncer-
tainty for all models, which is consistent with our finding
that models both with and without covariates had little
predictive power (i.e., high predictive loss). The pro-
portion of variance attributed to process uncertainty
increased with hindcast horizon, coincident with a reduc-
tion in initial conditions uncertainty (Figure 7; models
not shown in Figure 7 can be found in Appendix S1:
Figure S16), as expected due to the decreasing influence
of initial conditions as the forecast horizon increases
(Dietze, 2017a). Neither increases in model structural
complexity nor differences in model covariates substan-
tially decreased the proportional contribution of process
uncertainty (Figure 8). The mean contribution of process
uncertainty across the hindcasting period ranged from
71% of hindcast uncertainty in the OffsetRW model to

F I GURE 7 Uncertainty partitioning of the 1-week-ahead to 4-week-ahead hindcasts averaged across 2015–2016 for null models (a–d)
and best-performing models (d–e; Table 3). Similar figures for other models may be found in the supplemental material (Appendix S1:

Figure S16)
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81% in the MinWaterTempLag model for 1-week-ahead
hindcasts, and from 81% in the Schmidt+Wind model to
94% in the AC model for 4-week-ahead hindcasts. The
relative contribution of process uncertainty to total
hindcast uncertainty varied across the hindcasting period
for individual models but was never <40% at any
timestep for any model (summary statistics of the contri-
butions of all uncertainty sources during 2015–2016 can
be found in Appendix S1: Tables S8 and S9).

The second largest component of uncertainty in
hindcasts was due to estimation of initial conditions
(i.e., the log-transformed density of G. echinulata on the
hindcast issue date), although this source of uncertainty
quickly declined to negligible levels by the 4-week-ahead
forecast horizon for all models (Figures 7 and 8). Averaged
across the hindcasting period, initial conditions uncertainty
contributions ranged from 13% (MinWaterTempLag) to
28% (OffsetRW) of the uncertainty for 1-week-ahead

hindcasts but comprised only 1% to 9% of total uncertainty
for 4-week ahead hindcasts. As expected, initial conditions
uncertainty was largest (31%–59% of total uncertainty) for
1-week-ahead hindcasts following a week with a missing
G. echinulata observation, as no data were available to con-
strain the estimated latent state (e.g., Appendix S1:
Figure S17). Parameter and driver error had negligible con-
tributions to total hindcast uncertainty for both 1-week-
ahead and 4-week-ahead hindcasts (Figures 7 and 8;
Appendix S1: Tables S8 and S9).

Observation uncertainty

Observation uncertainty (τobs) was substantial for all
models, ranging from 1.70 to 1.81 ln(colonies/L)�2 across
models (Appendix S1: Table S5), consistent with expecta-
tions as phytoplankton count data are notoriously vari-
able (Rott et al., 2007; Vuorio et al., 2007). The estimated
values of τobs correspond to a standard deviation of �0.75
ln(colonies/L), which can be interpreted as a factor of
�2.1 colonies/L difference between latent (predicted) and
observed values.

DISCUSSION

Understanding ecological systems to better forecast
future events is a critical challenge for managing
resources and public health. Use of standardized ecologi-
cal forecasting approaches such as fully specified uncer-
tainty partitioning provides a much-needed framework
for prioritizing research efforts to meet this challenge
(Dietze et al., 2018). While there are numerous hypotheses
and studies linking physical drivers to the G. echinulata sur-
face scums (Carey et al., 2014; Hyenstrand et al., 2000;
Istvánovics et al., 1993; Karlsson-Elfgren et al., 2005;
Napi�orkowska-Krzebietke & Hutorowicz, 2015; Roelofs &
Oglesby, 1970) that make water quality management chal-
lenging in low-nutrient lakes, few have fully evaluated the
predictive influence of these physical variables.

While models containing information about water
temperature converged on non-zero covariate coefficients
during model fitting and out-performed the null models
at the 4-week hindcast horizon, even these models had
low forecasting skill, particularly when G. echinulata
densities were high. Our results reiterate that significant
explanatory variables in model fitting are not necessarily
effective predictive variables in near-term ecological fore-
casts (following Ward et al., 2014), and that models that
adequately capture low densities may not successfully
predict rare high-density events. The dominance of
process uncertainty in our hindcasts emphasizes that

F I GURE 8 Uncertainty partitioning for (a) 1-week-ahead and

(b) 4-week-ahead hindcasts averaged across the 2015–2016
hindcasting period across models. White triangles indicate a best-

performing model at the respective forecast horizon as assessed by

change in predictive loss (ΔPL; Table 3)
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G. echinulata densities are probably a product of both
growth and movement of colonies, and that data collec-
tion to facilitate addition of process model structure
related to G. echinulata life history and biogeochemical
processes might be valuable in future forecasting efforts.
The importance of initial conditions uncertainty in our
study indicates that spatial and temporal misalignment of
driver data and density observations are ongoing chal-
lenges in this forecasting system, and that the imperfect
observation of both G. echinulata density and physical
covariates substantially affects forecast skill.

Of all the physical covariates we examined, water tem-
perature was important in both fitted and hindcast models
and remains a promising driver for predicting G. echinulata
density. Water temperature was positively associated with
G. echinulata density across models (see Appendix S1:
Tables S5 and S6 for coefficient estimates). In addition,
models containing water temperature covariates were more
skilled than othermodels at the 4-week hindcast horizon (all
water-temperature-containing models had a ΔPL ≤ 0.05;
Table 3). These findings are consistent with studies dem-
onstrating that cyanobacteria benefit from warmer tem-
peratures (e.g., Carey, Ibelings, et al., 2012; Paerl &
Huisman, 2008) and that water temperature is a good pre-
dictor of cyanobacterial density (Ho & Michalak, 2020;
Rousso et al., 2020). Our results indicate that a minimum
water temperature predictor (e.g., MinWaterTemp,
MinWaterTempLag) may be useful for forecasting
G. echinulata density, consistent with findings from a pre-
vious study examining predictors of Lyngbya majuscula
blooms in an Australian bay (Hamilton et al., 2009). How-
ever, we were unable to identify any physical covariates
that improved G. echinulata density predictions over the
BaseLM model at the 1-week horizon, indicating that
water temperature is likely not adequate to forecast
cyanobacterial densities at this time scale.

Process uncertainty dominated hindcast uncertainty
across all models. Neither increases in model structural
complexity nor differences in model covariates substan-
tially decreased the proportional contribution of process
uncertainty to forecast uncertainty. The predominance of
process uncertainty, coupled with low parameter uncer-
tainty (Figure 8), indicates a substantial need for both
field research and modeling studies to better understand
and represent G. echinulata biology. Some of the physical
covariates we explored may sufficiently explain weekly
differences in the most frequently observed low densities,
but none of the models we fit had skill at forecasting peak
abundances, which appeared and declined rapidly relative to
observation frequency (i.e., high-density events seldom lasted
more than 1 week). In theory, it is possible thatG. echinulata
dynamics are dominated by stochasticity (e.g., Carpenter
et al., 2020), in which case improved understanding of the

process structure would not effectively reduce process uncer-
tainty. However, our results suggest that additional process
model structure related to the biology of the focal cyanobac-
terium could improve forecast skill.

Because cyanobacteria can quickly increase from a
low-density to a high-density state, applying a switching
state-space or stochastic volatility model (Achcar
et al., 2011; Holan et al., 2009) that incorporates the tran-
sition probability from a low-density to a high-density
state might improve G. echinulata density forecasts. This
transition probability can vary through time (e.g., Pinto &
Spezia, 2016) according to the seasonal probability of
observing a high-density event, and such a model struc-
ture would permit relaxation of the assumption that pro-
cess uncertainty is constant. Given the ecology of
G. echinulata in north temperate lakes, where blooms are
more likely in the summer months and improbable in
winter, allowing for variability in state transition proba-
bility and process uncertainty would be a potentially
valuable feature in future models.

Tradeoffs in the relative importance of driver and pro-
cess uncertainty in the progression of our hindcasts sug-
gest hypotheses about missing or misrepresented processes
that could be investigated in future studies. For example,
several of the top-performing models at the 4-week hori-
zon (Temp+Wind, MinWaterTemp, MinWaterTempLag,
WaterTempMA) exhibited low driver uncertainty but high
process uncertainty during the last several weeks of the
2015 sampling season (Appendix S1: Figure S18). This is
likely because while water temperatures decreased during
this time (Appendix S1: Figures S3–S5), G. echinulata den-
sity increased (Figure 4), which is the opposite of the rela-
tion specified by our process model, where water
temperature is positively correlated with density. Conse-
quently, we can hypothesize that either (A) the relation
between density and water temperature changes during
the late summer and fall or (B) some other biological or
ecological process (e.g., germination of dormant colonies;
see Carey et al., 2014, or phenological senescence; see
Winder & Cloern, 2010) is driving G. echinulata density
during this part of the year. Our first hypothesis could be
tested by allowing the parameters governing the relation
between density and candidate environmental covariates
(water temperature, wind) to vary through time (e.g.,
Nesslage & Wilberg, 2019) or by specifying a nonlinear
relation between water temperature and density. The
uncertainty partitioning time series for the GDD and
Wind+GDD models provide some support for including a
non-linear water temperature relation to capture end-of-
season densities, as process uncertainty for these models is
relatively lower at the end of the 2015 sampling season
(Appendix S1: Figure S18). In the future, our second
hypothesis might be addressed by collecting more detailed
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biological data to build a model incorporating additional
life history stages beyond vegetative growth in the water
column. For example, it is well-documented that recruit-
ment from the sediments to the pelagic zone is an impor-
tant life stage for G. echinulata, potentially contributing
4%–40% of the water column population each week
(e.g., Barbiero & Welch, 1992; Carey et al., 2014). Includ-
ing processes or covariates at multiple time lags rep-
resenting recruitment of G. echinulata from the sediments
may improve water column abundance forecasts. Finally,
including biogeochemical processes in addition to physical
processes in the model structure may help further explain
variation in G. echinulata abundance. Unfortunately, we
did not have enough biogeochemical data available to con-
strain these processes and covariates.

While the contribution of driver data uncertainty
(accuracy of driver measurements and forecasts) to our
hindcasts was small, spatial mismatches between driver
data and response variable data may also contribute to
process uncertainty. Thus, the inclusion of more variables
collected close to our nearshore sampling sites, rather
than variables collected in the deep-water pelagic zone,
might reduce process uncertainty by better characterizing
the effect of physical drivers on localized nearshore pro-
cesses. In addition, local site variables have been found to
be important in driving benthic recruitment (Carey
et al., 2014), so inclusion of these variables could be a com-
plementary approach to including benthic recruitment in
models. Alternatively, the relatively low contribution of
driver data uncertainty to hindcasts could be due, in part, to
our method of hindcasting physical covariates using an
ensemble of historical observations. While unavailable for
our study system, near-term water temperature forecasts
generated using numerical simulation models (e.g., Thomas
et al., 2020) represent an alternative method for hindcasting
physical covariates while retaining temporal autocorrelation
in hindcasted driver data.

As with weather forecasting, initial conditions estima-
tion was an important component of forecast uncertainty
in this system. This suggests that increasing the spatial or
temporal frequency of observations could improve forecast
skill (e.g., Fox et al., 2018), as cyanobacterial densities can
be spatially heterogeneous (Franks, 1997; Serizawa
et al., 2008; Wynne & Stumpf, 2015) and change quickly
on short timescales (Dokulil & Teubner, 2000; Huisman &
Hulot, 2005; Rolland et al., 2013). While we used data
from a second nearshore sampling site to constrain our
observation error distribution, future research could incor-
porate data from other sampling sites into a hierarchical
SSM to predict local G. echinulata densities at multiple
sites. A hierarchical SSM would allow for spatial relation-
ships between sites, thereby potentially reducing uncer-
tainty due to missing observations at an individual site, as

information on states or parameters is “borrowed” from
nearby sites (Clark, 2003). A multi-site model would also
provide additional information to LSPA stakeholders
regarding nearshore cyanobacterial high-density events in
different coves across Lake Sunapee.

Because sampling and counting G. echinulata is
labor-intensive, increasing observational frequency might
necessitate assimilating other measures of cyanobacterial
abundance into forecasts, such as fluorescence-based bio-
mass measurements (e.g., Catherine et al., 2012) and
spectrophotometric pigment analysis (e.g., Küpper et al.,
2007; Thrane et al., 2015). Furthermore, as phytoplank-
ton counts are notoriously variable (Rott et al., 2007;
Vuorio et al., 2007), increased spatiotemporal sampling fre-
quency and incorporation of measures of cyanobacterial
abundance besides counts might constrain the high obser-
vation uncertainty in G. echinulata density data, thereby
improving comparisons of models to data. However, before
investing in costly increased in situ monitoring, the poten-
tial benefit of increased sampling effort could be determined
through simulated data experiments exploring how differ-
ent sampling techniques and frequencies affect forecast pre-
cision (following Dietze, 2017a).

Due to the myriad modeling, assessment, and uncer-
tainty analysis approaches that are applied across the
ecological literature, intercomparison among modeling
and forecasting studies is difficult even among studies
that focus on the same response variable (e.g., Rigosi
et al., 2010; Rousso et al., 2020), let alone across ecosys-
tems or response variables. However, preliminary com-
monalities between our oligotrophic lake cyanobacterial
density hindcasts and other uncertainty partitioning ana-
lyses do emerge. For example, our hindcasts were domi-
nated by process uncertainty and similar results have
been reported for ecological forecasts ranging from forest
biomass and productivity (Thomas et al., 2018; Valle
et al., 2009) to vertebrate species distributions (Diniz-
Filho et al., 2009; Watling et al., 2015). In addition, our
finding that uncertainty in the initial condition of
G. echinulata density at the start of a forecast is an impor-
tant contributor to forecast uncertainty is consistent with
terrestrial carbon forecasts at the annual scale (Fox
et al., 2018) and lake chlorophyll a forecasts at the
weekly scale (Huang et al., 2013). However, differences
in modeling approach or methods of uncertainty quanti-
fication preclude definitive or quantitative comparisons
across these studies.

Access to data and standardized expectations for
uncertainty partitioning are critical to the iterative
improvement of forecast skill. Our study was enabled
both by collaborative sharing of long-term data through
the Global Lake Ecological Observatory Network, which
facilitated fitting and validation of hindcasting models
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over many years (Cottingham et al., 2020a, 2020b; LSPA,
Weathers, et al., 2020; LSPA, Steele, et al., 2020), and
access to publicly available R code examples of how to
conduct uncertainty partitioning (https://github.com/
EcoForecast/EF_Activities). As such, our study illustrates
the importance of open science and findable, accessible,
interoperable, and reusable (FAIR) scientific practices
with respect to data and code (Powers & Hampton, 2019;
Wilkinson et al., 2016) to reduce barriers to adoption of
techniques such as uncertainty partitioning and advance
the field of ecological forecasting.

Developing forecasts for cyanobacterial density is espe-
cially challenging and uncertainty partitioning in these
highly dynamic systems can help prioritize research to
improve process understanding or sampling design. Over-
all, despite considering dozens of possible environmental
covariates, our hindcasts were not skilled enough to pre-
dict the sudden, infrequent increases in cyanobacterial
density that cause concern for water resource managers
and other stakeholders in both oligotrophic and eutrophic
lakes. While the difficulty in predicting near-term
cyanobacterial densities is well-established, our work high-
lights the utility of formal uncertainty partitioning for pro-
viding insight on how to target data collection and
modeling efforts to improve forecast skill, following Dietze
et al. (2018). Our study determined that water temperature
is a promising driver for forecasting cyanobacterial densi-
ties, and that inclusion of additional process model struc-
ture to better represent G. echinulata biology could
improve forecast skill by reducing process uncertainty. In
addition, our findings indicate that increased observational
frequency, addition of alternate measures of G. echinulata
density, or incorporation of multiple sampling sites into a
single model could improve forecasts by reducing initial
conditions uncertainty. Even if our initial forecasting
efforts are not very skilled, the process of iteratively con-
fronting our models with data and quantitatively examin-
ing forecast uncertainty provides a path for improvement
(Bauer et al., 2015), equipping ecologists with the informa-
tion they need to ultimately develop actionable forecasts
to improve resource management.
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