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A B S T R A C T   

The biogeochemical cycles of iron (Fe) and manganese (Mn) in lakes and reservoirs have predictable seasonal 
trends, largely governed by stratification dynamics and redox conditions in the hypolimnion. However, short- 
term (i.e., sub-weekly) trends in Fe and Mn cycling are less well-understood, as most monitoring efforts focus 
on longer-term (i.e., monthly to yearly) time scales. The potential for elevated Fe and Mn to degrade water 
quality and impact ecosystem functioning, coupled with increasing evidence for high spatiotemporal variability 
in other biogeochemical cycles, necessitates a closer evaluation of the short-term Fe and Mn dynamics in lakes 
and reservoirs. We adapted a UV-visible spectrophotometer coupled with a multiplexor pumping system and 
partial least squares regression (PLSR) modeling to generate high spatiotemporal resolution predictions of Fe and 
Mn concentrations in a drinking water reservoir (Falling Creek Reservoir, Vinton, VA, USA) equipped with a 
hypolimnetic oxygenation (HOx) system. We quantified hourly Fe and Mn concentrations during two transitional 
periods: reservoir turnover (Fall 2020) and HOx initiation (Summer 2021). Our sensor system successfully 
predicted mean Fe and Mn concentrations and trends, ground-truthed by grab sampling and laboratory analysis. 
During fall turnover, hypolimnetic Fe and Mn concentrations began to decrease more than two weeks before 
complete mixing of the reservoir, with rapid equalization of epilimnetic and hypolimnetic Fe and Mn concen-
trations in less than 48 h after full water column mixing. During the initiation of HOx in Summer 2021, Fe and 
Mn displayed distinctly different responses to oxygenation, as indicated by the rapid oxidation of soluble Fe but 
not soluble Mn. This study demonstrates that Fe and Mn concentrations are sensitive to changes in redox con-
ditions induced by stratification and oxygenation, although their responses to these changes differ. We also show 
that high spatio-temporal resolution predictions of Fe and Mn can improve drinking water monitoring programs 
and reservoir management practices.   

1. Introduction 

Elevated levels of iron (Fe) and manganese (Mn) in lakes and res-
ervoirs have negative consequences for ecosystem health and water 
quality. Increasing Fe concentrations have been linked to the long-term 
browning of lakes, which has numerous, significant ecological conse-
quences (Kritzberg et al., 2020). Mn contamination of drinking water 
can pose risks to human health, especially to children (Wasserman et al., 
2006). Furthermore, elevated concentrations of both metals negatively 

affect the taste, odor, and appearance of water and can damage water 
supply infrastructure through corrosion and deposition (World Health 
Organization 2017). As a result, the U.S. Environmental Protection 
Agency (USEPA) has established secondary standards for Fe and Mn 
concentrations in drinking water of 0.3 and 0.05 mg/L, respectively 
(USEPA 2021). 

As Fe and Mn are redox-sensitive elements, their abundance in 
aquatic systems is largely influenced by dissolved oxygen (DO) con-
centrations (Hem 1972; Davison 1993). The oxidation state of Fe and Mn 
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in natural waters is dominated by two forms: insoluble, oxidized Fe(III) 
and Mn(IV), and soluble, reduced Fe(II) and Mn(II) (Davison 1993). In 
most aquatic systems under circumneutral pH, this oxidation state is 
determined by the redox conditions at a given point in space and time. 
Under oxic conditions, Fe and Mn are generally present as insoluble Fe 
(III) and Mn(IV) solids in rocks and sediments. However, thermal 
stratification in lakes and reservoirs can create anoxic conditions in the 
hypolimnion and bottom sediments, promoting the microbial reduction 
of Fe and Mn in sediments and the subsequent release of soluble, 
reduced Fe and Mn into the water column (Lovely 1991). In such set-
tings, soluble Fe and Mn can accumulate in hypolimnetic waters 
throughout the stratified period (McMahon 1969; Davison 1993). 

An increasingly used in situ approach for mitigating water quality 
issues in drinking water reservoirs is hypolimnetic oxygenation (HOx), 
which creates oxic conditions in previously anoxic waters and creates a 
thicker aerobic zone in bottom sediments (e.g., Beutel and Horne 1999; 
Dent et al., 2014; Gerling et al., 2014). For the case of metals, by 
increasing oxygen availability in the hypolimnion, HOx operation hin-
ders the release of soluble Fe and Mn into sediment pore waters, slows 
upward diffusion into the water column, and promotes Fe and Mn 
oxidation and precipitation in the hypolimnion (Preece et al., 2019). 
HOx systems have been shown to effectively reduce soluble Fe and Mn in 
the hypolimnion of drinking water reservoirs (Gantzer et al., 2009). 
However, removing soluble Mn from the water column requires more 
sustained oxygen inputs, due to its slower oxidation reaction kinetics 
(Bryant et al., 2011; Munger et al., 2016). To optimize water treatment 
using HOx systems, it is essential for drinking water managers to un-
derstand both the short-term (sub-weekly) and long-term (monthly to 
yearly) Fe and Mn dynamics in supply reservoirs. 

Although Fe and Mn cycling in temperate lakes and reservoirs has 
predictable seasonal trends dictated by thermal stratification, there is a 
lack of research on short-term Fe and Mn dynamics. Quantifying short- 
term trends requires high-frequency data, which we define as having a 
temporal resolution of daily or shorter. To our knowledge, there is no 
standard definition for classifying data as ‘high-frequency’ or trends as 
‘short-term.’ Thus, we developed operational definitions based on the 
contrast with traditional monitoring frequencies, which are typically 
weekly or longer (e.g., Marcé et al., 2016). The paucity of previous 
research on Fe and Mn cycling at sub-weekly scales represents a key 
knowledge gap, given that biogeochemical process rates can fluctuate 
rapidly over hourly to daily time scales (McClain et al., 2003). Studies 
have identified diel signals in the cycles of numerous biogeochemical 
variables, including Fe and Mn, and many biological and chemical 
processes in aquatic environments operate on hourly to daily scales, 
often with significant impacts on nutrient cycling and ecosystem pro-
ductivity (Istvánovics et al., 2004; Nimick et al., 2011; Kurz et al., 2013). 
Additionally, episodic hydrologic events, which may be missed by 
traditional sampling methods, can have pronounced effects on biogeo-
chemical cycling dynamics (e.g., Marcé et al., 2016, Coraggio et al., 
2022). 

Studies analyzing the efficacy of HOx systems have observed sub-
stantial changes in Fe and Mn concentrations in response to changes in 
oxygenation (Dent et al., 2014; Munger et al., 2019). For example, Dent 
et al. (2014) found that total Fe and Mn concentrations decreased by 
71% and 73%, respectively, after 8 h of oxygenation of a 
previously-anoxic reservoir hypolimnion. Munger et al. (2019) found 
that Fe and Mn sediment fluxes into the water column were 1.4 and 4.5 
times higher, respectively, two weeks after the onset of hypolimnetic 
anoxia in a reservoir. The dynamic behavior of Fe and Mn concentra-
tions in response to both management and natural processes (e.g., sea-
sonal thermal stratification) underscores the importance of quantifying 
these complex dynamics, which could have substantial implications for 
drinking water management and water quality monitoring. To date, 
monitoring programs have been hindered by the coarse temporal fre-
quency of months to seasons necessitated by traditional manual sam-
pling and laboratory analysis techniques. 

Recent developments in sensor technology have enabled high- 
frequency collection of some water quality variables in situ, without 
the need for manual sampling and laboratory analysis (Porter et al., 
2009; Rode et al., 2016; Kruse 2018). However, most high-frequency 
sensors are only capable of measuring a single variable at a time and 
typically have a low spatial resolution. Moreover, numerous water 
quality variables, including Fe and Mn, lack instrumentation capable of 
unattended, reagent-less, high-frequency measurement. 

To circumvent the limitations of current sensor technology, spec-
trophotometers have been designed to measure water quality variables 
in situ at a high frequency using multi-wavelength absorbance patterns 
in the ultraviolet-visible (UV–vis) spectrum. These sensors do not 
require chemical reagents and are capable of measuring multiple vari-
ables simultaneously. To date, UV–vis spectrophotometers have been 
successfully used to measure chemical variables that have a strong 
correlation with known peaks in their absorbance spectra, such as ni-
trate, dissolved organic carbon, and total suspended solids (Etheridge 
et al., 2014; Sakamoto et al., 2009). Additionally, several studies have 
had success using them to measure concentrations of other biogeo-
chemical variables without well-defined spectral peaks, such as Fe, total 
phosphorus, soluble reactive phosphorus, and dissolved silica (Birgand 
et al., 2016; Etheridge et al., 2014; Vaughan et al., 2018). Although Fe 
and Mn are not known to have well-defined spectral peaks, they absorb 
and scatter light at wavelengths across the UV–vis spectrum and they 
can affect the absorbance of a water sample through complexation with 
organic molecules (Poulin et al., 2014; Weishaar et al., 2003; Xiao et al., 
2013). Therefore, the covariance between the variable of interest (e.g., 
Fe or Mn) and the overall “color matrix” of the water (the combination 
of multiple light-sensitive proxies) can be detected in the UV–vis 
absorbance spectra and used to predict concentrations of the variable of 
interest with statistical algorithms (Birgand et al., 2016). 
Laboratory-measured concentrations from manually collected samples 
are then subsequently used to develop predictive models that correlate 
known concentrations with absorbance spectra. 

Numerous algorithms exist for calibrating UV–vis absorbance spectra 
to observed concentrations, but the most commonly-employed method 
is partial least squares regression (PLSR) (DiFoggio 2000; Birgand et al., 
2016; Vaughan et al., 2018). PLSR is well-suited for modeling re-
lationships within data that have a large number of highly correlated 
explanatory variables and relatively few observations, such as 
multi-wavelength spectral measurements (Wold et al., 2001). Previous 
studies have used in situ spectrophotometers coupled with PLSR models 
to predict water quality variables in a variety of environments, including 
streams, lakes, estuaries, and oceans (Sakamoto et al., 2009; Avagyan 
et al., 2014; Etheridge et al., 2014; Birgand et al., 2016; Vaughan et al., 
2018). However, to the best of our knowledge, only one study (Birgand 
et al., 2016) has evaluated the potential of this method to observe the 
high-frequency dynamics of metals in stratified reservoirs. 

In their study, Birgand et al. (2016) designed a multiplexor 
sequential sampling system to pump water from different depths in a 
reservoir to one spectrophotometer. This combined pumping system was 
developed because a single spectrophotometer cannot capture the rapid 
changes in elemental concentrations that occur along the strong thermal 
gradients with depth in lakes and reservoirs. Additionally, the cost of in 
situ spectrophotometers ($8000–25,000 USD as of 2023) prohibits the 
acquisition of multiple units needed to characterize spatial (depth) dy-
namics. This system has proven to be able to characterize variable 
reservoir biogeochemical concentrations over both depth and time 
(Birgand et al., 2016). 

In this study, we used the system developed by Birgand et al. (2016) - 
i.e., an in situ spectrophotometer coupled with a multiplexor pumping 
system - and PLSR modeling to predict high-frequency Fe and Mn con-
centrations at nine depths in a seasonally-stratified drinking water 
reservoir. We then used this approach to observe the short-term (sub--
weekly) variability of Fe and Mn concentrations during two distinct 
transitional periods: reservoir turnover in Fall 2020 and initiation of 

N.W. Hammond et al.                                                                                                                                                                                                                         



Water Research 240 (2023) 120084

3

HOx operation in Summer 2021. The objectives of this study were to: 1) 
predict high-resolution Fe and Mn concentrations using spectral absor-
bance data coupled with PLSR modeling, 2) identify whether Fe and Mn 
concentrations exhibit temporal variability across spatial (depth) gra-
dients, and 3) quantify the effects of reservoir turnover and hypo-
limnetic oxygenation on Fe and Mn concentrations. We provide a 
detailed overview of our method below for interested readers and show 
how it can be applied to provide high-frequency Fe and Mn data at 
multiple depths in our focal reservoir. 

2. Methods 

2.1. Study site 

Field data were collected at Falling Creek Reservoir (FCR), a small 
(0.12 km2, maximum depth = 9.3 m), dimictic reservoir located in 
Vinton, Virginia, USA (Fig. 1, Gerling et al., 2014). FCR was constructed 
in 1898 and is managed as a drinking water reservoir by the Western 
Virginia Water Authority (WVWA) in Roanoke, VA. The summer strat-
ified period at FCR typically lasts from May to October. FCR is located in 
a forested catchment with one primary inflow and several smaller trib-
utaries. Due to the underlying geology, which consists of Fe- and 
Mn-rich rocks of the Blue Ridge and Piedmont Provinces (Woodward, 
1932), this region has elevated Fe and Mn concentrations in surface and 
groundwater (Chapman et al., 2013), motivating the need for water 

quality interventions (e.g., Bryant et al., 2011). 
FCR contains a HOx system, which can be activated and deactivated 

to control DO concentrations in the hypolimnion without altering 
thermal stratification or water temperature (Fig. 1, Gerling et al., 2014). 
The HOx system at FCR was activated from 29 June 2020 until 2 
December 2020, when it was turned off for the winter period. It 
remained deactivated from 2 December 2020 until 11 June 2021, at 
which point it was turned back on and remained activated until the end 
of the study period on 21 June 2021. During its activation periods, the 
HOx added concentrated oxygen (~95% purity) at its maximum oper-
ation level (25 kg/d) to the hypolimnion (Gerling et al., 2014). 

FCR is equipped with sensors that continuously monitor the physical, 
chemical, and meteorological conditions at the reservoir’s deepest spot, 
which was the primary sampling location in this study (Fig. 1). DO 
sensor data was collected using a YSI EXO2 (Yellow Springs, OH) 
deployed at 1.6 m and two In-Situ RDO-PRO-X sensors (Fort Collins, CO) 
at 5 m and 9 m (Carey et al., 2022b). Ten-minute resolution temperature 
measurements were collected by in situ sensors deployed every meter 
from the surface to the reservoir sediments (Carey et al., 2022b). To 
quantify the intensity of reservoir thermal stratification during each 
deployment, we calculated Schmidt stability (J m− 2, Idso 1973) using 
temperature measurements and bathymetric data from FCR (Carey 
et al., 2022c) as inputs to the R package rLakeAnalyzer (Winslow et al., 
2019). Meteorological variables were measured by a research-grade 
Campbell Scientific meteorological station deployed on the dam of 
FCR (Carey et al., 2022a). 

2.2. High-frequency monitoring system 

We monitored high-frequency light absorbance at multiple depths in 
FCR using a s::can Spectrolyser UV–Visible spectrophotometer (s::can 
Messtechnik GmbH, Vienna, Austria). This spectrophotometer was 
coupled with a multiplexor pumping system (’MUX’ from MultiplexÔ, 
LLC; for technical details on the multiplexor pumping system and the 
sensor setup, refer to Birgand et al., 2016 and Figs. S1-S3). The MUX 
pumps water samples sequentially from multiple depths into a 
flow-through cuvette where the UV–vis absorbance spectra of the sam-
ple are measured by the spectrophotometer. The system used in our 
study collected measurements of light absorbance every 2.5 nm wave-
lengths from 200 nm to 732.5 nm (optical path length of 10 mm) 
approximately at an hourly time step for six monitoring depths in the 
reservoir. 

The MUX system was used to collect high-frequency data during two 
time periods: reservoir turnover (“Turnover Deployment”) and the 
initiation of HOx operation (“Oxygen On Deployment”). The Turnover 
Deployment captured the natural oxygenation and mixing processes that 
occurred during reservoir turnover and lasted from 16 October to 9 
November 2020. In this study, fall turnover was defined as the onset of 
reservoir mixing, as determined by the first time when the temperature 
differential between 0.1 m and 9 m depths in the reservoir was <1 ◦C 
after summer stratification (following McClure et al., 2018, Thomas 
et al., 2020, and others), which occurred on 2 November 2020. During 
this time period the HOx system was on, so the hypolimnion was oxic 
before turnover, but the reservoir was thermally stratified. The Oxygen 
On Deployment was conducted between 26 May and 21 June 2021; 
during that time the HOx system was initiated on 11 June 2021 at 11:00 
EDT. This deployment captured the engineered oxygenation and mixing 
processes resulting from the initiation of HOx operation. The HOx sys-
tem induced internal mixing within the hypolimnion, but the overall 
thermal stratification of the reservoir was not affected. Prior to HOx 
operation, the reservoir was thermally-stratified and the hypolimnion 
was anoxic (DO < 1 mg/L); thus, while the HOx successfully added 
oxygen to the hypolimnion at its maximum capacity, as indicated by the 
transformation from soluble to total fractions of metals during activation 
periods (see results below), we observed a limited increase in DO con-
centrations due to high chemical oxygen demand, which has been 

Fig. 1. Bathymetric map of Falling Creek Reservoir, Vinton, VA, USA 
(37.302913◦N, − 79.837070◦W) depicting the primary sampling location (star 
icon) and hypolimnetic oxygenation (HOx) system. The HOx system consists of 
outlet piping with a distribution header (black line) and an oxygen contact 
chamber (shed icon). 
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observed in many other waterbodies (Muller et al. 2012). 
We took multiple steps to limit the influence of fouling of the internal 

components of the MUX system, due to precipitation of Fe in contact 
with oxygen in the measuring cuvette. Between each pump cycle, 
deionized water was flushed through the system. At the end of each 
pump sequence (one sample from each depth), dilute hydrochloric acid 
(5%) was automatically pumped through the system and allowed to sit 
in the flow-through cuvette for approximately 2 min. We also collected a 
reference measurement in air at the end of each cycle, which was useful 
in determining the extent of fouling. In addition, we switched out the 
cuvette every two to three days and brought the fouled one back to the 
lab for the following cleaning routine: soak in 50% HCl for 24 h, rinse 
with DI water, soak in oxalic acid for 24 h, and finally rinse with DI 
water. Despite these efforts, some fouling was still evident during certain 
time periods (see Figs. S4–5). Fouling was most pronounced in the lower 
wavelengths (200–250 nm; see Figs. S6–7) and therefore we removed 
values for wavelengths less than 250 nm before fitting PLSR models. 

2.3. Sampling methods 

The method seeks to create a statistical relationship between light 
absorbing constituents (the “color matrix”) of the water with Fe and Mn 
concentrations. To create the calibration dataset, we sampled total and 
soluble Fe and Mn weekly throughout the stratified period at times and 
depths at which light absorbance data from the MUX-spectrometer 
couple were available. For this study, water samples were collected at 
the reservoir outtake depths of 0.1, 1.6, 3.8 m (epilimnion), 5.0 m 
(metalimnion), 6.2, 8.0, and 9.0 m (hypolimnion) using a 4-L Van Dorn 
sampler, thereby matching the MUX sampling depths. Samples for sol-
uble Fe and Mn were syringe-filtered using 0.45 µm nylon filters. Both 
total and soluble metals samples were preserved with trace metal grade 
nitric acid to pH < 2. Samples were analyzed using Inductively Coupled 
Plasma Mass Spectrometry (ICPMS). Minimum reporting levels were 
0.005 mg/L (Fe) and 0.0001 mg/L (Mn). The dataset, including methods 
for sample collection and analysis, can be found in Schreiber et al. 
(2022). 

To assess short-term variability in metals concentrations and to 
calibrate and validate PLSR models, additional samples were collected 
every 2–4 h during two 24-hour campaigns. The first campaign occurred 
on 16–17 October 2020 (n = 7; Fig. S8); the second campaign occurred 
on 10–11 June 2021 (n = 8; Fig. S9). All sampling data (weekly and 
high-frequency) were used to calibrate PLSR models. 

Calibration datasets were assessed for potential outliers using an 
ensemble approach implemented in the R package enpls (Xiao et al., 
2019). For each model, an ensemble of 50 PLSR sub-models was 
generated using Monte Carlo resampling and the empirical predictive 
error distribution for each sample was used to identify outliers. Samples 
with a mean predictive error greater than three standard deviations from 
the mean predictive error for all samples or with a standard deviation 
greater than three times the mean standard deviation of all samples were 
considered potential outliers (Cao et al., 2017). We took a conservative 
approach and did not eliminate all samples that met these criteria, but 
rather only removed samples that were identified not only as outliers by 
the aforementioned method but also led to a deterioration of model fit, 
showed signs of sampling/analytical error, or were collected during 
times of cuvette fouling. After removing outliers, the calibration datasets 
for the Oxygen On Deployment had approximately 30% more observa-
tions than for the Turnover Deployment (Fig. 3, Table 1). Median Fe and 
Mn concentrations were substantially higher in the hypolimnion (6.2, 
8.0 and 9.0 m) than the epilimnion (0.1, 1.6, 3.8 m) during both de-
ployments (Fig. 3). 

2.4. Predicting Fe and Mn concentrations from optical measurements 
using PLSR 

We used PLSR to compute predictions of total and soluble Fe and Mn Ta
bl
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concentrations based on the correlation between absorbance spectra and 
sampling data. Data analysis and QA/QC was performed in the R pro-
gramming environment (R.v.4.2.1). Model building was conducted 
using the pls package (Mevik et al., 2020; R Core Team 2022). The pls 
package has a built-in function for determining the number of model 
components based on the root mean squared error of prediction 
(RMSEP) using 10-fold cross validation (Mevik et al., 2020). The algo-
rithm randomly chooses a subset of the data to be withheld for valida-
tion, while fitting the model to the rest of the data. This is repeated 
across 10 random segments and the RMSEP is computed for each 
component. RMSEP for each component is plotted against the number of 
components, and the number of components included in the final PLSR 
model is determined based on this curve. Generally, as the number of 
components increases, the RMSEP curve decreases sharply until reach-
ing an inflection point where it plateaus (Fig. S18). To avoid overfitting, 
we chose the number of components equal to this inflection point plus or 
minus one, or the global minimum of the curve, whichever resulted in 
the lowest number of components (following Etheridge et al., 2014, 
Birgand et al., 2016, Mevik et al., 2020). Furthermore, it has been 
suggested that the number of components should not exceed 10% of the 
total number of observations used to calibrate the model (Mevik et al., 
2020). We followed this rule to the greatest extent possible. In some 
cases, the number of components slightly exceeded the 10% require-
ment, but this only occurred when including an additional component 
would substantially decrease the RMSEP determined by 10-fold cross 
validation, while also improving the variance explained by the model. 
Given the sensitivity of the PLSR method, our approach was to optimize 
the tradeoff between model fit and predictive accuracy. Once the 
number of components was determined, the model was fit to the 
observational data and predictions were made using the high-frequency 
absorbance measurements. In some cases, PLSR predicted slightly 
negative concentration values. For the purposes of this analysis, we 
considered negative values to have a value of 0 mg/L for all variables, 
unless stated otherwise. 

Separate PLSR models were developed for each variable (total Fe, 
soluble Fe, total Mn, and soluble Mn) and deployment. Based on the 
distinctly different chemical and biological characteristics between 
layers of the reservoir (i.e., epilimnion and hypolimnion), we found that 
the best fit was obtained when we used different models for the two 
layers. In stratified reservoirs such as FCR, Fe and Mn concentrations are 
higher in the hypolimnion than the epilimnion (see Fig. 3). Therefore, 
we had an epilimnion model which included data from 0.1, 1.6, and 3.8 
m and a hypolimnion model which included data from 6.2, 8.0, and 9.0 
m (Table 1). Although we also collected data from 5.0 m, we did not 
include them in our analyses since this is at the transition between the 
two layers (metalimnion; see McClure et al., 2018) and thus not appli-
cable to either layer. We developed separate models for the Turnover 
Deployment and the Oxygen On Deployment. In the end, we had four 
separate models for each of the four variables (total and soluble Fe and 
Mn), resulting in 16 different models. 

To assess the uncertainty of the predictions made using PLSR, we 
calculated nonparametric bootstrap predictive intervals following 
methods described by Denham (1997). Briefly, a model was first fit to 
the available observational data (Y) and absorbance spectra (X) using 
the predetermined number of components. This model was used to make 
predictions (E). Then, the residuals of the original model were randomly 
sampled and added to Y and E to obtain a new set of values for the 
dependent variable, denoted here as Y’, and new predictions, denoted 
here as E’. A new model was fit to X and Y’, and again used to make new 
predictions (Ê’). The prediction error was then calculated based on E’ - 
Ê’. This process was repeated 1000 times to obtain the bootstrapped 
error distribution (G). We then calculated the 0.05 and 0.95 quantiles of 
G, which represented the 90% predictive intervals around the pre-
dictions from the original model (Denham 1997). 

Model skill was assessed using the coefficient of determination (R2) 
from the linear regression between predicted and observed values, as 

well as the root mean squared error of prediction (RMSEP) for each 
model (following Wold et al., 2001 and Mevik et al., 2020). 

All observational data, including the spectrophotometer data, are 
published in the Environmental Data Initiative repository (Carey et al., 
2022a; Carey et al., 2022b; Carey et al., 2022c; Schreiber et al., 2022, 
and Hammond et al., 2023). All code used to analyze the spectropho-
tometer data with PLSR and generate the figures is available in the 
Zenodo repository (Hammond 2022). 

3. Results 

3.1. Routine Fe and Mn sampling trends 

Weekly sampling at FCR showed levels of Fe and Mn in exceedance of 
the EPA standards during the 2020 and 2021 stratified periods, with 
maximum total Fe and Mn concentrations of 18.5 mg/L and 2.2 mg/L, 
respectively (Fig. 2). Hypolimnetic concentrations of both metals 
generally increased throughout the summer stratified period of each 
year, until reservoir fall turnover (Fig. 2). Following reservoir turnover, 
concentrations of both metals remained < 1 mg/L until the following 
spring (Fig. 2). 

3.2. PLSR model performance 

A comparison of skill metrics among the 16 models revealed that 
PLSR performed best for models calibrated with Fe and Mn concentra-
tions greater than 0.03 mg/L (Tables 1, S1; Fig. S10). Model skill was 
also sensitive to the number of components included in each model. For 
the Turnover Deployment, the number of components included in the 
PLSR models ranged from 3 to 5 (9–14% of n). For the Oxygen On 
Deployment, 4 components were used for all PLSR models (8–9% of n) 
(Table 1). Sample size was negatively correlated with R2, but positively 
correlated with RMSEP (Fig. S10). 

Turnover Deployment models explained a high proportion of the 
variability in total and soluble Fe and Mn concentrations (R2 = 0.74 to 
0.97), excluding hypolimnetic soluble Fe which had a poor model fit (R2 

= 0.06), likely due to low concentrations (median = 0.02 mg/L) 
(Table 1; Fig. 3). In comparison, Oxygen On Deployment models 
explained a lower proportion of the variability in total and soluble Fe 
and Mn concentrations (R2 = 0.57 to 0.79), with one model of epi-
limnetic soluble Mn having an R2 of 0.26, likely due to low concentra-
tions (median = 0.01 mg/L) (Table 1). PLSR model performance also 
varied between the hypolimnion and epilimnion. For most models, the 
epilimnetic PLSR model had a higher R2 value than the corresponding 
hypolimnetic PLSR model (Table 1). 

In most cases, PLSR predictions were within the range of concen-
tration values in the calibration dataset (Figs. 3, S11–12), but they did 
not capture some of the high-magnitude fluctuations in the sampling 
data. Analysis of the Fe and Mn time series (Figs. 4D-E and 5D-E) and 
calibration (Figs. S11–12) suggests that inaccuracy in the models was 
largely attributed to calibration error for observations far from the mean 
concentration of the calibration data (i.e., outliers). Additionally, when 
predicting variables with low concentrations (< 0.03 mg/L), especially 
with the epilimnion models, some predictions were in the negative range 
(Figs. 4D-E; 5D-E). 

3.3. Reservoir turnover deployment 

3.3.1. Water temperature, stratification, and DO concentrations 
DO concentrations, water temperature, and Schmidt stability varied 

considerably over the course of the Turnover Deployment (Fig. 4A-C). 
Prior to turnover, DO concentrations were strongly stratified by depth 
and exhibited large sub-daily fluctuations in the epilimnion and metal-
imnion (Fig. 4C). Hypolimnetic DO concentrations were stable around 2 
mg/L during the pre-turnover period, due to the HOx system operation 
(Fig. 4C). A sharp temperature gradient (4–7 ◦C) between the epilimnion 
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and hypolimnion existed until approximately 3 days prior to turnover 
(Fig. 4B). However, the water temperature profile equalized periodically 
between the metalimnion and hypolimnion prior to turnover, indicating 
ephemeral periods of mixing between those layers (Fig. 4B). Starting on 
29 October 2020, the temperature gradient decreased progressively 
until the full water column temperature profile equalized on 02 
November 2020, meeting our criteria for turnover. 

3.3.2. Predicted Fe and Mn concentrations 
Reservoir turnover had substantial impacts on Fe and Mn concen-

trations. At the beginning of the deployment (16 October 2020), 17 days 
prior to turnover, both Fe and Mn displayed large differences in con-
centration between the epilimnion and hypolimnion (Fig. 4D-E). The 
average total Fe and total Mn concentrations across all hypolimnetic 
depths (6.2, 8.0, and 9.0 m) were 3.73 mg/L and 1.48 mg/L; across all 
epilimnetic depths (0.1, 1.6, and 3.8 m) they were 0.41 mg/L and 0.14 
mg/L, respectively (Fig. 4D-E). Substantial changes in epilimnetic con-
centrations were not observed until 24 h prior to turnover. Within that 
24 hour period, average epilimnetic total Fe and total Mn increased by 
70% (0.61 to 1.04 mg/L) and 66% (0.29 to 0.48 mg/L), respectively. 

In contrast to the epilimnion, we observed declining total Fe and Mn 
concentrations in the hypolimnion prior to turnover (Fig. 4D-E). Be-
tween 16 October and 02 November 2020, hypolimnetic total Fe and 

total Mn concentrations declined at a rate of 0.13 and 0.11 mg/L/d, 
respectively. However, there were also periods of fluctuations in total Fe 
and total Mn concentrations by as much as 1 mg/L/d (Fig. 4D-E). In the 
24 h prior to turnover, average hypolimnetic total Fe and total Mn 
decreased by 45% (2.09 to 1.14 mg/L) and 32% (0.82 to 0.55 mg/L), 
respectively. 

A strong concentration gradient between the epilimnion and hypo-
limnion remained for total Fe and total Mn until full reservoir turnover 
on 02 November 2020. After turnover, water temperature and DO 
rapidly equalized across the full water column, coinciding with the rapid 
equalization of total Fe and Mn concentrations across the water column 
(Fig. 4D-E). Total Fe and Mn concentrations decreased and were less 
variable than during the pre-turnover period (Fig. 4D-E). The reservoir 
remained well-mixed for 2 days, but then shifting thermal gradients led 
to a temporary re-stratification that began on 02 November 2020 and 
lasted until the end of the deployment on 09 November 2020 (Fig. 4A- 
B). The re-stratification of the reservoir was also evident in total Fe and 
total Mn concentrations (Fig. 4D-E). 

3.4. Oxygen on deployment 

3.4.1. Water temperature, stratification, and DO 
DO concentrations, water temperature, and Schmidt stability 

Fig. 2. A) Total Fe and B) total Mn concentrations in FCR from 2020 until 2021. Total Fe and Mn concentrations are derived from manual samples that are collected 
approximately weekly during the summer stratified period each year. The HOx system was activated on 29 June 2020 and 11 June 2021 (solid black vertical lines) 
and deactivated on 02 December 2020 and 06 December 2021 (dashed black vertical lines). Values are linearly interpolated for plotting purposes. Inverted triangles 
at the top of the panel indicate sampling times. 
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differed considerably between the two deployments (Fig. 5A-C). At the 
start of the Oxygen On deployment (26 May 2021), 16 days prior to HOx 
activation, epilimnetic DO concentrations were high (5–15 mg/L) and 
exhibited a consistent decline throughout the deployment due to warm 
air temperatures (Fig. S14). Metalimnetic and hypolimnetic DO con-
centrations were both approximately 0 mg/L throughout the deploy-
ment. The water temperature profile shows distinctly stratified layers in 
the reservoir prior to HOx operation, with a sharp temperature gradient 
throughout the epilimnion for the entire deployment and a slight tem-
perature gradient in the hypolimnion (Fig. 5B). Immediately following 
HOx activation on 11 June 2021, the water temperature profile equal-
ized across layers below 6 m depth, indicating mixing within the hy-
polimnion due to HOx activation (Fig. 5B). The water temperature 
profile in the epilimnion was unaffected by HOx operation. 

Metalimnetic and hypolimnetic DO concentrations did not increase 
above 0 mg/L in the few days after activation of the HOx system. This is 
attributed to chemical oxygen demand in the hypolimnion resulting 
from elevated concentrations of reduced solutes (e.g., Fe(II) and Mn(II)). 

3.4.2. Predicted Fe and Mn concentrations 
At the beginning of the deployment, the highest concentrations of 

total Fe and Mn were at the lowest depth (9 m) and concentrations 
decreased upwards in the water column, with a sharp decrease between 
the hypolimnion and epilimnion (Fig. 5D-E). In the first 24 h of the 
deployment, total Fe and Mn concentrations averaged across all epi-
limnetic depths were 0.43 and 0.03 mg/L, respectively, while across the 
hypolimnetic depths they were 2.71 and 0.54 mg/L, respectively. Prior 
to HOx operation, both total Fe and Mn in the hypolimnion exhibited 

Fig. 3. Sampling data used to calibrate PLSR models for the Reservoir Turnover Deployment (n = 69 for total and soluble Fe, 71 for total Mn, and 70 for soluble Mn) 
and the Oxygen On Deployment (n = 93 for all variables). Outliers (determined by the Monte Carlo predictive error distribution) are not included. Note that the y- 
axes vary among panels. 
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large, sub-daily fluctuations which resulted in concentration changes of 
up to 1.62 mg/L/hr and 0.19 mg/L/hr, respectively (Fig. 5D-E). These 
sub-daily fluctuations were most pronounced at the lowest depth. 

The spatial and temporal dynamics of Fe and Mn concentrations 
were significantly affected by hypolimnetic oxygenation. Prior to acti-
vation of the HOx system on 11 June 2021, epilimnetic total Fe and Mn 
concentrations remained constant (sd = 0.07 mg/L and 0.004 mg/L, 
respectively) and had maximum concentrations of 0.63 mg/L and 0.05 
mg/L, respectively. Hypolimnetic total Fe and Mn concentrations during 

this period were much more variable (sd = 1.85 mg/L and 0.19 mg/L, 
respectively) with maximum concentrations of 7.90 mg/L and 1.08 mg/ 
L, respectively. Shortly after HOx activation, total Fe and Mn concen-
trations equalized contemporaneously with the equalization of water 
temperature across the hypolimnetic depths, indicating that this layer of 
the reservoir was well-mixed with respect to Fe and Mn (Fig. 5B, 5D-E). 
In contrast, differences in total Fe and Mn concentrations across the 
epilimnetic depths increased slightly after activation of the HOx system. 

Approximately 6 h after turning on the HOx system, total Fe and Mn 

Fig. 4. Time series plots of A) Schmidt stability, B) water temperature, C) dissolved oxygen, D) predicted total Fe concentrations (lines) with observed values (dots) 
and 90% predictive intervals (shaded areas), and E) predicted total Mn concentrations (lines) with observed values (dots) and 90% predictive intervals (shaded areas) 
during the Reservoir Turnover Deployment. The dashed vertical line on 02 November 2020 represents reservoir turnover (see text for definition). Shaded area in late 
October shows region of lower uncertainty of Mn predictions due to possible cuvette cleaning issues. Colors of lines (PLSR predictions) and dots (samples) are shown 
on the color scale to the right. Note that the reservoir temporarily re-stratified after 02 November 2020. Time series plots for soluble Fe and Mn are shown in Fig. S16. 
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at 9 m depth declined by approximately 2.5 mg/L and 0.25 mg/L, 
respectively (Fig. 5D-E). Concentrations of total Fe and Mn at all 
hypolimnetic depths subsequently increased over the next 24 h, before 
eventually stabilizing over the following 24 h at concentrations of 
1.5–3.5 mg/L and 0.5–0.75 mg/L, respectively. For the remainder of the 
deployment, total Fe and Mn concentrations remained equal across all 
hypolimnetic depths and exhibited less variability (Fig. 5D-E). 

3.5. Predicted Fe and Mn soluble-to-total ratios 

The ratio of predicted soluble to total Fe (SFe:TFe) and Mn (SMn: 
TMn) was calculated to assess redox transformations. We observed 
distinct changes in these ratios over the course of both deployments, 
most notably in the hypolimnion (Fig. 6). During the Turnover 
Deployment, the hypolimnion was maintained at oxic conditions pre- 
turnover (due to HOx) and post-turnover (due to mixing). As ex-
pected, hypolimnetic SFe:TFe was approximately 0 during this entire 

Fig. 5. Time series plot of A) Schmidt stability, B) water temperature, C) dissolved oxygen, D) predicted total Fe concentrations (lines) with observed values (dots) 
and 90% predictive intervals (shaded area), and E) predicted total Mn concentrations (lines) with observed values (dots) and 90% predictive intervals (shaded areas) 
during the Oxygen On Deployment. The dashed vertical line represents the time that the HOx was turned on. Time series plots for soluble Fe and Mn are shown in 
Fig. S17. Note that the MUX was not collecting data from 11:00 EDT 31 May 2021 until 14:30 EDT 4 June 2021 due to technical issues. Gaps in DO and water 
temperature data are due to sensor malfunction and/or maintenance. 
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deployment, indicating that all Fe in the hypolimnion was in the par-
ticulate fraction (soluble Fe + particulate Fe = total Fe). In contrast, 
hypolimnetic SMn:TMn was approximately 1 at the beginning of the 
deployment, indicating that all Mn was in the soluble fraction. However, 
in the week prior to turnover, hypolimnetic SMn:TMn oscillated be-
tween 0.5 and 1. Following turnover, SMn:TMn remained greater than 
0.75 until the end of the deployment. 

At the beginning of the Oxygen On deployment, SFe:TFe differed 
greatly with depth in the hypolimnion, with ratios greater than 0.8 at 9 
m depth and ratios close to 0 at 6.2 m and 8 m depths (Fig. 6C-D). Be-
tween the beginning of the deployment and HOx activation on 11 June 
2021, the SFe:TFe at 6.2 m and 8 m increased continuously to approx-
imately the same level as 9 m (Fig. 6C-D). Just before the initiation of 

HOx operation, the SFe:TFe at all hypolimnion depths was > 0.75, 
indicating that most of the Fe in the hypolimnion was in the soluble 
fraction. However, immediately after turning the HOx system on, the 
SFe:TFe in the hypolimnion decreased steadily. In the 48-hour period 
after HOx activation, the SFe:TFe in the hypolimnion declined to less 
than 0.25 until the end of the experimental period (Fig. 6C-D), indi-
cating oxidation processes. In contrast to Fe, SMn:TMn in the hypolim-
nion was > 0.90 for the entire deployment. We did not observe a 
significant effect of HOx operation on SMn:TMn (0.99 pre-HOx, 0.97 
post-HOx). 

Fig. 6. A) the ratio of predicted soluble Fe to total Fe and B) the ratio of predicted soluble Mn to total Mn in the hypolimnion during the Turnover deployment; C) the 
ratio of predicted soluble Fe to total Fe and D) the ratio of predicted soluble Mn to total Mn in the hypolimnion during the Oxygen On Deployment. Values were 
smoothed with a 10-hr moving average to remove noise. The dashed vertical lines represent the times when reservoir turnover occurred in panels A-B and when the 
HOx system was turned on in panels C-D. PLSR predictions that had negative values were set to zero when calculating ratios and any ratio value that was greater than 
1 was set to 1. Note that the MUX was not collecting data from 11:00 EDT 31 May 2021 until 14:30 EDT 4 June 2021 due to technical issues. 
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4. Discussion 

4.1. PLSR modeling of high frequency absorbance spectra can predict Fe 
and Mn concentrations 

Using UV-visible absorbance spectra and PLSR modeling, we made 
hourly predictions of Fe and Mn concentrations at 6 depths in our study 
reservoir. Our results indicate that this method can successfully predict 
Fe and Mn concentrations, with some limitations (discussed below), 
based on their covariability with UV–vis absorbance spectra, despite the 
paucity of clearly-defined absorbance peaks for these elements. PLSR 
models were able to explain a high proportion of the variability in the 
sampling data (see R2 values in Table 1) and predictions agreed with 
expected trends in Fe and Mn concentrations. For example, the rapid 
decline in SFe:TFe following the onset of HOx operation (Fig. 6C) 
matches expectations based on the rapid oxidation kinetics of Fe(II) in 
the presence of oxygen (Davison and Seed 1983); previous studies have 
also demonstrated substantial decreases in soluble Fe following short 
periods of HOx (Dent et al., 2014; Munger et al., 2016; Krueger et al., 
2020). Based on model skill metrics (i.e., R2 and RMSEP) and visual 
inspection of the predicted time series, accurate predictions of Fe and 
Mn concentrations using this method are influenced by numerous fac-
tors, including: the range and variance of concentrations in the cali-
bration dataset, the sample size used for calibration, the number of 
outliers in the calibration dataset, the number of components in the 
PLSR model, and the inherent predictability of each variable at a 
particular site (i.e., the strength of correlation with the UV–vis absor-
bance spectra). 

Our results suggest that our methodology may be most appropriate 
for measuring elevated concentrations of Fe and Mn (> 0.1 mg/L). This 
result agrees with Vaughan et al. (2018), who suggested that the 
application of this method to predict riverine total phosphorus (TP) 
concentrations was best for sites with elevated TP (> 0.1 mg/L) con-
centrations. In our study, PLSR models fit to data with concentrations of 
Fe and Mn (< 0.03 mg/L) generally did not perform well. For example, 
soluble Fe during the Turnover Deployment had median concentrations 
of 0.02 mg/L in the hypolimnion (Fig. 3 and Table S1). Accordingly, the 
PLSR models for hypolimnetic soluble Fe had the lowest R2 (0.06) and 
highest RMSEP relative to median calibration concentration out of any 
model for the Turnover Deployment (Tables 1, S1). 

Our PLSR models were also sensitive to the range and variance of 
sampling data used for calibration. Preliminary model testing revealed 
that PLSR models were hindered by the distinct water chemistry be-
tween epilimnetic and hypolimnetic depths (Fe and Mn mean differ-
ences >1.3 mg/L and 0.8 mg/L, respectively; see Fig. 3) and therefore 
models were generated separately for each reservoir layer. This con-
forms with findings of previous studies using in situ UV–vis spectro-
photometers and PLSR in waterbodies, which all achieved higher 
accuracy with site-specific models (Avagyan et al., 2014; Vaughan et al., 
2018; Etheridge et al., 2014). However, when comparing pairs of PLSR 
models (i.e., the same variable + depth combination) between the two 
deployments, the models fit to data with a higher standard deviation had 
higher R2 values, with the sole exception of hypolimnetic total Fe (Ta-
bles 1 and S1). These results suggest that there is a tradeoff between 
capturing the maximum variability in observed concentrations and the 
limitations imposed by the degree of covariability between the UV–vis 
absorbance spectra and the variable of interest (also observed by 
Avagyan et al., 2014 and Allen 2021). To achieve an accurate predictive 
model, grouping data based on the spatial and temporal context of 
measurement achieved a better fitting model while still maximizing the 
variability captured in the calibration data. 

Birgand et al. (2016) used a similar approach for making predictions 
of soluble Fe concentrations in FCR after the activation of a HOx system. 
They obtained a slightly better model fit, indicated by an R2 value of 
0.94, compared to our R2 values of 0.79 and 0.75 (epilimnion and hy-
polimnion, respectively) for the Oxygen On Deployment. We used 

calibration sample sizes of 48 and 45 (epilimnion and hypolimnion, 
respectively) while Birgand et al. (2016) used 27. However, they used 5 
components in their PLSR model, whereas we used 4 components. Thus, 
the higher R2 value for their model may be attributed to a higher ratio of 
components to sample size (18%) compared to our study (8–9%), which 
has been shown in other applications of PLSR (Mevik et al., 2020; 
Etheridge et al., 2014; Birgand et al., 2016). 

Our results captured sub-weekly patterns in Fe and Mn dynamics in 
FCR, but the PLSR-predicted time series of Fe and Mn concentrations 
was not able to adequately capture some of the high-magnitude, sub- 
daily fluctuations that were observed in the sampling data (Figs. 4 and 
6). This is likely due to varying PLSR model skill, which is related to the 
sample size and distribution of data used for calibration, the number of 
PLSR model components, and the inherent predictability of each vari-
able. Therefore, it follows that the strength of correlation between the 
UV–vis absorbance spectra and Fe/Mn concentrations plays a strong role 
in determining the limits to the temporal resolution. This relationship 
can be refined through the methodological suggestions outlined below, 
but ultimately depends upon the spectral properties of the study system. 

There are several limitations of this method that should be addressed 
in future research. In our reservoir, the cuvette fitted on the spectro-
photometer experienced fouling, likely due to Fe and Mn in the hypo-
limnion that oxidized and precipitated on the cuvette walls upon 
exposure to oxygen. Despite our efforts to limit fouling (see Methods), 
there was still a fouling signal detected in several periods of our time 
series. Although fouling occurred, the PLSR models still provided a 
remarkably good numerical correction for this fouling signal. For future 
work, we recommend collection of additional calibration samples ob-
tained at regular intervals between servicing dates as this will give a 
chance for the PLSR model to correct for the timing and kinetics of the 
optics fouling and may thus lower uncertainties. We also found that 
truncating the UV–vis absorbance spectra used for calibration to only 
include wavelengths greater than 250 nm substantially improved the 
model skill and diminished spikes in the time series of predictions that 
corresponded to periods of heavy fouling (Figs.S6 and S7). Finally, we 
focused this study on high frequency measurements over a short term 
(day to week) and not on long-term (month to year) predictions. Addi-
tional work would need to be done, with longer deployments and cali-
bration data, to establish if longer-term predictions can be made. 

4.2. Fe and Mn concentrations change gradually in response to weakening 
stratification and rapidly in response to fall turnover 

Trends in predicted Fe and Mn concentrations shed light on the 
changes that occurred in the reservoir before and after turnover. 
Hypolimnetic concentrations of Fe and Mn began declining 17 and 9 
days prior to turnover, respectively, and shorter periods of more rapid 
concentration fluctuations were superimposed upon these patterns of 
decline (Fig. 4D-E). Combined, these results suggest that turnover, at 
least in our study reservoir, is not a discrete event, but rather a process 
occurring over an extended time period. McMahon (1969) measured a 
similar decrease in soluble Fe using daily samples for nine days across 
spring mixing in a dimictic lake; soluble Fe concentrations decreased by 
more than one order of magnitude 5 days prior to full circulation. 
McMahon (1969) did not offer any interpretation of this phenomenon, 
simply stating that the changes in soluble Fe were concurrent with 
vernal circulation. Similar trends have also been observed in other pa-
rameters of biogeochemical relevance. For example, Kankaala et al. 
(2007) found that the majority of CH4 in the hypolimnion of a lake was 
microbially oxidized at the oxycline boundary during a month-long 
period of weakening stratification before complete mixing occurred, 
resulting in lower effluxes of CH4 to the atmosphere during turnover. 

Predicted Fe and Mn concentration data can be compared to other 
time series data to infer mechanisms behind the declining Fe and Mn 
concentrations prior to turnover. Based on trends in Schmidt stability 
and water temperature (Fig. 4A-B), reservoir stratification was 
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weakening for a 9-day period prior to full turnover, in response to daily 
and hourly shifts in meteorological conditions, including air tempera-
ture and wind speed (Fig. S13). Mixing between the hypolimnion and 
metalimnion, as indicated by the homogenization of water temperature 
between these layers, occurred periodically throughout the deployment, 
with an increasing frequency as turnover approached (Figs. 4A-B, S15). 
These ephemeral periods of mixing between the hypolimnion and met-
alimnion likely led to exchange of Fe and Mn between layers, which 
suggests that hydrodynamic processes occurring on hourly to daily time 
scales may have a substantial influence of Fe and Mn cycling. However, 
without Fe and Mn concentration data at a high spatiotemporal reso-
lution, these patterns would not be observed. 

The flexibility of using a multiplexor-spectrophotometer system with 
a customized prediction algorithm (e.g., site-specific PLSR models) al-
lows for the quantification of high-resolution elemental stoichiometry 
by making predictions of both the soluble and total fractions of Fe and 
Mn. During the Turnover Deployment, Fe was predominantly composed 
of the total fraction, whereas Mn was largely composed of the soluble 
fraction until approximately one week before turnover, at which time 
the SMn:TMn ratio began to decline (Fig. 6B). This coincided with the 
onset of declining total Mn concentrations that continued until turnover, 
excluding a 2-day period from 28 October to 30 October 2020 when 
total Mn concentrations temporarily increased (Fig. 4E). The shift to 
declining SMn:TMn and total Mn concentrations also coincided with 
increased frequency of mixing between the metalimnion and hypolim-
nion and declining stratification intensity (Figs. 4A-B and 6B). These 
trends suggest that declining total Mn concentrations in the pre-turnover 
period were the result of increased oxidation of Mn(II), perhaps due to 
the exposure of Mn(II) in the hypolimnion to Mn-oxidizing microbes that 
inhabit the metalimnion, as demonstrated by a previous study at FCR 
showing that the presence of Mn-oxidizing microorganisms can sub-
stantially increase Mn oxidation rates (Munger et al., 2016). 

4.3. Hypolimnetic oxygenation causes rapid oxidation of Fe, with lesser 
impact on Mn 

The MUX-spectrophotometer system enabled us to observe Fe and 
Mn concentration changes in response to hypolimnetic oxygenation at 
an unprecedented spatiotemporal resolution. Fe and Mn concentrations 
in the hypolimnion both spiked in the 48 h following oxygenation, then 
declined (Fig. 5D-E). However, Fe concentrations decreased to levels 
lower than they were prior to oxygenation, especially at the lowest 
depth, whereas Mn concentrations declined to approximately the same 
levels prior to oxygenation (Fig. 5D-E). These results suggest that the 
HOx system physically mixed the hypolimnion with respect to both 
metals, as total Fe and total Mn concentrations quickly converged across 
hypolimnetic depths after turning on the HOx system (Fig. 5D-E). The 
physical mixing induced by the HOx system appeared to affect Fe and 
Mn similarly, suggesting that the spike in total Fe and Mn immediately 
following HOx activation was a result of increased mixing and/or 
entrainment of particulates in the hypolimnion due to stirring of the 
bottom sediments. The convergence of Fe and Mn concentrations across 
hypolimnetic depths has previously been observed in response to HOx 
activation (Gerling et al., 2014), but results from this study reveal that 
this can occur in less than 24 h, and may subsequently be followed by an 
ephemeral spike in total Fe and Mn concentrations. 

Concentrations of total Fe and Mn displayed more short-term vari-
ability prior to HOx activation than they did post-activation. This was 
especially pronounced at the lowest depth (9m) where concentrations 
fluctuated significantly over a period of less than 24 h (Fig. 5D-E). Given 
that the SFe:TFe ratio in the upper and middle hypolimnion (6.2 m and 8 
m) steadily increased during the pre-HOx period (Fig. 6C), likely due to 
diffusion of soluble Fe out of the lower hypolimnion, the rapid fluctu-
ations in total Fe in the lower hypolimnion may have been attributed to 
shifting diffusion gradients. However, similar patterns in short-term 
variability were observed in Fe and Mn, despite the fact that Mn was 

predominantly in the soluble phase for the entire deployment, suggest-
ing that diffusion of soluble Mn out of the lower hypolimnion was not 
responsible for the pre-HOx rapid fluctuations observed at 9 m. 

The change in redox conditions caused by adding DO to the hypo-
limnion had a much more pronounced effect on Fe than Mn, as has been 
observed in other studies (e.g., Gantzer et al., 2009). The contrasting 
responses of Fe and Mn to oxygenation can be seen most clearly in the 
resulting changes in soluble:total ratios (Fig. 6). The SFe:TFe ratio in the 
hypolimnion exhibited a nearly constant linear decline in the 48 h 
post-oxygenation and remained below 0.25 for the remainder of the 
deployment. This indicates that soluble Fe in the water column was 
rapidly oxidized by the HOx system, even though there was no 
measurable increase in hypolimnetic DO. This is further supported by 
the fact that the mean hypolimnetic total Fe concentration was consis-
tently lower after HOx operation began than it was previously. The 
observed trends in SFe:TFe ratios agree with previous research on the 
effects of HOx systems on Fe in lakes and reservoirs. For example, Dent 
et al. (2014) found that SFe:TFe declined to 0.58 after 8 h of hypo-
limnetic oxygenation. In our study, it took approximately twice as long 
(16 h) for SFe:TFe to reach 0.58. However, the Fe concentrations in Dent 
et al. (2014) were lower (0.17 - 2.88 mg/L) than those in our study (0.31 
- 7.42 mg/L). 

In contrast to Fe, the SMn:TMn ratio in the hypolimnion displayed 
only a very slight response (approximately 2% decrease) to HOx acti-
vation, demonstrating that hypolimnetic oxygenation did not result in 
significant oxidation of Mn at the timescale of our deployments. Our 
results agree with those from Dent et al. (2014), who found that Mn was 
still 100% in the soluble phase 8 h after oxygenation. Furthermore, 
previous studies at FCR have also showed that soluble Mn does not 
respond significantly to oxygenation alone and that other factors, such 
as microbially-mediated oxidation, reservoir pH (range 6.4 - 7.1 
observed in the hypolimnion during our study), sorption and dilution 
from physical mixing, are more important variables impacting hypo-
limnetic soluble Mn than oxygenation (Munger et al., 2016; Krueger 
et al., 2020). 

5. Conclusions 

Results from this study demonstrate that coupling a spectropho-
tometer with a multiplexed pumping system enabled high-frequency 
monitoring of Fe and Mn at multiple depths in our study reservoir, 
providing a unique ability to observe hour-resolution biogeochemical 
dynamics in a freshwater ecosystem. Although there are limitations to 
the method, our findings confirm that it is possible to correlate the “color 
matrix” (light absorbance rich data) of water to parameters not known 
to absorb light, using a site-specific statistical calibration (PLSR) to 
unveil processes tightly-coupled in space and in time. Our results un-
derscore the importance of implementing robust and consistent meth-
odologies for obtaining calibration concentrations, choosing the number 
of components in PLSR models, and quantifying the uncertainty around 
predictions. 

The high-spatiotemporal resolution predictions provide novel in-
sights into Fe and Mn dynamics that could improve aquatic monitoring 
programs and reservoir management practices. First, we demonstrated 
that Fe and Mn concentrations can fluctuate significantly on time scales 
much shorter than those employed by most traditional monitoring 
programs. For example, sub-daily fluctuations of total Fe and Mn during 
the Oxygen On Deployment resulted in concentration changes of up to 
1.62 mg/L/hr and 0.19 mg/L/hr, respectively. Considering that the 
secondary drinking water standards for Fe and Mn are 0.3 and 0.05 mg/ 
L, respectively, sub-daily concentration changes of this magnitude are 
critical for water quality management. Second, we observed an increase 
in total hypolimnetic Fe and Mn in response to the re-stratification of our 
study reservoir two days after turnover, which contradicts the common 
assumption that metals concentrations equalize and decrease during the 
mixed period following turnover. Last, our results offer new insights on 
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the rapid response of Fe to hypolimnetic oxygenation; within hours of 
activating the system, the soluble to total Fe ratio indicated oxidation of 
Fe, even though there was no measurable increase in DO. This study 
emphasizes the power of high spatiotemporal resolution data for 
improving our understanding of biogeochemical cycles by unveiling 
previously-unobserved processes altering Fe and Mn concentrations. 
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