
1.  Introduction
Freshwater ecosystems play a disproportionately large role in global greenhouse gas (GHG) budgets relative to 
their total water surface area, emitting more GHGs across all freshwaters than are taken up by global terrestrial 
ecosystems per surface area of land (Bastviken et al., 2011; Cole et al., 2007; DelSontro et al., 2018; Tranvik 
et al., 2009). Despite their importance, however, the contribution of inland waters, especially small (<1 km 2) 
reservoirs, remains under-represented within global carbon (C) and GHG budgets (Butman et al., 2016; Deemer 
& Holgerson,  2021; Deemer et  al.,  2016; DelSontro et  al.,  2018). It is estimated that there are ∼5.8 million 
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system in a small reservoir located in southwestern Virginia, USA over 2 years to measure carbon dioxide 
(CO2) and methane (CH4) fluxes near-continuously. Fluxes were coupled with in situ sensors measuring 
multiple environmental parameters. Over both years, we found the reservoir to be a large source of CO2 
(633–731 g CO2-C m −2 yr −1) and CH4 (1.02–1.29 g CH4-C m −2 yr −1) to the atmosphere, with substantial 
sub-daily, daily, weekly, and seasonal timescales of variability. For example, fluxes were substantially greater 
during the summer thermally stratified season as compared to the winter. In addition, we observed significantly 
greater GHG fluxes during winter intermittent ice-on conditions as compared to continuous ice-on conditions, 
suggesting GHG emissions from lakes and reservoirs may increase with predicted decreases in winter ice-cover. 
Finally, we identified several key environmental variables that may be driving reservoir GHG fluxes at multiple 
timescales, including, surface water temperature and thermocline depth followed by fluorescent dissolved 
organic matter. Overall, our novel year-round EC data from a small reservoir indicate that these freshwater 
ecosystems likely contribute a substantial amount of CO2 and CH4 to global GHG budgets, relative to their 
surface area.

Plain Language Summary  Freshwater ecosystems release substantial amounts of greenhouse 
gases, especially carbon dioxide (CO2) and methane, to the atmosphere. Small waterbodies, such as lakes and 
reservoirs, are common in the landscape and may release particularly high levels of greenhouse gases, though 
their overall contribution remains unknown. The most common methods to date for estimating greenhouse 
gas emissions from freshwaters typically involve only measuring concentrations during the daytime on a 
handful of days throughout the year. Thus, there is a clear need for near-continuous measurements of CO2 and 
methane from small waterbodies throughout the year on multiple timescales (hours to years). To do this, we 
measured fluxes of CO2 and methane from a small reservoir using eddy covariance over 2 years. We found 
this small reservoir to be a large source of both CO2 and methane to the atmosphere over 2 years and found 
high variability in fluxes measured at short (sub-daily) to long (seasonal) timescales. Overall, this study 
demonstrates the importance of small reservoirs as greenhouse gas sources to the atmosphere and emphasizes 
the need for additional measurements to estimate their contribution to global greenhouse gas budgets.
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lakes and reservoirs in the contiguous U.S. (Winslow et al., 2014), of which approximately half (∼2.6 million) 
are human-made reservoirs (Smith et  al., 2002). Of these human-made reservoirs, small reservoirs (<1 km 2) 
compose >71% of reservoirs in the United States (National Inventory of Dams, USACE, 2021), indicating that 
these ecosystems are extremely common, with at least ∼1.8 million small reservoirs in the conterminous U.S.

Despite their ubiquity, constraining annual GHG estimates in small freshwater reservoirs is challenging given 
their small footprint area and heterogeneous GHG emissions (Loken et al., 2019; McClure et al., 2020; Podgrajsek 
et al., 2016). Short-term measurements indicate the potential for these ecosystems to exhibit high, but patchy 
fluxes (Deemer & Holgerson, 2021; DelSontro et al., 2018; McClure et al., 2018, 2020; Rosentreter et al., 2021), 
but to the best of our knowledge, their annual emissions remain largely unknown. To date, most studies measuring 
GHG emissions from freshwater lakes and reservoirs are based on snapshot measurements from short-term float-
ing chamber deployments or grab samples of dissolved GHGs, which are extrapolated to broad spatial and tempo-
ral scales to estimate annual whole-ecosystem fluxes (Bastviken et al., 2015; Klaus et al., 2019; Wik et al., 2016). 
While these approaches have provided useful insights into general patterns of GHG cycling in freshwater ecosys-
tems, they are inherently limited in capturing the high spatial and temporal variability in freshwater GHG fluxes 
(A. K. Baldocchi et al., 2020; Butman et al., 2016; Klaus et al., 2019; Rosentreter et al., 2021; Wik et al., 2016).

Eddy covariance (EC) systems are increasingly being deployed on lakes and reservoirs to constrain sub-daily 
GHG fluxes over large spatial footprints, enabling the quantification of whole-ecosystem GHG fluxes at multiple 
temporal scales (e.g., A. K. Baldocchi et al., 2020; Eugster et al., 2011; Golub et al., 2023; Vesala et al., 2012; 
Waldo et al., 2021). Eddy covariance (EC) systems are used to determine the net exchange of carbon dioxide 
(CO2), methane (CH4), and/or other gases at sub-hourly time scales via micrometeorology and in situ atmospheric 
trace gas concentrations measured using infrared gas analyzers (A. K. Baldocchi et al., 2020; Golub et al., 2023; 
Vesala et al., 2012). By collecting near-continuous, high frequency data (typically measured at 10–20 Hz and 
reported as 30-min means), EC systems allow GHG fluxes to be estimated at sub-daily to annual timescales, 
improving our understanding of GHG flux temporal variability beyond traditional discrete measurements (Golub 
et al., 2023; Reed et al., 2018; Vesala et al., 2012). Additionally, EC systems often capture a larger spatial foot-
print compared to traditional discrete measurements, as measured fluxes represent the average flux from the 
atmospherically mixed area upwind of the deployed EC system (Golub et al., 2023; Waldo et al., 2021). Thus, EC 
systems can greatly increase the temporal resolution and spatial extent of measured fluxes in lakes and reservoirs, 
with the caveat that important considerations and data filtering are needed for EC systems in small waterbodies 
(Scholz et al., 2021). Specifically, a waterbody’s small surface area increases the likelihood of surrounding terres-
trial vegetation impacting EC measurements of aquatic fluxes and decreases the area available for a well-mixed, 
turbulent footprint (Esters et al., 2021; Scholz et al., 2021; Vesala et al., 2012).

While the majority of reported freshwater EC studies have been conducted on short timescales (days to months; 
e.g., Erkkiliä et  al.,  2018; Gorsky et  al.,  2021; Jammet et  al.,  2015; Podgrajsek et  al.,  2014,  2016; Vesala 
et al., 2006, 2012), longer-term studies measuring CO2 or CH4 fluxes in lakes and reservoirs on annual timescales 
are becoming more common (e.g., A. K. Baldocchi et al., 2020; Golub et al., 2023; Huotari et al., 2011; Jammet 
et al., 2017; Liu et al., 2016; Reed et al., 2018; Scholz et al., 2021; Shao et al., 2015; Taoka et al., 2020; Waldo 
et al., 2021). An annual study conducted in Lake Erie, USA found this highly eutrophic system was a small sink of 
CO2 during the summer productive season yet ultimately a CO2 source on annual timescales (Shao et al., 2015). 
Other studies have highlighted the importance of short (hourly to daily), episodic events on annual CO2 budgets, 
including the disproportionate effect of storms on annual CO2 emissions from a large subtropical reservoir (Liu 
et al., 2016), fall mixing in a large (40 km 2) temperate lake (Reed et al., 2018), and pulses of CH4 following 
ice-off in a north temperate lake (Gorsky et al., 2021). Studies conducted in the high northern latitudes during 
continuous ice-on conditions in winter observed zero to very low greenhouse gas fluxes from frozen lakes due to 
thick ice cover, which prevented the exchange of gasses across the air-water interface (e.g., Huotari et al., 2011; 
Jammet et al., 2017). In more temperate climates, other studies found low and relatively consistent CO2 fluxes 
during continuous or intermittent ice-covered winter periods (A. K. Baldocchi et al., 2020; Reed et al., 2018). 
In addition to noted diel, seasonal, and episodic variability in CO2 fluxes, two annual studies recently found the 
sub-monthly timescale to be an important timescale of variability, though the mechanism for this variability 
remains unknown (A. K. Baldocchi et al., 2020; Golub et al., 2023). Altogether, despite the increase in studies 
using EC systems to measure CO2 and CH4 fluxes from freshwaters, few studies to date have captured both CO2 
and CH4 fluxes on the annual scale, especially during winter.
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Measuring annual-scale CO2 and CH4 fluxes is particularly important as GHG fluxes are likely rapidly changing 
due to altered climate (Bartosiewicz et al., 2019; Beaulieu et al., 2019), motivating several potential hypotheses 
for how different environmental drivers may alter fluxes. Multiple environmental drivers sensitive to climate 
change likely affect GHG fluxes, though annual-scale studies to test the effects of these drivers on fluxes across 
multiple timescales are lacking. For example, increasing surface water temperatures and changes in precipitation 
and nutrient loading are changing phytoplankton productivity and allochthonous C inputs to lakes and reservoirs 
(Fowler et  al.,  2020; Hanson et  al.,  2015; Tranvik et  al.,  2009). For example, changes in freshwater primary 
production and nutrient inputs to freshwater systems have been directly linked to increases in CO2 (DelSontro 
et al., 2018), as well as CH4 emissions (Deemer & Holgerson, 2021; DelSontro et al., 2018; McClure et al., 2020). 
Finally, increasing air temperatures are leading to warmer winters and more intermittent and partial ice cover 
(Imrit & Sharma, 2021; Sharma et al., 2021; Woolway et al., 2020), allowing for potentially greater exchange 
of GHGs across the air-water interface, highlighting the need to understand the role of ice in constraining GHG 
fluxes. All these examples emphasize the importance of measuring near-continuous GHG fluxes on the annual 
scale along with key potential environmental drivers, such as precipitation and freshwater inflows, surface water 
temperature, chlorophyll-a, dissolved organic matter, and ice-on/ice-off as potential GHG drivers, as it is likely 
that some drivers may have a greater effect at certain timescales than others.

Altogether, there is a clear need to measure annual-scale CH4 and CO2 fluxes from small freshwater ecosys-
tems, especially small reservoirs. While several studies have measured annual CO2 fluxes from freshwaters 
(e.g., A. K. Baldocchi et al., 2020; Golub et al., 2023; Huotari et al., 2011; Liu et al., 2016; Reed et al., 2018; 
Scholz et al., 2021; Shao et al., 2015), to the best of our knowledge, only one freshwater study has measured 
both CH4 and CO2 fluxes on an annual timescale (Jammet et al., 2017), while Taoka et al. (2020) and Waldo 
et al. (2021) measured only CH4 fluxes at the annual scale. Specifically, Waldo et al. (2021) used EC to meas-
ure annual CH4 fluxes from a large (2.4 km 2), highly eutrophic temperate reservoir, measuring emissions up to 
71.4 g CH4 m −2 yr −1, which is in the top quarter of those reported from lakes and reservoirs to date. In an Arctic 
lake, Jammet et al. (2017) used EC to measure low GHG fluxes during the winter ice-covered period, followed 
by large CH4 and CO2 fluxes during spring-thaw, and increasing ebullitive CH4 fluxes during the ice-free season 
concurrent with small rates of CO2 uptake during the summer due to photosynthesis. Aggregated across the full 
year, this Arctic lake was a net source of both CH4 and CO2 to the atmosphere (Jammet et al., 2017). Across the 
literature, most EC studies have focused on naturally formed lakes, and all EC reservoir studies of which we 
are aware (Eugster et al., 2011; Golub et al., 2023; Liu et al., 2016; Waldo et al., 2021) were conducted in large 
(>2.4 km 2) reservoirs.

To better understand the GHG budgets of small reservoirs and the response of fluxes to key environmental driv-
ers, we deployed an EC system in a small (0.1 km 2) freshwater reservoir located in southwestern Virginia, USA 
for 2 years to measure both CO2 and CH4 fluxes near-continuously. Flux measurements were coupled with in situ 
sensors measuring multiple environmental parameters, including surface water temperature, dissolved oxygen 
(DO), chlorophyll-a, and fluorescent dissolved organic matter (fDOM). Ultimately, we used the measured GHG 
fluxes and environmental variables to answer the questions: (a) What is the annual phenology of CO2 and CH4 
fluxes in a small, eutrophic reservoir, including during the critical winter period?; and (b) Which environmental 
variables best explain CO2 and CH4 variability at daily to monthly timescales? We expected CO2 and CH4 fluxes 
would be variable throughout the year, especially during the summer months, when we expected larger GHG 
fluxes and marked diel patterns following elevated primary production during the daylight hours. Conversely, 
during the winter months, we expected relatively low fluxes due to suppressed biological activity and potential 
ice-cover. Following these expectations, we predicted temperature would be an important environmental predic-
tor positively related to both CO2 and CH4, while chlorophyll-a would likely be an important environmental 
predictor positively related to CO2 fluxes on multiple timescales.

2.  Materials and Methods
2.1.  Site Description

Falling Creek Reservoir (FCR) is a small, eutrophic reservoir located in Vinton, Virginia, USA constructed in 
1898 (Figure 1; 37.303°N, 79.837°W; Gerling et al., 2016; Howard et al., 2021). The reservoir is located in a 
valley at 520 m above sea level. Hills on either side of the reservoir have a maximum elevation of 615 m (east) 
and 740 m (west) above sea level. The reservoir and surrounding forested watershed are owned and operated by 
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the Western Virginia Water Authority as a primary drinking water source (Gerling et al., 2016). Falling Creek 
Reservoir (FCR) has a surface area of 0.119 km 2 and a maximum depth of 9.3 m (McClure et al., 2018). The 
reservoir is dimictic and thermally stratified from April to October (McClure et  al., 2018). During the study 
period, water was not extracted for drinking water treatment and remained at a constant full-pond level. The water 
residence time during the study period ranged from 21 to 635 d, with a median of 247 d (Figure S1 in Supporting 
Information S1; calculated using the methods of Gerling et al. (2014)). Since the reservoir remained at full pond, 
we assumed incoming discharge from the primary inflow was equal to outflowing discharge during the 2-year 
study period.

2.2.  Data Collection and Overview

We used an EC system deployed near the dam on an existing metal platform extending into the reservoir to meas-
ure CO2 and CH4 fluxes between the water surface and the atmosphere from 1 May 2020 to 30 April 2022 (details 
below; Carey, Breef-Pilz, Hounshell, et al., 2023). To complement the EC measured fluxes, we also calculated 
CO2 and CH4 diffusive gas fluxes using dissolved CO2 and CH4 discrete grab samples collected during daylight 
hours (between ∼08:00 and 13:00) weekly to monthly from the water's surface at the deepest site of the reservoir, 
located near the dam, throughout the 2-year study period (details below; Carey, Lewis, et al., 2023). The EC 
system was co-located near the reservoir dam to take advantage of the existing limnological and meteorological 
suite of instruments already deployed at this location as well as existing electrical power and infrastructure for 
EC deployment.

In addition to the EC and diffusive fluxes, we also collected meteorological and environmental data. Briefly, a 
Campbell Scientific (Logan, Utah, USA) research-grade meteorological station measured air temperature; rela-
tive humidity; air pressure; wind speed and direction; upwelling and downwelling shortwave and longwave radi-
ation; total rainfall; photosynthetically-active radiation ; and albedo every minute at the reservoir dam (sensor 
information provided by Carey and Breef-Pilz (2023b)). At the reservoir’s deepest site, we collected 10-min water 
temperature measurements every 1 m from the surface (0.1 m) to just above the sediments (9 m) using a ther-
mistor string. Thermistor data were used to calculate the difference in temperature between 0.1 and 9.0 m (Diff. 
Temp) and daily buoyancy frequency (N 2), two metrics of thermal stratification, as well as thermocline depth 
(TD) throughout the study period (May 2020 to April 2022) using the LakeAnalyzer package in R (Winslow, 
Read, et al., 2016). Fall turnover was defined as the first day in autumn when the temperature at 1 m was <1°C of 

Figure 1.  (a) Map of Falling Creek Reservoir located in Vinton, Virginia, USA (map inset) showing location of the eddy 
covariance system, the weir located on the primary freshwater inflow, and the meteorological station located on the dam. (b) 
Wind rose showing the dominant wind direction and wind speed (m s −1) of greenhouse gas fluxes retained for analysis. The 
cumulative footprint distribution for the study period is shown in Supporting Information S1 (Figure S2).
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the temperature measured at 8 m (1 November 2020 and 3 November 2021; McClure et al., 2018). Spring mixing 
was harder to identify due to intermittent ice-on in 2021 and frequent mixing during the winter period, but we 
defined spring mixing as the first day in spring after complete ice-off when the temperature at 1 m was <1°C of 
the temperature measured at 8 m (26 February 2021 and 10 February 2022). For 2022, spring mixing occurred on 
the same day as complete ice-off. Ice cover was determined by the presence of inverse stratification coupled with 
higher albedo and verified by visual observation, described by Carey and Breef-Pilz (2022).

Water column temperature data complemented 10-min measurements of DO percent saturation, chlorophyll-a 
(Chl-a, μg L −1), and fDOM (relative fluorescent units (RFU)) measured using an EXO2 sonde (YSI, Yellow 
Springs, Ohio, USA) deployed at 1.6 m (Carey, Breef-Pilz, & Woelmer, 2023), which is the depth historically 
used for water extraction when the reservoir is in-use (Howard et  al.,  2021). The EXO2 sonde was removed 
from the reservoir on 2 December 2020 for annual sensor maintenance and re-deployed on 27 December 2020. 
Finally, we measured stream inflow every 15 min on the primary inflowing stream to the reservoir via a gaged 
v-notch weir fitted with a Campbell Scientific CS451 pressure transducer (Campbell Scientific, Logan, Utah, 
USA),  which was used to calculate the 15-min flow rate following Carey and Breef-Pilz (2023a). The weir was 
breached on 20 July 2020 and repaired on 24 August 2020, resulting in no flow data during this interval.

2.3.  Eddy Covariance Flux Measurements

An EC system was deployed above the water surface over the deepest portion of the reservoir from 1 May 2020 
to 30 April 2022. The EC instrumentation was installed 2.9 m over the reservoir’s surface on a permanent metal 
platform that extends ∼45 m from the dam. As noted above, the reservoir was maintained at full pond, resulting 
in a consistent height of the EC system over the water’s surface during the study period. The placement of the 
EC sensors at 2.9 m above the water surface reflects a balance between ensuring adequate frequency responses 
to capture eddies (Burba & Anderson, 2010) and capturing a flux footprint that represents the area of interest. 
This height resulted in a flux footprint that was generally well matched to the reservoir (Figure S2 in Supporting 
Information S1).

The EC system included an ultrasonic anemometer to measure 3D wind speed and direction (CSAT3, Campbell 
Scientific), an open-path infrared gas analyzer for measuring CH4 concentration (LI-7700, LiCor Biosciences, 
Lincoln, Nebraska, USA), and an enclosed-path infrared gas analyzer for measuring CO2 and water vapor concen-
trations (LI-7200, LiCor Biosciences), all recorded at 10 Hz by a data logger (LI-7550, LiCor Biosciences).

The raw 10-Hz data were first processed into 30-min fluxes using the EddyPro v.7.0.6 software (LiCor 
Biosciences,  2019). Fluxes were calculated following standard methods in EddyPro v.7.0.6 (LiCor 
Biosciences,  2019), which included spike detection and removal (Vickers & Mahrt,  1997), a double rotation 
for tilt correction (Lee et al., 2005), linear detrending (Gash & Culf, 1996), time lag compensation, and spectral 
corrections for high and low-pass filtering effects following Moncrieff et al. (2004) and Moncrieff et al. (1997), 
respectively. In addition, CH4 molar density was corrected to account for air density fluctuations and spectro-
scopic effects of temperature, pressure and water vapor (McDermitt et al., 2011; Webb et al., 1980). This correc-
tion was not needed for CO2, as fluxes were estimated using mixing ratios instead of densities (Burba et al., 2012).

Following initial flux calculations and processing in EddyPro, we conducted additional data processing follow-
ing standard best practices, including: (a) removing wind directions which originated outside of the reservoir 
(80–250°; Figure 1); (b) removing extreme flux values (CO2 fluxes ≥ |100| μmol C m −2 s −1; CH4 fluxes ≥ |0.
25| μmol C m −2 s −1); (c) removing CH4 fluxes when signal strength <20%; (d) removing CO2 and CH4 fluxes 
when they did not pass the test for stationarity or developed turbulent conditions (QC, quality control level 2 per 
Mauder & Foken, 2006), in addition to when the latent heat or sensible heat flux (H) had QC level <2; (e) remov-
ing open-path CH4 fluxes during periods of rainfall, which was determined based on the rain gauge deployed at 
the dam; (f) removing additional periods of low turbulence friction velocity (u*), as described below; and (g) 
removing data that corresponded to flux footprints that extended significantly beyond the reservoir. We used 
REddyProc (Wutzler et al., 2021) to determine the u* threshold for sufficiently turbulent conditions and removed 
any fluxes where u* was <0.075 m s −1. To account for the uncertainty of estimating the u* threshold, we used 
bootstrapping to estimate the distribution of u* thresholds, and obtained the 5th, 50th and 95th percentiles of this 
distribution (0.070, 0.075, and 0.163 m s −1, respectively; Wutzler et al., 2018).

The final filtering step consisted of removing fluxes that extended beyond the reservoir. To do that, flux foot-
prints were modeled for each half-hour using a simple, two-dimensional parameterization developed by Kljun 
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et al. (2015) (Figure S2 in Supporting Information S1). This model builds on the Lagrangian stochastic particle 
dispersion model (Kljun et al., 2002), and provides information on the extent, width, and shape of the footprint. 
All the variables needed for the model were obtained directly from the data set described above or calculated 
following Kljun et al. (2015). Fluxes were excluded when the along-wind distance providing 90% cumulative 
contribution to turbulent fluxes was outside the reservoir, based on the footprint analysis. We chose to use this 
filtering threshold given the challenges of modeling footprints in small reservoirs; consequently, our fluxes are 
likely conservative. All post-processing analyses were conducted using R statistical software (v.4.0.3). Code 
for post-processing and all EC data can be found in the Environmental Data Initiative (EDI) repository (Carey, 
Breef-Pilz, Hounshell, et al., 2023).

Overall, EC measurements captured 23% and 19% of total CO2 and CH4 fluxes, respectively, over 2 years from 
FCR (Table S1 in Supporting Information  S1), which is similar to previously reported deployments of EC 
systems at lakes and reservoirs (e.g., Golub et al., 2023; Reed et al., 2018; Waldo et al., 2021). The percent-
age of available data was relatively consistent across half-hourly periods (from 00:00 to 23:30), ranging from 
14% to 34% of data availability for CO2 for 22:00 and 12:30 half-hourly periods, respectively, and 11%–32% 
for CH4 (22:00 and 12:30 half-hourly periods, respectively; Figure S3 in Supporting Information S1). We note 
that during the day, the dominant wind direction was outside the reservoir footprint, while the dominant wind 
direction was largely along the reservoir at night (Figure S4 in Supporting Information S1). This pattern resulted 
in a high percentage of daytime fluxes removed due to wind direction, but overall, we observed a roughly equal 
contribution of day and night fluxes following all flux removal processes (i.e., flux filtering due to low u*). Data 
availability after filtering was also relatively consistent throughout seasons and between years, ensuring even 
representation of measured fluxes throughout the year (Figure S5 in Supporting Information S1). We do note 
low data availability (<10%) for both CO2 and CH4 fluxes during August 2020, due to instrument maintenance, 
and for CH4 during December 2020 and February 2021 due to issues with instrument power stability. In addition, 
on 10 August 2020, the data logger was removed for maintenance and re-deployed on 2 September 2020. Addi-
tionally, a thermocouple on the CO2 sensor (LI-7200) was inoperable starting on 5 April 2021 and was repaired 
on 26 April 2021.

2.4.  Diffusive Flux Measurements

We estimated discrete diffusive fluxes from FCR using dissolved CO2 and CH4 samples (Carey, Lewis, et al., 2023) 
collected at the surface of the reservoir to compare with EC fluxes. Surface water samples were collected at 0.1 m 
depth using a 4-L Van Dorn sampler (Wildlife Supply Co., Yulee, Florida, USA) adjacent to the EC sensors 
(Figure 1). Replicate (n = 2) water samples were collected via a Van Dorn sampler into 20-mL serum vials with-
out headspace, immediately capped, and then stored on ice until analysis within 24 hr. Prior to sample analysis, 
a small amount of water was removed from each sample and replaced with a neutral gas (helium gas). Samples 
were analyzed following Carey, Lewis, et al. (2023) on a Shimadzu Nexis GC-2030 Gas Chromatograph (Kyoto, 
Japan) with a Flame Ionization Detector (GC-FID) and Thermal Conductivity Detector.

The measured surface samples were used to calculate CO2 and CH4 diffusive fluxes from the surface of FCR into 
the atmosphere on each day of sample collection following the equation:

Flux = 𝑘𝑘 ∗
(

𝐶𝐶water − 𝐶𝐶eq

)

� (1)

where k is the temperature-corrected gas transfer velocity (m d −1) for the gas species (CO2 or CH4, respectively), 
Cwater is the concentration (mass volume −1) of CO2 or CH4 at the reservoir surface (0.1 m), and Ceq is the concen-
tration of dissolved gas at equilibrium with the EC-measured atmospheric concentration of CO2 or CH4. The 
GHG flux value was calculated separately for each of the two dissolved GHG sample replicates collected at each 
time point using the seven k models included in the LakeMetabolizer package in R (Cole & Caraco, 1998; Crusius 
& Wanninkhof, 2003; Heiskanen et al., 2014; MacIntyre et al., 2010; Read et al., 2012; Soloviev et al., 2007; 
Vachon & Prairie, 2013; Winslow, Zwart, Batt, Corman, et al., 2016; Winslow, Zwart, Batt, Dugan, et al., 2016). 
We report the mean and standard deviation from the n = 14 replicate-model k determinations to account for 
uncertainty introduced through various k estimations. We feel this approach offers the best representation of 
potential diffusive flux values that can be directly compared to fluxes measured by EC (Erkkilä et al., 2018; 
Schubert et al., 2012).
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2.5.  Statistical Analyses

To assess the phenology of fluxes (CO2 and CH4), we analyzed the mean and standard deviation (±1 S.D.) of 
measured EC fluxes at half-hourly, daily, weekly, and monthly time scales through the study period. For both EC 
and discrete diffusive fluxes, negative fluxes correspond to fluxes into the reservoir (i.e., uptake) while positive 
fluxes are out of the reservoir (i.e., release to the atmosphere).

To assess diel variation in GHG fluxes, we compared median measured EC fluxes during the day (11:00–13:00) 
and night (23:00–01:00) throughout the study period. As data were not normally distributed, we used paired 
Wilcoxon signed-rank tests to assess statistical significance of paired day-night fluxes (α = 0.05). Additionally, 
we compared dawn (05:00–07:00) and dusk (17:00–19:00) median EC measured fluxes using the same methods.

Ice coverage at FCR is episodic and ephemeral, encompassing longer ice-covered periods as well as shorter-duration 
ice-covered periods when ice may be present during portions of sequential days or with partial coverage of the 
reservoir's surface, which we refer to as intermittent ice-on periods. To explore the role of variable winter ice 
cover on CO2 and CH4 fluxes, we analyzed mean half-hourly fluxes (±1 S.D.) from 10 January to 10 February for 
both 2021 and 2022, which encompassed a period of intermittent (2021) and continuous (2022) ice-on (following 
Carey & Breef-Pliz, 2022; Table S2 in Supporting Information S1). We used Mann-Whitney-Wilcoxon tests to 
determine statistically significant differences (α = 0.05) between the median half-hourly fluxes measured during 
intermittent and continuous ice-on periods.

Finally, we calculated the net annual flux balance for CO2 and CH4 using both measured and gap-filled half-hourly 
EC data. Briefly, after filtering, half-hourly fluxes were gap-filled in REddyProc using the marginal distribution 
sampling method (MDS), which uses the correlation of measured fluxes with environmental driver variables, 
namely, radiation, temperature, and vapor pressure deficit to estimate fluxes during the missing time periods 
(Wutzler et al., 2018). Prior to MDS, we used the meteorological data measured at the dam to gap-fill any missing 
wind speed, direction, temperature, and relative humidity in the EC data set (Table S3 in Supporting Informa-
tion S1). Overlapping data show that all meteorological variables were tightly correlated between the EC system 
and the adjacent meteorological station (Pearson’s rho = 0.81–0.98; Table S3 in Supporting Information S1). 
Gap-filling was performed for each of the u* scenarios, providing information about the uncertainty that might 
be introduced to the data by choosing a u* threshold. Measured and gap-filled fluxes were summed across each 
year (01 May–30 April). The standard deviation (±1 S.D.) was calculated for both the measured and gap-filled 
data using the different u* scenarios.

2.6.  Time Series Analysis

To identify key environmental predictors and test mechanistic relationships between observed mean daily, weekly, 
and monthly measured CO2 and CH4 fluxes and environmental variables, we developed separate autoregressive 
integrated moving average (ARIMA) models for each timescale. ARIMA models are used to identify key envi-
ronmental predictors while accounting for temporal autocorrelation (Hyndman & Athanasopoulos, 2018). We 
selected several potential, in-reservoir, environmental predictors, including: surface water temperature (Temp, 
0.1 m, °C); the difference between surface (0.1 m) and bottom (9 m) water temperatures (Diff. Temp); buoyancy 
frequency (N 2); TD; DO percent saturation (DO sat); Chl-a; fDOM; and discharge (Inflow) measured at the 
primary inflow to FCR (Figures S6 and S7 in Supporting Information S1). We chose to focus on limnological 
environmental variables to help identify potential drivers of GHG fluxes, following our predictions. Prior to 
ARIMA modeling, we conducted pairwise Spearman correlations on all predictor variables (aggregated to each 
time scale) and removed collinear variables (Pearson’s rho ≥ 0.7) that were the least correlated with fluxes. N 2 
and Diff. Temp were removed for all time scales due to their strong correlation with surface water temperature 
(Table S4 in Supporting Information S1). Response and predictor variables were checked for skewness, trans-
formed if appropriate, and normalized (z-scores) prior to model fitting (Hounshell, 2022).

We used a model selection algorithm (Lofton.  2022) to identify the importance of environmental predictor 
variables at each time scale. The algorithm was based on the auto.arima function in the forecast package in R 
(Hyndman & Khandakar, 2008; Hyndman et al., 2022) which compared fitted models to a global model (all 
possible predictors) and a null persistence model with just one autoregressive term (AR(1)). We selected the 
environmental model with the lowest corrected Akaike information criterion (AICc), as well as models within 
2 AICc units (Burnham & Anderson, 2002). Models were limited to include one AR term (Hounshell, 2022).
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3.  Results
3.1.  Phenology of CO2 and CH4 fluxes

High-frequency EC data show that FCR was generally a net source of both CO2 and CH4 to the atmosphere across 
multiple timescales (Figures 2 and 3, Figure S8, Table S5 in Supporting Information S1). Overall, measured 
CO2 fluxes ranged from −39.46 to 52.67 μmol m −2 s −1 with a mean flux of 1.86 ± 6.21 μmol m −2 s −1 (±1 S.D.) 
aggregated over the entire 2-year study period. Measured CH4 fluxes ranged from −0.084 to 0.096 μmol m −2 s −1, 
with a mean CH4 flux of 0.003 ± 0.011 μmol m −2 s −1 over the study period (Figures 2 and 3, Figure S8, Table S5 
in Supporting Information S1).

At the hourly to diel scale, we found that certain times of day had higher fluxes than others, but that overall, there 
was little difference in fluxes at midday versus midnight. Measured EC fluxes revealed no statistically significant 
difference between paired CO2 fluxes measured during the day (11:00–13:00) as compared to night (23:00–01:00; 
p = 0.09; Figure 4; Table S6 in Supporting Information S1), and no statistically significant difference between 
paired, measured day and night CH4 fluxes (p = 0.16; Figure 4; Table S6 in Supporting Information S1). We 
did observe significantly higher median CO2 fluxes measured at dawn (05:00–07:00; 1.34  μmol  m −2  s −1) as 
compared to dusk (17:00–19:00; −0.030 μmol m −2 s −1; p < 0.001; Figure 4; Table S6 in Supporting Informa-
tion S1), which may be related to higher median dawn wind speeds (p < 0.001), though there was no statistical 
difference between dawn and dusk CH4 fluxes.

At the seasonal scale, both CO2 and CH4 fluxes (EC and diffusive measured fluxes) were greater in magnitude 
and more variable during the summer than winter, with increasing fluxes during the late spring and decreasing 
fluxes during the late fall (Figures 2 and 3). During the summer months (June–August), FCR was an overall 
source of CO2 and CH4 to the atmosphere for both years (Figures 2 and 3). Specifically, CO2 and CH4 fluxes 
were up to 5× and 15× greater, respectively, during the summer stratified period (May–October) as compared to 
the winter and early spring (November–April; Figures 2 and 3, Figure S8 in Supporting Information S1). During 
fall turnover, EC measured CO2 fluxes remained low in both years (2020, 2021), while diffusive fluxes showed 
an increase in CO2 fluxes on the day of turnover (Figure 2, Figure S9 in Supporting Information S1). Similarly, 
CH4 fluxes were also low during and following turnover for both EC and diffusive fluxes in both years (Figure 3, 
Figure S9 in Supporting Information S1). From September to April, FCR was a small CO2 source, but emitted 
less CO2 than during the summer. For CH4, FCR was almost net neutral from late fall to early spring (November–
April), in contrast to larger CH4 emissions during the summer. Following the onset of spring mixing, there was a 
small, but notable increase in CO2 emissions in 2021 but little change in CH4 emissions. In 2022, there were no 
notable changes in either CO2 or CH4 fluxes following ice-off and subsequent spring mixing in 2022 (Figure 5). 
At the annual scale, there were notably higher CO2 fluxes in the late-summer and early fall 2021 as compared to 
the summer and fall 2020, while for CH4 fluxes, there were notably higher fluxes both in the mid-summer 2021 
and in the late-summer and early fall 2021 (Figures 2 and 3).

3.2.  Comparison of EC and Diffusive Fluxes

Overall, both CO2 and CH4, diffusive fluxes were within the range of measured EC fluxes, though diffusive CO2 
fluxes were lower than measured EC fluxes when comparing discrete timepoints (Figures 2 and 3; Table S5 in 
Supporting Information S1). Specifically, hourly CO2 diffusive fluxes calculated from grab surface samples were 
an order of magnitude lower than measured EC fluxes and ranged from −1.24 to 17.50 μmol m −2 s −1, with a 
mean flux of 0.39 ± 1.29 μmol m −2 s −1 (Figure 2, Figures S10 and S11; Table S5 in Supporting Information S1). 
We note that the magnitude of diffusive fluxes was highly sensitive to the gas transfer coefficient method (k) 
used in flux calculations, and thus we presented the mean and standard deviation of the seven different k models 
used, which represent the range of possible diffusive fluxes which could be compared to EC measured fluxes 
(Equation 1; Figure S10 in Supporting Information S1). Hourly CH4 diffusive fluxes were more comparable to 
measured EC fluxes, with a range of −0.003–0.096 μmol m −2 s −1 and a mean of 0.006 ± 0.009 μmol m −2 s −1 
(Figure 3, Figures S10 and S11; Table S5 in Supporting Information S1).

3.3.  Environmental Predictors of CO2 and CH4 fluxes

During the study period, FCR experienced typical meteorological and environmental conditions. The meteor-
ology measured at the reservoir dam recorded a mean air temperature of 14.1°C (13.8 and 14.4°C in years 1 
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Figure 2.  Daily mean carbon dioxide fluxes (CO2, μmol m −2 s −1) for (a) May 2020–April 2021 (Year 1) and (b) May 2021–April 2022 (Year 2) measured using 
Eddy covariance (EC) (Daily Mean EC, red) and calculated discrete diffusive fluxes (Diff, blue) using the mean and standard deviation of two replicate samples and 
seven gas transfer coefficient models (k; Winslow, Zwart, Batt, Corman, et al., 2016). Gray dots represent measured half-hourly fluxes from the EC. The dark red 
line represents daily mean fluxes. The shaded red area represents ±1 standard deviation of the daily 30-min fluxes using measured EC fluxes. The vertical dotted line 
indicates the onset of reservoir fall and spring mixing, respectively. (c) Mean monthly CO2 fluxes (μmol m −2 s −1) aggregated from measured EC data. The error bars 
correspond to ±1 S.D. of aggregated fluxes for both measured and gap-filled EC values. The horizontal dashed line indicates zero fluxes.

 21698961, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

007091 by V
irginia T

ech, W
iley O

nline L
ibrary on [24/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Biogeosciences

HOUNSHELL ET AL.

10.1029/2022JG007091

10 of 22

Figure 3.  Daily mean methane fluxes (CH4, μmol m −2 s −1) for (a) May 2020–April 2021 (Year 1) and (b) May 2021–April 2022 (Year 2) measured using Eddy 
covariance (EC) (Daily Mean EC, red) and calculated discrete diffusive fluxes (Diff, blue) using the mean and standard deviation of two replicate samples and seven 
gas transfer coefficient models (k; Winslow, Zwart, Batt, Corman, et al., 2016). Gray dots represent measured half-hourly fluxes from the EC. The dark red line 
represents daily mean fluxes. The shaded red area represents ±1 standard deviation of the daily 30-min fluxes. The vertical dotted line indicates the onset of reservoir 
fall and spring mixing for each year, respectively. (c) Mean monthly CH4 fluxes (μmol m −2 s −1) aggregated from measured EC data. The error bars correspond to ±1 
S.D. of aggregated fluxes for both measured and gap-filled EC values. The horizontal dashed line indicates zero fluxes.
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and 2, respectively), with a minimum and maximum temperature of −11.5 and 35.1°C, respectively across the 
2 years (Table S7 in Supporting Information S1). Mean wind speed during the time period was 1.99 m s −1 (2.00 
and 1.97 m s −1 for years 1 and 2, respectively), with a maximum wind speed of 11.2 m s −1 and a dominant wind 
direction of 198° (191° and 199° for years 1 and 2, respectively). Yearly total rainfall ranged from 790 mm (Year 
2) to 1,438 mm (Year 1). During the winter (January–February), air temperatures in year 1 ranged from −8.0 to 
19.4°C with a mean of 1.9°C and in year 2 ranged from −11.5 to 21.4°C with a mean of 2.1°C.

Water column variables measured at 1.6 m below the surface also exhibited typical annual patterns and were for 
the most part similar between years. We found water temperatures ranged from 1.23 to 31.4°C, with a mean of 
15.2 and 15.9°C for years 1 and 2, respectively (Figure S6; Table S8 in Supporting Information S1). Chl-a values 
ranged from 0.25 to 121 μg L −1, with a mean of 11.5 and 12.3 μg L −1 in years 1 and 2, respectively. fDOM was 
also nearly identical in years 1 and 2 with a mean of 6.09 and 6.04 RFU, respectively, and a range of 3.01–10.4 
RFU. For DO sat., the mean was 107% and 97.8% in year 1 and year 2. Finally, inflow was higher in year 1 
(0.056 m 3 s −1) as compared to year 2 (0.013 m 3 s −1) and ranged from 0.005 to 0.27 m 3 s −1 (Figure S7; Table S8 
in Supporting Information S1). This resulted in a substantial difference in calculated water residence time, with 
substantially lower mean water residence time in year 1 (148 ± 169 d) as compared to year 2 (347 ± 119 d; Figure 
S1 in Supporting Information S1).

Overall, surface water temperature and TD were found to be the most important environmental predictors for 
both CO2 and CH4 fluxes over all timescales analyzed (daily, weekly, monthly), followed by fDOM (Table 1). 

Figure 4.  Day (11:00–13:00) versus night (23:00–01:00) comparisons of (a) carbon dioxide (CO2, μmol m −2 s −1) fluxes, (b) methane (CH4, μmol m −2 s −1) fluxes, and 
(c) wind speed (m s −1) measured using the eddy covariance (EC) system deployed at Falling Creek Reservoir. Points represent measured half-hourly fluxes, while the 
boxes represent the 25th and 75th percentile, respectively and the thick line shows the median flux calculated with measured EC data. Dawn (05:00–07:00) versus dusk 
(17:00–19:00) comparisons of (d) CO2 fluxes, (e) CH4 fluxes, and (f) wind speed. Wilcoxon signed-rank tests were used to determine statistical significance between 
paired (day to night; dawn to dusk) fluxes. Statistical significance was defined a priori as p < 0.05; asterisks indicate statistically significant differences. n indicates the 
number of paired fluxes (Table S6 in Supporting Information S1).
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Inflow discharge was only intermittently important for CO2 and CH4 fluxes at various timescales while DO sat. 
and Chl-a were only intermittently important for CO2 fluxes (Table 1, Table S9 in Supporting Information S1). 
Water temperature was positively correlated with both CO2 and CH4 fluxes at all timescales, following the pattern 
of higher GHG fluxes during summer as compared to winter in the time series data (Figures 2 and 3). CO2 
fluxes were negatively associated with TD while CH4 fluxes were positively associated with TD at all timescales 
(Table 1); that is, CO2 fluxes were greater when there were shallower thermocline depths, whereas CH4 fluxes 
were greater when there were deeper thermocline depths.

In addition to water temperature and TD, CO2 fluxes were positively associated with fDOM across all times-
cales, while CH4 fluxes were only positively associated with fDOM at the daily and weekly timescales (Table 1). 
Conversely, inflow was positively associated with CO2 fluxes at daily and weekly timescales, while inflow was 
negatively associated with CH4 fluxes at weekly and monthly timescales. Finally, Chl-a was negatively associated 

Figure 5.  Mean daily fluxes during the winter of 2021 for (a) Carbon dioxide (CO2, μmol m −2 s −1) and (b) methane (CH4 μmol m −2 s −1) during intermittent ice-on. 
Mean daily fluxes during winter of 2022 for (c) CO2 and (d) CH4 during near-continuous ice-on. Gray dots represent measured half-hourly fluxes while the solid 
red line indicates mean daily fluxes. The shaded red area corresponds to the standard deviation (±1 S.D.) of the daily mean fluxes. The blue vertical dashed lines 
correspond to the start of either intermittent or near-continuous ice-on for winter 2021 and 2022, respectively, while the red vertical dashed lines correspond to the 
start of complete ice-off. The black dashed line in 2021 corresponds to spring mixing (first day after ice-off when the temperature at 1 and 8 m was <1°C). For 2022, 
spring mixing was on the same day as ice-off. Boxplots of measured (e) CO2 and (f) CH4 fluxes during each winter’s intermittent or continuous ice-on, respectively. 
For each box plot, the median is represented as the bold line while the 25th and 75th percentiles are represented as the bottom and top of the box, respectively. The 
whiskers represent minimum and maximum values (1.5× interquartile range). Points represent all half hourly fluxes measured during the respective winter intermittent 
or continuous ice-on, respectively period. The dashed horizontal line corresponds to zero fluxes. Asterisks indicate statistically significant differences between median 
half-hourly fluxes measured during intermittent (2021) and continuous (2022) ice-on periods using Mann-Whitney-Wilcoxon tests (α = 0.05).
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with CO2 fluxes, but only on the daily timescale and was negatively associated with DO sat. at the weekly times-
cale. CH4 fluxes were not associated with either Chl-a or DO sat. at any timescale.

CO2 fluxes were best predicted by ARIMA models at the monthly timescale (RMSE = 0.48 μmol m −2 s −1), with 
descending RMSE for the weekly (0.63 μmol m −2 s −1) and then daily (0.97 μmol m −2 s −1) models (Table 1, Table 
S9 in Supporting Information S1). For CH4 fluxes, the best-fitting ARIMA model was also identified at the 
monthly timescale (RMSE = 0.41 μmol m −2 s −1), with descending RMSE for the weekly and daily models rang-
ing from 0.64 to 1.02 μmol m −2 s −1, respectively (Table 1, Table S9 in Supporting Information S1). Full ARIMA 
results are reported in Table S9 in Supporting Information S1.

3.4.  Influence of Ice Cover on CO2 and CH4 Fluxes

FCR experienced two distinct winter regimes in 2021 versus 2022. In 2021, ice-on first occurred on 10 January 
2021, then came on and off multiple times before final ice-off on 23 February 2021. Overall, there were 27 days 
with some ice and 9 days with some open-water during the 2021 intermittent ice-period. In contrast, in 2022, 
there was a brief period of ice cover from 11 January to 14 January 2022, followed by continuous ice-on occur-
ring from 16 January 2022 to final ice-off on 10 February 2022. While we were unable to collect ice thickness 
data through both winters due to safety concerns, peak ice thickness in FCR in 2022 was ∼9.5 cm whereas peak 
ice thickness in 2021 was ∼2 cm.

When comparing measured half-hourly fluxes aggregated across the intermittent ice-on period in winter 2021 
and the continuous ice-on period in winter 2022, there were statistically significantly higher median CO2 and 
CH4 fluxes measured during intermittent ice-on than continuous ice-on (Kruskal-Wallis p < 0.0001; Figure 5; 
Table S10 in Supporting Information S1). During intermittent ice-on in winter 2021, median CO2 fluxes were 
0.71 μmol m −2 s −1, 2.5 × higher than the median of 0.28 μmol m −2 s −1 during continuous ice-on in 2022. For CH4, 
median fluxes were 0.001 μmol m −2 s −1 and −0.001 μmol m −2 s −1, during intermittent ice-on and continuous 
ice-on, respectively (Table S10 in Supporting Information S1). Throughout the winter period, mean daily CO2 
and CH4 fluxes were much lower and less variable than in the summer, for both years (Figures 2 and 3).

3.5.  Net CO2 and CH4 Balance for a Small, Eutrophic Reservoir

Gap-filled CO2 and CH4 half-hourly fluxes summed across the entire year indicate that FCR was an overall 
source of CO2 and CH4 to the atmosphere (Figure 6). According to gap-filled EC fluxes, FCR released 633 and 
731 g CO2-C m −2 year −1, during the first and second years of the study, respectively. For gap-filled CH4 fluxes, 

Table 1 
Best-Fit Results From Autoregressive Integrated Moving Average Analysis

GHG Timescale
Model 
order

Surface 
temp (°C)

DO sat. 
(%)

Chl-a 
(μg L −1)

fDOM 
(RFU)

Inflow 
(m 3 s −1)

Thermo. 
depth (m)

RMSE 
(μmol m 2 s −1)

CO2 Daily (1,0,0) 0.18 – −0.17 0.07 0.08 −0.09 0.97

Weekly (0,0,0) 0.64 −0.16 – 0.13 0.20 −0.19 0.63

Monthly (0,0,0) 0.73 – – 0.24 – −0.31 0.48

CH4 Daily (0,0,0) 0.27 – – 0.12 – 0.25 1.02

Weekly (0,1,1) 0.36 – – 0.23 −0.36 0.24 0.64

Monthly (0,0,1) 0.74 – – – −0.26 0.21 0.41

Note. Table includes only the top selected model (lowest corrected Akaike Information Criterion, AICc). Models are 
separated by greenhouse gas (GHG) flux as carbon dioxide (CO2) and methane (CH4) fluxes as well as by timescale (daily, 
weekly, monthly). Environmental predictors included: Surface temperature (Surface Temp, °C), dissolved oxygen saturation 
(DO Sat, %), Chlorophyll-a (Chl-a, μg L −1), fluorescent dissolved organic matter (fDOM, RFU), inflow discharge (Inflow, 
m 3 s −1), and thermocline depth (Thermo. Depth, m). Model order is specified as (p,d,q) where p is the order of the AR term, 
d is the order of the integration term, and q is the order of the MA term. For brevity, the autoregressive (AR) and moving 
average (MA) terms have been removed but can be found in Supporting Information  S1. Results for all models with 2 
AICc of the best fitting model, can be found in Supporting Information S1 (Table S9). Dashed lines indicate environmental 
parameters that were not identified as statistically significant. The root mean square error (RMSE) is reported for each model. 
Standard errors for each parameter value are given in Supporting Information S1 (Table S9).
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FCR released 1.02 and 1.29 g CH4-C m −2 year −1, respectively. Substantial 
gap-filling was needed to estimate annual scale fluxes with the EC data. 
Non-gap-filled estimates of annual scale fluxes averaged about half of the 
gap-filled estimates for both CO2 and CH4, when scaled by the percentage 
of missing data from the measured time series (Figure S12 in Supporting 
Information S1).

The annual GHG balances were driven by large fluxes of CO2 and CH4 during 
the summer. Net emissions during the warmest months (June–September; 
375 and 496 g CO2-C m −2 for year 1 and year 2, respectively) represented up 
to 68% of the total annual net CO2 flux as compared to the coldest months 
(December–March) when only 98 and 57 g CO2-C m −2 was emitted (up to 
15% of the total annual CO2). Similarly, for CH4, up to 66% of the total annual 
net CH4 flux was released during the warmest months (June–September; 
0.67 and 0.76  g  CH4-C  m −2) and less than 1% during the coldest months 
(December–March). For the second year of monitoring, annual fluxes were 
greater for both CO2 and CH4, largely due to elevated fluxes in early and late 
fall (September–November). Cumulatively, the amount of CO2-C released 
from FCR was three orders of magnitude greater than the mass of CH4-C 
released.

4.  Discussion
This study provides the first annual-scale, multi-year estimates of both CH4 and CO2 fluxes using an EC system 
from a small reservoir. While using EC systems in small freshwaters is inherently challenging and contains 
several limitations, our work reveals variable patterns in both CO2 and CH4 fluxes over sub-daily to seasonal 
scales that set the stage for future work. Our study was limited by low levels of measured data, underscoring the 
need for more accurately quantifying the GHG contributions of small reservoirs on multiple timescales. Despite 
these challenges, however, our data suggest that FCR was a substantial CO2 and CH4 source to the atmosphere on 
multiple timescales. Below we discuss some of the challenges of using an EC system in small freshwaters as well 
as the patterns and potential drivers of variability in fluxes (CO2 and CH4) over multiple timescales, including 
during winter ice-cover.

4.1.  Variability in Sub-Daily Fluxes, With Higher Dawn Than Dusk CO2 Fluxes

A key advantage of an EC system is the ability to capture variability in sub-daily GHG fluxes throughout the 
year. Despite data gaps and limitations, the fluxes collected by the EC represent a substantial increase in the 
ability to identify variability in GHG fluxes at multiple timescales. Our work complements previous studies of 
freshwater systems using EC measurements that observed high sub-daily variability in both summer CO2 (Golub 
et al., 2023; Liu et al., 2016; Shao et al., 2015) and CH4 fluxes (Eugster et al., 2011; Podgrajsek et al., 2014; 
Taoka et al., 2020; Waldo et al., 2021) and furthers our understanding of the variability of CO2 and CH4 fluxes 
on multiple timescales.

When comparing day (11:00–13:00) versus night (23:00–01:00) fluxes, we observed no statistically significant 
differences between CO2 or CH4 fluxes using measured EC fluxes aggregated over the 2-year monitoring period 
(Figure 4; Table S6 in Supporting Information S1). When repeating this analysis separately among seasons, we 
did observe a statistically significant difference between day and night for CH4 fluxes during the winter, but that 
was the only season where statistical differences were detected (Table S11 in Supporting Information S1). Simi-
larly, studies in a small Finnish lake also found no evidence for diel differences in CO2 fluxes (Erkkilä et al., 2018; 
Mammarella et al., 2015), while Waldo et al. (2021) found diel differences in CH4 fluxes on only 18.5% of days 
out of a 2-year study period. Other studies, however, have observed more consistent diel patterns in GHG fluxes. 
For example, some studies have shown higher CH4 fluxes during the night in lakes and reservoirs (Eugster 
et al., 2011; Podgrajsek et al., 2016; Waldo et al., 2021) and higher CO2 fluxes at night in streams (Attermeyer 
et al., 2021; Gómez-Gener et al., 2021). On the other hand, some studies observed higher CH4 fluxes  during the 
day as compared to night (Erkkilä et al., 2018; Jammet et al., 2017; Podgrasjek et al., 2016; Sieczko et al., 2020). 

Figure 6.  Annual cumulative fluxes using measured and gap-filled Eddy 
covariance data for (a) carbon dioxide (CO2, g C m −2) and (b) methane (CH4, 
g C m −2) from Falling Creek Reservoir for Year 1 (May 2020-April 2021; 
pink) and Year 2 (May 2021-April 2022; dark red). Shaded areas correspond to 
the aggregated standard deviation (±1 S.D.) of measurements. The horizontal 
dashed line corresponds to zero and the vertical dotted line indicates reservoir 
fall turnover for both years.
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Our results are contrary to our predictions, in which we expected substantially higher CO2 and CH4 fluxes during 
the day due to the significantly higher wind speeds. We hypothesize that higher concentrations of dissolved CO2 
and CH4 in the surface waters at night, due to decreased primary productivity and elevated microbial respiration, 
for CO2, and/or convective mixing of deeper waters with higher dissolved CO2 and CH4 concentrations (Liu 
et al., 2016; Figure S13 in Supporting Information S1), were not efficiently transferred to the atmosphere at the 
low observed nightly wind speeds, resulting in similar flux magnitudes during both day and night. Clearly, there 
is a range of responses to diel variation among lake and reservoir CO2 and CH4 fluxes due to both biological and 
physical processes, and more work is needed to identify when, where, and why lakes and reservoirs may emit 
differential GHGs during day versus night.

While we did not observe statistically significant differences between GHG fluxes measured during the day as 
compared to night, we did observe statistically significantly higher CO2 fluxes at dawn (05:00–07:00) as compared 
to dusk (17:00–19:00), but no difference in dawn versus dusk CH4 fluxes over the full study period (Figure 4). 
Similarly, studies conducted in other lakes also found CO2 flux minima during the late afternoon (∼18:00) and 
CO2 flux maxima during the early morning (∼06:00; Liu et al., 2016; Shao et al., 2015), supporting our obser-
vations of higher dawn CO2 fluxes. Liu et al. (2016) hypothesized the lower CO2 fluxes observed during the day 
(∼18:00) were likely a result of elevated primary productivity during the afternoon, primarily in the summer 
months, but could have also been due to convective mixing in the water column at night. In FCR, we hypothesize 
the elevated dissolved CO2 concentrations measured at 3.8 m likely contributed to the higher CO2 diffusive fluxes 
observed at dawn following nightly convective mixing (Figure S13 in Supporting Information S1). Conversely, 
dissolved CH4 concentrations measured at 3.8 m were similar to surface concentrations, suggesting convective 
mixing overnight would likely not have contributed to increased dawn CH4 fluxes, as observed.

Altogether, our results provide additional evidence that the time of sample collection has important implications 
for upscaling freshwater GHG fluxes to longer timescales (Attermeyer et al., 2021; Gómez-Gener et al., 2021). 
A previous study conducted in FCR which estimated CO2 and CH4 diffusive fluxes using discrete GHG meas-
urements collected at ∼noon concluded FCR was often a small CO2 sink during the summer stratified period 
in 2015–2016 (McClure et al., 2018), whereas our diel EC data indicate that FCR was an overall CO2 source 
throughout the summer in both 2020 and 2021. While the flux magnitudes measured by McClure et al. (2018) 
were similar to the present study, the overall conclusions were different due to the temporal resolution of sample 
collection.

4.2.  Important Role of Water Temperature and Thermocline Depth in Constraining Daily, Weekly, and 
Monthly CO2 and CH4 Fluxes

Following our analysis of CO2 and CH4 fluxes over daily to seasonal timescales, we then used time-series anal-
ysis to test the potential effects of various limnological variables on GHG fluxes. Specifically, ARIMA results 
show that surface water temperature was positively correlated with both CO2 and CH4 fluxes at the daily, weekly, 
and monthly timescales (Table 1). These results were supported by higher fluxes of both CO2 and CH4 observed 
during the warmer summer months when aggregated to daily, weekly, and monthly timescales (Figures 2 and 3, 
Figure S8 in Supporting Information S1). Strong positive correlations between GHG fluxes (both CO2 and CH4) 
and water temperature have been observed in several freshwater ecosystems, especially on longer timescales, 
with clear differences between summer and winter fluxes (monthly to seasonally; Eugster et  al.,  2011; Reed 
et al., 2018; Taoka et al., 2020). Higher GHG fluxes were expected during the summer as compared to winter, due 
to elevated rates of biological respiration stimulated by higher temperatures in both the surface and deep waters 
(Figure S13 in Supporting Information S1). Generally, water column dissolved GHG concentrations increased 
throughout the summer period (Figure S13 in Supporting Information S1). In the surface waters, dissolved CH4 
concentrations generally peaked in July, while dissolved CO2 concentrations increased throughout the summer 
and peaked around fall turnover.

In addition to temperature, TD was also identified as an important environmental parameter controlling both CO2 
and CH4 fluxes. For CO2 fluxes, TD was negatively associated with fluxes at all timescales, indicating higher 
CO2 fluxes when the thermocline was shallower. Generally, TD was shallower in the late summer (Figure S7 
in Supporting Information S1) when CO2 fluxes were observed to be greatest and most variable in FCR. This 
pattern may be indirectly related to water temperature, as shallower thermocline depths were weakly, negatively 
associated with warmer water temperatures, and there was a strong positive relationship between CO2 fluxes and 
water temperature, as discussed above.

 21698961, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

007091 by V
irginia T

ech, W
iley O

nline L
ibrary on [24/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Biogeosciences

HOUNSHELL ET AL.

10.1029/2022JG007091

16 of 22

Conversely, TD was positively correlated with CH4 fluxes at all timescales (daily, weekly, monthly), indicating 
higher CH4 fluxes when the TD was deeper, which was generally observed during the late summer and early fall 
as mixing increased (Figure S7 in Supporting Information S1). Previous studies have suggested water column 
mixing is an important control on CH4 fluxes, leading to higher fluxes during convective and wind-driven mixing 
when high dissolved concentrations of CH4 accumulated in the deeper waters are mixed to the surface, which 
would be more common when the TD is deeper (Sieczko et al., 2020). We did observe elevated dissolved CH4 
concentrations in the metalimnion (∼5 m), particularly in the late summer and early fall when the thermocline 
started to deepen (Figures S7 and S13 in Supporting Information S1), which was likely mixed into the surface 
waters and contributed to reservoir CH4 fluxes, as observed previously in FCR by McClure et al. (2018). However, 
we do not know the extent of methanotrophy in converting dissolved CH4 to CO2 prior to emissions. While we 
also observed elevated dissolved CO2 concentrations at similar depths during the late summer and early fall, we 
might expect elevated primary production observed at this same time (Figure S6 in Supporting Information S1) 
reduced overall fluxes of CO2 from the reservoir. Additional research is needed to specifically link water column 
dissolved GHG concentrations and water column processes with atmospheric emissions.

Following temperature and TD, fDOM was identified as a key positive environmental predictor for CO2 fluxes 
at all timescales (daily, weekly, monthly; Table 1). A similar positive relationship between terrestrially derived 
dissolved organic matter (DOM)  and dissolved CO2 was identified in 48 Canadian streams (D’Amario & 
Xenopoulos, 2015). As fDOM sensors are thought to mainly capture allochthonous DOM (Howard et al., 2021; 
Watras et al., 2015), this finding suggests that allochthonous DOM from the reservoir's primary inflow stream 
or diffuse overland flow may result in elevated CO2 emissions from freshwater ecosystems as allochthonous 
DOM is converted to CO2 during respiration. This follows previous research which has identified allochthonous 
carbon inputs and associated dissolved organic carbon concentrations as important predictors of CO2 fluxes in 
lakes and reservoirs (Barros et al., 2011; Sobek et al., 2005). Unlike for CO2, fDOM was only identified as an 
important environmental predictor for CH4 fluxes at shorter timescales (daily, weekly). In an analysis of >300 
lakes, Sanches et al. (2019) found a strong positive relationship between dissolved organic C and diffusive CH4 
fluxes, suggesting dissolved organic C availability for methanogenesis may play an important role in constraining 
CH4 fluxes across multiple lakes and timescales. The strong positive correlation between CH4 fluxes and fDOM 
observed here further indicates that dissolved organic C, as a proxy from fDOM (Howard et al., 2021), may also 
be important at the local scale on short-timescales.

In addition to these overarching patterns, several environmental parameters were intermittently important for 
various timescales for either CO2 or CH4 fluxes. CO2 fluxes were positively correlated with inflow at shorter 
timescales (daily, weekly) while CH4 fluxes were negatively correlated with inflow but only at longer timescales 
(weekly, monthly; Table 1). Following the positive relationship between CO2 fluxes and fDOM, we hypothesize 
the positive relationship with inflow reflects the importance of allochthonous DOM delivery to FCR via the 
primary inflow and diffuse overland flow, which suggests a potentially labile source of allochthonous DOM 
to the reservoir via the primary inflow. Pearson correlation analysis, suggests fDOM and inflow were weakly 
correlated at these timescales (daily, weekly; ρ = 0.13, 0.11, respectively), but was weakly negatively correlated 
at longer timescales (monthly, ρ = −0.03; Table S4 in Supporting Information S1). Previous research examining 
CH4 fluxes from FCR have found similar negative relationships between inflow and CH4 fluxes, especially via 
ebullition in the upstream, littoral portion of the reservoir (McClure et al., 2020). Results from this study suggest 
inflow is similarly correlated with CH4 fluxes at the deepest point of the reservoir, primarily on longer timescales 
(weekly, monthly). Finally, Chl-a was negatively associated with CO2 fluxes at the daily timescale while DO sat. 
was negatively associated with CO2 fluxes at the weekly timescale (Table 1). Both of these relationships suggest 
a coupling between high primary production, as indicated by high Chl-a and high DO Sat., and low CO2 fluxes on 
shorter timescales (daily, weekly). Previous studies have identified a weak negative relationship between primary 
production and CO2 fluxes on the sub-daily timescale in other eutrophic, freshwater lakes and reservoirs (Liu 
et al., 2016; Shao et al., 2015).

4.3.  Role of Fall Turnover and Ice Cover in Affecting GHG Dynamics

Contrary to previous studies conducted in both FCR and other thermally stratified waterbodies (e.g., Erkkilä 
et al., 2018; McClure et al., 2018, 2020), we observed low CO2 and CH4 fluxes during the days surrounding fall 
turnover for both years (1 November 2020; 3 November 2021), when EC data indicate that FCR was a small to 
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negligible CO2 and CH4 source (Figures 2 and 3, Figure S9 in Supporting Information S1). Discrete diffusive 
fluxes measured on the day of fall turnover suggest FCR was a 4x and 14x larger CO2 source than fluxes meas-
ured with the EC, in years 1 and 2 respectively (Figure 2, Figure S9 in Supporting Information S1). Similar 
to CO2, we found the magnitude of CH4 fluxes decreased following fall turnover but remained a small source 
(Figure 3, Figure S9 in Supporting Information S1). McClure et al. (2018) observed episodic release of CH4 from 
FCR during the weeks prior to fall turnover as high concentrations of dissolved CH4 that had accumulated in 
the middle of the water column, due to the formation of a metalimnetic oxygen minimum, were emitted during 
wind-mixing. In the weeks prior to fall turnover, we did observe elevated CH4 emissions in both years (Figure 3, 
Figure S9 in Supporting Information S1), supporting this observed mechanism (McClure et al., 2018; Figure S13 
in Supporting Information S1), and decreasing the importance of fall turnover as a single pulse of emissions. 
For CO2, similar increases in dissolved CO2 concentrations were observed in the metalimnion during the same 
time period, but as suggested above, the release of this CO2 to the atmosphere was likely mitigated by primary 
production in the surface waters.

Importantly, this study provides some of the first near-continuous flux measurements of both CO2 and CH4 during 
winter, including during intermittent and continuous ice-on conditions (Figure  5). Overall, the annual GHG 
balance was driven by large fluxes of CO2 and CH4 during the summer, as CO2 and CH4 fluxes were 3× and 23× 
greater, respectively, during the summer stratified period (April–October) as compared to the winter and early 
spring (November–March; Figure 6). However, we do note that we observed significantly higher CO2 and CH4 
fluxes during intermittent ice-on when there is likely more air-water gas exchange as compared to continuous 
ice-on (p < 0.001; Figure 5; Table S10 in Supporting Information S1), which would physically limit air-water 
gas exchange, thereby demonstrating the importance of annually variable, winter ice dynamics to seasonal GHG 
fluxes. Of the studies that report GHG fluxes during continuous ice-on, all report low fluxes with low variability 
(A. K. Baldocchi et al., 2020; Jammet et al., 2015, 2017; Reed et al., 2018), similar to the winter with continuous 
ice-on at FCR. Interestingly, these studies also noted high fluxes immediately following ice-off for both CO2 
and CH4 due to accumulation of dissolved CO2 and CH4 under the ice from aerobic and anaerobic microbial 
respiration (Anderson et al., 1999; A. K. Baldocchi et al., 2020; Gorsky et al., 2021; Jammet et al., 2015, 2017; 
Podgrajsek et  al.,  2016; Taoka et  al.,  2020), which was not observed at FCR. Unlike these previous studies, 
which were largely conducted in northern lakes which are frozen for months at a time, FCR is a more temperate 
system which only periodically freezes for a few days to weeks at time (Carey & Breef-Pliz, 2022). We hypoth-
esize that the brief continuous ice-cover observed at FCR during winter 2022 (25 days) was not long enough to 
promote extensive accumulation of dissolved GHGs under ice, as observed by the other studies. Further work 
on the effect of ice cover on GHG fluxes is needed, but our comparison of intermittent ice-on versus continuous 
ice-on suggests that the increasing intermittent ice-cover being experienced in many lakes worldwide (Imrit 
& Sharma, 2021; Sharma et  al.,  2021; Woolway et  al.,  2020) will likely increase winter GHG fluxes. These 
increases may be due to both greater continuous exchange of GHGs across the air-water interface and increased 
rates of microbial respiration under higher winter temperatures.

4.4.  Much Higher Annual CO2 Emissions From FCR Than Other Studied Reservoirs

When scaling fluxes to the full year, FCR was a much smaller annual CH4 source (1.02–1.29 g m −2 yr −1), yet a 
larger CO2 source (633–731 g m −2 yr −1; Figure 5, Figure S12 in Supporting Information S1), than other reservoirs 
reported in the literature to date (A. K. Baldocchi et al., 2020; Deemer et al., 2016; Golub et al., 2023). While the 
total magnitude of CO2 emissions from FCR was greater than most studies, Golub et al. (2023) similarly found 
that data from 12 lakes and reservoirs over multiple years emitted substantial amounts of CO2 in their synthesis 
of EC measured CO2 fluxes in freshwaters (13.6–224 g C m −2 yr −1), except for one reservoir during one year 
which had a CO2 flux of −53.6 g C m −2 yr −1. As compared to other reservoirs with GHG flux data, FCR is 
old (>100 years old) which may lead to lower GHG emissions, particularly for CH4 fluxes, likely as a result of 
reduced supply of organic matter substrate in the sediments as the reservoir ages (Barros et al., 2011; McClure 
et al., 2020; Prairie et al., 2018).

Despite its age, however, FCR was a much larger CO2 source as compared to other lakes and reservoirs. The 
CO2 emissions were consistently high among years, suggesting that FCR may be a greater source of CO2 
than most terrestrial environments (−750–250 g C m −2 yr −1 for multi-year, undisturbed terrestrial sites; D. D. 
Baldocchi,  2020). Comparisons between years suggest that slightly higher annual fluxes of CO2 and CH4 in 
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the early to late fall (September–November) of the first monitoring year as compared to the second year may 
be related to slightly higher mean air temperatures or lower inflow levels (and corresponding longer hydraulic 
residence times), though this remains unknown. We note that these cumulative fluxes are likely conservative, as 
there were substantial gaps in measured EC fluxes during year 1, particularly in August 2020, likely resulting in 
underestimated measured fluxes during this time of year when fluxes are usually highest (Figure 6, Figure S12 in 
Supporting Information S1). Multiple meteorological, biological, and environmental processes likely contributed 
to the higher observed annual CO2 fluxes as compared to other lakes and reservoirs. Additional studies comparing 
GHG fluxes from multiple reservoirs simultaneously are needed to identify these variables.

4.5.  Challenges of Using EC Systems in Small, Freshwater Lakes and Reservoirs

While the study described here greatly expands the temporal frequency of measured CO2 and CH4 fluxes from 
a small reservoir, several caveats must be taken into consideration. EC systems are notoriously difficult to use 
in freshwater ecosystems due to footprint considerations (Vesala et al., 2006), frequent occurrences of low u* 
values, particularly at night (Scholz et al., 2021; Vesala et al., 2006), as well as general considerations resulting 
in high percentages of data removed due to these and other issues (yielding data coverage of 10%–40%; e.g., A. 
K. Baldocchi et al., 2020; Erkkilä et al., 2018; Huotari et al., 2011; Ouyang et al., 2017; Shao et al., 2015; Waldo 
et al., 2021; Table S1 in Supporting Information S1). While low data coverage was common in the current study, 
data gaps were relatively consistent across timescales (daily to seasonally) to ensure unbiased data. Furthermore, 
compared to the temporal frequency of many grab sample methods (i.e., samples measured weekly, biweekly, 
or monthly), the data coverage of the EC system is still a substantial improvement and more accurately captures 
fluxes across multiple timescales challenging to sample, such as at night, during winter ice-cover, and during 
episodic events, such as fall turnover. Importantly, we note that standard gap-filling routines for EC flux data 
collected from freshwater ecosystems (i.e., lakes and reservoirs) do not currently exist. We applied gap-filling 
routines originally developed for terrestrial ecosystems (Wutzler et al., 2018) to FCR to better estimate annual 
scale fluxes, which is still a substantial improvement over traditional grab sampling methods.

While strict filtering processes were enacted to limit non-local fluxes (i.e., filtering fluxes when the along-wind 
distance providing 90% of the cumulative contribution was outside the reservoir), we are unable to completely 
rule out potential non-local processes (e.g., land-lake interactions) which occur outside the footprint and are 
entrained or advected into the EC footprint area (Esters et  al.,  2021; Vesala et  al.,  2006, 2012; Figure S2 in 
Supporting Information  S1). These processes may be particularly important in small freshwaters located in 
mountainous regions (Scholz et al., 2021). For example, Scholz et al. (2021) hypothesized that reduced nighttime 
CO2 emissions measured using the diffusive-flux method were due to low wind speeds and CO2 sinking from 
the land to the lake surface at night in a mountainous Swiss lake. While the topography at FCR is not as extreme, 
similar watershed processes due to low wind speeds and atmospheric convective wind mixing at night may be 
occurring at FCR, though at a smaller scale, potentially confounding any observed diel differences. In addition, 
based on studies conducted in similar terrestrial ecosystems, we might expect negative CO2 fluxes in the summer 
followed by substantial CO2 emissions in the fall and winter; however, these patterns were not observed in FCR, 
suggesting the majority of fluxes measured in this study likely originated in the reservoir. When considered and 
interpreted cautiously, the data collected by the EC system provides a far more comprehensive time series than 
what is possible from discrete measurements (Anderson et al., 1999; Eugster, 2003; Huotari et al., 2011; Jonsson 
et al., 2008; Scholz et al., 2021), which is critical for increasing our understanding of GHG fluxes from small 
reservoirs on multiple temporal scales.

Finally, comparisons with diffusive grab samples suggest fluxes measured with the EC system were consistently 
higher than those estimated with diffusive grab samples, especially for CO2 (Figure 2, Figure S11 in Support-
ing Information  S1), which is consistent with previous studies (Scholz et  al.,  2021, and references therein). 
Conversely, CH4 fluxes calculated using the discrete diffusive methods were more comparable to those measured 
by the EC system (Figure 3, Figure S11 in Supporting Information S1). Discrepancies between EC measured 
fluxes and diffusive grab samples may be a result of the different spatial resolution of the two methods, where 
the EC system is measuring fluxes both at the deepest point of the reservoir in addition to upstream and littoral 
portions of the reservoir while diffusive grab samples were only collected at the deepest point of the reservoir 
(Figure 1; Scholz et al., 2021). Indeed, several studies have observed higher CO2 and CH4 fluxes in the littoral 
zone, closer to the shore, which would have been encompassed in the measured EC fluxes but not the diffusive 
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grab samples (Erkkilä et al., 2018; Scholz et al., 2021; Taoka et al., 2020). A comparison of CH4 fluxes on an 
inflow to dam transect at FCR observed substantially higher fluxes in the littoral zone, supporting this pattern 
(McClure et al., 2020).

5.  Conclusions
Overall, we observed FCR to be a source of CO2 and CH4 to the atmosphere on annual timescales. Given the limi-
tations of gap-filling, our calculated annual fluxes (∼633–731 g CO2-C m −2 yr −1; ∼1.02–1.29 g CH4-C m −2 yr −1) 
are only estimates, however, we note their remarkable consistency between years. Importantly, by measuring 
fluxes near-continuously for a full year, we found winter fluxes (December-March) of both CO2 and CH4 to 
be comparatively smaller (15%–25% and <1% of total annual fluxes, respectively) than the summer stratified 
period (June–September) yet still important for annual GHG fluxes. In addition, measuring GHG fluxes during 
two winters with contrasting ice-cover, showed significantly higher CO2 and CH4 fluxes during intermittent as 
compared to continuous ice-on. Finally, we identified surface water temperature, TD, and several other envi-
ronmental variables (fDOM, inflow) as important drivers of both CO2 and CH4 fluxes on multiple timescales. 
Altogether, our results suggest that CO2 and CH4 are highly dynamic on multiple temporal scales and highlight 
the role of small reservoirs as important GHG sources in global budgets. Ultimately, efforts to scale up small 
reservoir CO2 and CH4 emissions will need to consider how the environmental processes that drive C dynamics in 
small reservoirs may differ from larger waterbodies, which in turn could alter reservoir fluxes. Given the ubiquity 
of small (<1 km 2) reservoirs in the landscape, quantifying their contributions to the global C cycle is paramount, 
especially given that our study suggests that they may emit more CO2 and CH4 than would be expected from their 
surface area.
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