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Towards critical white ice conditions in lakes
under global warming
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Ellinor Jakobsson 1, Joachim Jansen 1, Galina Zdorovennova 3,
Sheel Bansal 4, Benjamin D. Block 5, Cayelan C. Carey 6,
Jonathan P. Doubek 7,8, Hilary Dugan9, Oxana Erina 10, Irina Fedorova11,
Janet M. Fischer12, Laura Grinberga13, Hans-Peter Grossart 14,15,
Külli Kangur 16, Lesley B. Knoll17, Alo Laas 16, Fabio Lepori 18, Jacob Meier4,
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Sapna Sharma23, Danielle Wain 24 & Roman Zdorovennov 3

The quality of lake ice is of uppermost importance for ice safety and under-ice
ecology, but its temporal and spatial variability is largely unknown. Here we
conducted a coordinated lake ice quality sampling campaign across the
Northern Hemisphere during one of the warmest winters since 1880 and show
that lake ice during 2020/2021 commonly consisted of unstable white ice, at
times contributing up to 100% to the total ice thickness. We observed that
white ice increasedover thewinter season, becoming thickest and constituting
the largest proportion of the ice layer towards the end of the ice cover season
when fatal winter drownings occur most often and light limits the growth and
reproduction of primary producers. We attribute the dominance of white ice
before ice-off to air temperatures varying around the freezing point, a con-
dition which occurs more frequently during warmer winters. Thus, under
continued global warming, the prevalence of white ice is likely to substantially
increase during the critical period before ice-off, for which we adjusted com-
monly used equations for human ice safety and light transmittance
through ice.
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The majority of lakes in the Northern Hemisphere are still periodically
covered by ice inwinter, but long-term records show a rapid decline in
the number of days when lakes are frozen, mainly due to globally
increasing air temperatures1–4. Increasing temperatures have an effect
not only on the mean but also on the amplitude of the annual air
temperature cycle, which in turn causes accelerated ice cover loss
rates in a warmer world5, which have been documented formany lakes
across the Northern Hemisphere over the past decades3,6. Future cli-
mate simulations indicate that the spatial distribution of lake ice cover
in the Northern Hemisphere will turn more than 35,000 seasonally
frozen lakes into intermittently ice-free lakes in a 2 °C warmer world,
affecting nearly 400 million people7. Of those lakes, up to 5700 are
projected to become permanently ice-free within this century8.

Although lake ice cover dynamics have been intensively studied,
withmelting and thawingmechanismswell known9,10, lake ice quality is
usually not assessed and only very few studies present data on ice
quality (for examples see Table 1 and Fig. 1a). Characteristics of lake ice
quality include measures on ice thickness, transparency (either clear/
“black” or opaque/“white”), crystal structure, and impurities10. Most
lake ice quality data are available for total ice thickness in part because
those data can be retrieved from satellites11. The thickest lake ice on
Earth has been observed on permanently frozen lakes that are covered
by glaciers, where the present record of 295m is from Lake Vostok in
Antarctica12. The maximum ice thickness of seasonally frozen lakes is
much less, reaching around 2m9. Generally, the longer the ice cover
lasts, the thicker the ice layer can become, even in small, well mixed
lakes with intermittent ice cover, as reported from Müggelsee13, a
lowland lake in northeastern Germany.

The ice layer on lakes commonly consists of black and/or white
ice, also referred to as congelation ice and snow-ice, respectively14.
White ice has about half of the load-bearing strength compared to
black ice15,16. In addition, white ice strongly reduces the penetration of
photosynthetically active radiation through ice, in contrast to clear
black icewhichusually does not affect light penetrationmore than lake
water17,18. With an increasing white ice thickness, photosynthetically
active radiation underneath ice decreases and approaches zero when
the white ice layer reaches a thickness of 30 cm9. Because light con-
ditions control the phenology and community composition of winter

and spring plankton and fish19, knowledge about the thickness of white
iceon a lake is essential for understanding lake ecology. Yet, at present,
there is no global information available on the occurrence and varia-
bility of white ice on lakes. We, therefore, conducted an ice sampling
campaign in lakes across the Northern Hemisphere (Fig. 1a) within the

Table 1 | Examples of lakes for which some ice quality data
were available in the literature (for location of the lakes
see Fig. 1a)

Lake name Country Reference

Lake Opinicon Canada Agbeti and Smol (1995)49

Rideau Canal Canada Barrette (2011)16

Upper Rock Lake Canada Agbeti and Smol (1995)49

Lake Kilpisjärvi Finland Korhonen (2006)22 and Leppäranta (2019)50

Lake Pääjärvi Finland Jakkila et al. (2009)51

Lake Abashira Japan Ohata et al. (2016)52

Lake Haruna Japan Maeda and Icimura (1973)53

Atnsjøen Norway Jensen (2019)54

Krasne Poland Pasztaleniec and Lenard (2008)39

Lake Mikołajskie Poland Kalinowska and Grabowska (2016)55

Piaseczno Poland Pasztaleniec and Lenard (2008)39

Rogózno Poland Pasztaleniec and Lenard (2008)39

Lake St. Ana Romania Felfoldi et al. (2015)56

Lake Vendyurskoe Russia Zdorovennova et al. (2021)36

Frains Lake USA Bolsenga et al. (1991)17

Great Lakes USA Bolsnega and Vanderploeg (1992)35

Lake Bishop USA Bolsenga et al. (1991)17

Lake Erie USA Bolsenga et al. (1991)17
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Global Lake Ecological Observatory Network (GLEON), following a
standardized protocol (Supplementary Information). The campaign,
named IceBlitz, was performed from December 2020 to April 2021,
coinciding with one of the warmest winters in the Northern Hemi-
sphere since 1880 (Fig. 1b). During the campaign, total ice thickness,
the thickness of black and white ice (Fig. 1c) and the thickness of snow
and/or slush layers on top of the ice layer were measured in 31 lakes
distributed across ten countries in the Northern Hemisphere (Fig. 1a).
The choice of lakes was dependent on IceBlitz participants’ ability to
performwinter sampling. Altogether, 167 ice quality observationswere
made (Fig. 1a, Table 2). For two of the 31 lakes, i.e., Mozhaysk Reservoir
and Lake Vendyurskoe, long-term lake ice quality data dating back to
1971 and 1996, respectively, were available. We used these time series
to evaluate how lake ice conditions in 2020/2021 deviated from ice
conditions observed during previous, colder winters.

Results and discussion
Ice quality observations
During the IceBlitz campaign, the total lake ice thickness on lakes
across the Northern Hemisphere varied from 1 to 103 cm, with a
median of 29 cm (mean± one standard deviation: 32 ± 18 cm). Most
measurements were performed in January and February (n = 53 and 58,
respectively), a few weeks after ice-on in December or January. Many
lakeswere already ice-free in April, decreasing the number of sampling
occasions during that month to ten. In our data set, the thickest ice
layers were usually observed in February or March, depending on how
long the ice cover lasted.

The observed ice thickness during the 2020/2021 IceBlitz cam-
paign was generally lower than we found reported in the literature
(Table 1). Out of 117 lake ice thickness observations from 18 lakes
performed in winters prior to the sampling year (Table 1, Fig. 1a), only
21 observations demonstrated an ice thickness less than 29 cm, and the
median across all 117 observations from the literature was 42 cm
(mean± one standard deviation: 45 ± 16 cm). There are many possible
reasons why previous observations from other lakes deviate from our
observations during the very warm winter in 2020/2021 (Fig. 1b), such
as geographical location, lake size, lake depth, sampling date, degree
of global warming, morphological and hydrothermal conditions. It is,
however, rather well documented that many lakes in the world pre-
sently experience a trend of thinner ice e.g.,20–22, suggesting that the
thinner ice conditions during our sampling campaign are a result of
rapidly increasingwinter air temperatures in theNorthernHemisphere
during the past years (Fig. 1b). Increased winter air temperatures are
most likely also the reasonwhywe founda significantly decreased total
ice thickness in the Mozhaysk Reservoir in 2011–2021 compared to
1971–1979 (median: 37 and 53 cm, respectively; Wilcoxon signed-rank
test: p <0.0001, n = 210 and 169, respectively). Because winter air
temperatures in the Northern Hemisphere are projected to further
increase23, we expect that the trend towards thinner ice will continue
into the future.

The ice on IceBlitz lakes commonly consisted of both a black
and a white ice layer where the black ice layer was the dominant ice
layer when all 167 measurements were taken into consideration
(mean ± one standard deviation: 70 ± 28%). There was, however, a
clear seasonal trend in the ice layer composition with a substantial
increase in the thickness and the proportion of white ice towards
late winter and spring (Fig. 2a, b). From being mainly absent in
December 2020, the median white ice thickness across the North-
ern Hemisphere increased to 3 cm (13% of the total ice thickness) in
January 2021, 10 cm (33% of the total ice thickness) in February 2021,
and finally 23 cm (52% of the total ice thickness) in March 2021
(Fig. 2a, b). Thus, white ice became the dominant ice type for the
31 seasonally frozen lakes located across the Northern Hemisphere
during the time before ice-off. An increase in the thickness and
proportion of white ice from the beginning towards the end of ice
cover was observed for all lakes with available seasonal data (see
Fig. 2c for an example) except for Hobart Lake, USA, where thewhite
ice layer slightly decreased from 9 to 4–8 cm from January to Feb-
ruary 2021. The range of spatial variation in the accumulation of
white ice on a lake during one sampling occasion remained below
8 cm even when 12 different sites on a lake were visited. Only once
the in-lake difference in the white ice layer reached 21 cm on Lake

Fig. 1 | Sampling locations of seasonally frozen lakes andNorthernHemisphere
winter air temperatures since 1880. a Open access map from the International
Permafrost Association (https://www.eea.europa.eu/legal/copyright) showing Ice-
Blitz sampling locations with lake names during winter 2020/2021 (red dots). Also
shown are locations of lakes for which some ice quality data from the literature are
available (black dots). b Times series of winter and monthly mean Northern
Hemisphere air temperatures (T) from 1880 to 2021, shown as anomalies over the
base period 1951 to 1980. Lines are smoothing splines using a lambda of 0.05. Red
dots represent air temperatures during the IceBlitz sampling campaign. Data for air
temperature are from NASA GISS Surface Temperature Analysis (GISTEMP).
c Examples of IceBlitz sampling occasions in Estonia and Russia during white and
black ice conditions, respectively (photo courtesy: Margot Sepp and Oxana Erina).

Table 2 | Ice quality observations in lakes made during winter
2020/2021 (for location of the lakes see also Fig. 1a)

Lake Name Country Latitude/Longitude

Wilcox Lake Canada 43.95/−79.44

Bagot Long Lake Canada 45.14/−76.39

Harp Lake Canada 45.38/−79.14

Lake O’Hara Canada 51.36/−116.33

Lake Võrtsjärv Estonia 58.21/26.10

Lake Saadjärv Estonia 58.53/26.65

Lake Peipsi Estonia/Russia 58.80/27.00

Lake Oulujärvi Finland 64.32/27.72

Lake Dagow Germany 53.06/12.59

Lake Fuchskuhle Germany 53.06/12.59

Lake Tovel Italy 46.26/10.95

Lake Alauksts Latvia 57.09/25.76

Mozhaysk Reservoir Russia 55.58/35.86

Lake Vedlozero Russia 61.34/32.49

Lake Kroshnozero Russia 61.42/33.04

Lake Vendyurskoe Russia 62.10/33.10

Lake Kuropachie Russia 67.56/32.42

Lake Imandra Russia 67.60/33.00

Lake Big Vudyavr Russia 67.63/33.69

Lake Small Vudyavr Russia 67.69/33.63

Lake Sopchyavr Russia 67.90/32.79

Lake Erken Sweden 59.84/18.63

Inre Harrsjön Sweden 68.21/19.25

Lake Nero Switzerland 46.45/08.54

Falling Creek Reservoir USA 37.30/−79.84

Long Pond USA 44.53/−69.84

Lake Champlain USA 44.56/−73.24

Crystal Lake USA 46.00/−89.61

Sparkling Lake USA 46.01/−89.70

Hobart Lake USA 46.92/−98.14

Lake Itasca USA 47.23/−95.20

These observational data comprised the dataset named IceBlitz.
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Vendyurskoe. Thus, the seasonal variation in the thickness of the
white ice layer commonly exceeded the observed in-lake variation
assessed during one sampling event.

White ice formation
White ice is commonly formed when snow accumulates on ice, melts,
and refreezes24. White ice also forms when rain falls on the snow layer
to formslush, which subsequently can freeze and turn intowhite ice or
when the snow load is sufficient to force lake water to the ice surface
through cracks in the icematrix9,25. Melting and refreezing of ice, slush
and snow aswell as rainfall are conditions that typically occur when air
temperatures vary around the freezing point, i.e., usually during the
time before ice-off. We attribute the ice layer composition change
towards spring to changes in the seasonality of winter air tempera-
tures. When winters become warmer, the seasonal cycle of air tem-
peratures below the freezing point flattens, similar to the flattening
that occurs towards warmer geographical regions26. A decrease in the
winter air temperature amplitude implies that the number of days with
air temperatures varying around the freezing point increases (Fig. 2d),
prolonging the formation of white ice and increasing its proportion.
This lake ice quality response to warmer winter air temperatures is
increasingly pronounced towards warmer geographical regions26.
Under continued global warming, lakes located in those warmer geo-
graphical regions are most likely increasingly exposed to air tem-
peratures varying around the freezing point, resulting in an increased
prevalence of white ice, in particular during the critical time before
ice-off.

White ice and ice stability
An increase in the proportion of white ice can jeopardize the use of
seasonally ice-covered lakes for subsistence, recreation, transporta-
tion and other purposes,27,28. It has already been noted that most fatal
winter drownings occur just prior to ice-off29, coinciding with the time
when ice layers on lakes commonly become dominated by white ice.
Gold15 has developed a method to estimate the bearing strength of ice
depending on the total thickness and ice quality:

P =A ! H2 ð1Þ

where P is the allowable load in kg, A is the bearing strength that varies
between 3.5 and 30kg cm−2 depending on ice quality (30 kg cm−2 for
cold, black ice conditions of high quality, i.e., no snow ice, no cracks,
no bubbles etc. and 3.5 kg cm−2 for low quality ice16), and H is the total
ice thickness in cm. Although Eq. (1) with A = 3.5 kg cm−2 is used for
general ice safety guidelines30, Gold15 described some cases in which
the predicted load was not supported by the ice layer. White ice con-
ditions at air temperatures varying around the freezing point (0 °C)
might be responsible for ice collapse despite a sufficient theoretical
total ice thickness. Laboratory experiments have shown a reduction of
the flexural strength of ice (which is proportional to the bearing
strengthA) by 51% forwhite ice compared to black ice at a temperature
of −0.5 °C16. Basedon these results, we suggest amodification of Gold’s
equation during days when air temperatures vary around the freezing
point:

P =
A ! H2

2
! 1 +

100$ %white ice
100

! "
ð2Þ

where P is the allowable load in kg, A corresponds to 3.5 kg cm−2 (see
also Eq. (1)), H is the total ice thickness in cm and % white ice is the
proportion of white ice in the ice layer. Further adjustments of Eq. (2)
might be needed when air temperatures stay above 0 °C for 24 h or
more because under those conditions ice usually loses additional
strength15,31. It also important to keep inmind that Eq. (2) will not apply
to ice conditions just before ice-off when the entire ice matrix begins
to deteriorate.

Applying Eq. (2), an individual weighing 100 kg might safely walk
on ice if there is a white ice layer of at least 8 cm thickness (Fig. 3a).
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Fig. 2 | Seasonal accumulation of white ice in lakes. a, b Boxplots showing the
seasonal development of the thickness of white ice and the percentage of white ice
observed in 31 Northern Hemisphere lakes during the IceBlitz sampling campaign
in 2020/2021. Boxplots depict the minimum, first quartile, median, third quartile,
and maximum. April values are not shown because too few measurements were
available from that month. Colors represent the lake site-specific mean air tem-
perature anomaly during December through March in 2020/2021 relative to the
base period 1951–1980. Except for the lakes located on the Kola Peninsula
(Northwest Europe), all lakes experienced warmer than normal winter air tem-
peratures during the IceBlitz campaign. Eight lakes even had 3 °C warmer air
temperatures compared to 1951–1980. c Seasonal development of total ice thick-
ness and the thickness of black and white ice in Lake Oulujärvi, Finland during
2020/2021. The orange shaded area marks the time period when air temperatures
varied around the freezing point, which is relevant for the formation of white ice.
d Simplified, typical winter air temperature (T) curves representing a cold (blue
line) and a warm (red line) winter (data taken from Weyhenmeyer et al.26). The
number of days when air temperatures vary around the freezing point increases
when the seasonal cycle of winter air temperatures falling below 0 °C flattens
during a warm year26. In our conceptual figure, the number of days when air tem-
peratures vary around the freezing point corresponds to ~15 days during a warm
winter (marked in orange) compared to ~8 days during a cold winter (marked
in blue).
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Thus, the recommended 10 cm of total ice thickness on lakes, which
most webpages give as an ice safety guideline e.g.,32, seems generally
suitable for one single person to safely walk on ice, as this ice thickness
allows for a load between 175 and 1753 kg depending on ice quality
(Fig. 3a). It is, however, important to keep in mind that usually more
than one person walks on the ice at a given time. For example, the
weight of a group of three people often exceeds 175 kg, which is the
allowable load for 10 cm of pure white ice conditions (Fig. 3a). Con-
sequently, groups of people are at higher risk to fall through ice under
complete white ice conditions, despite an ice thickness of 10 cm or
more. We observed such complete white ice conditions on eight
occasions in three different countries during the IceBlitz campaign,
i.e., in Canada (Lake Wilcox), Switzerland (Lake Nero) and Sweden
(Lake Erken). All 100% white ice conditions occurred in February 2021,
when the total ice thickness in the three lakes varied between 2 and
38 cm, with a median of 12.5 cm. In central and northern Sweden,
February is usually the month when people can safely walk on ice, and
rarely are any fatal winter drownings reported. In February 2021,
however, ten people died by falling through ice which represented the

highest winter drowning death rate in Sweden during the month of
February since the records began in 200033. The ice situation in Feb-
ruary 2021 demonstrates that behavioral adaptations to a warmer
world are needed. Ice conditions that traditionally have been safe
during winters of the past will become unsafe in the future. One
strategy to make people more aware of the increasing risk of unstable
ice conditions in a warmer world might be to spread information on
revised ice safety guidelines highlighted above. To keep the update of
the ice safety guidelines as simple as possible a rule of a thumb could
be to double the presently used ice thickness guideline.

Light transmittance through white ice and ecological effects
White ice conditions do not only affect the stability of the ice cover but
also the light regime underneath. White ice is known to have a sever-
alfold higher reflectance than black ice, thus only small amounts of
photosynthetically active radiation penetrate through white ice34.
The transmittance of light through a combined black and white ice/
snow layer on lakes has previously been described by a two-layer
model34:

τ Cð Þ=
τðAÞ ! τðBÞ

1$ ρðAÞ ! ρðBÞ
ð3Þ

where τ(C) is the transmittance of light through the combined black
and white ice/snow layer, τ(A) is the transmittance of light through the
upper white ice/snow layer, τ(B) is the transmittance of light through
the lower black ice layer, ρ(A) is the reflectance of the upper white ice/
snow layer and ρ(B) is the reflectance of the lower black ice layer. τ(C)
approaches zero when snow covers the ice, as snow usually has a
reflectance of close to one35. τ(C) also declines when the upper white
ice layer becomes thicker36. Based on the data from Lake Vendyurskoe
(1997–2020)36 we obtained the following model for underneath ice
light conditions:

Edz =a ! e$ε!H ð4Þ

where Edz is the 12-hour day time mean (8.00 a.m. to 8.00p.m.)
irradiance underneath ice in W m−2, a is a solar radiation dependent
constant (in our example corresponding to a value of 103; see Fig. 2b),
ε is the extinctionof lightwith0.09Wm−2 cm−1 andH is the thicknessof
the sum of snow and white ice on a lake in cm. When we included the
thickness of black ice in H, the prediction of Edz did not improve
(R2 = 0.45, p < 0.0001, n = 39 compared to R2 = 0.52, p <0.0001, n = 39
when onlywhite ice and snowwas considered).We attribute the lackof
model improvement to the fact that the thickness of black ice was
unrelated to Edz in Lake Vendyurskoe (p >0.05). These results indicate
that Edz is mainly driven by the thickness of snow and white ice, where
each cm of snow and white ice reduces the under-ice irradiance by
approximately 9%. Further, by analyzing the inter-annual variability in
Edz in Lake Vendyurskoe in spring, we found no trend over time in Edz
despite a significant decrease in total ice thickness during this
period (linear time series model: p >0.05 and p =0.007, respectively).
Thus, under-ice light conditions did not improve despite thinner ice
in spring. We suggest that these under-ice light conditions were
driven by the thickness of white ice which did not show a significant
decrease in spring from 1997 to 2020 (linear time series
model: p >0.05).

Low light conditions in spring caused by a white ice layer and/or
snow on ice are critical for the development of primary producers and
consumers as their growth and reproduction is dependent on light and
convection underneath ice37,38. Most vulnerable towhite ice conditions
and snow on ice are photoautotrophs in lakes39, in particular non-
motile photoautotrophs that are dependent on radiatively-driven
convection to reach sufficient light (e.g., diatoms)40,41. Motile taxa can
have an advantage during low light conditions under-ice13. Mixotrophy

Fig. 3 | Lake ice conditions that are critical for ice stability and for the trans-
mittance of photosynthetically active radiation. a Variation in the estimated
allowable loadon ice dependingon total ice thickness and icequality. Pureblack ice
conditions were modeled using Eq. (1) with A = 30kg cm−2 and pure white ice
conditions using Eq. (2) with A = 3.5 kg cm−2. The dashed line represents estimates
of the allowable load using Eq. (1) with A = 3.5 kg cm−2, which is commonly used for
ice safety guidelines. Blackdots show estimates for the IceBlitz dataset using Eq. (2)
with A = 3.5 kg cm−2. The red and gray shaded areas mark the allowable load for an
ice thickness of 10 cm and less under pure white ice (red) and pure black ice (gray)
conditions.bDailymean (8.00 a.m. to 8.00p.m.) under-ice irradiance (Edz) inWatts
(W) m−2 in Lake Vendyurskoe during spring just before ice-off in relation to the
thickness of snow and white ice (H) on the lake. Data were taken from Zdor-
ovennova et al.36, measured during 1997–2020. Shown is the exponential decline of
Edz with increasing H (black line). The red shaded area marks the light availability
below a 10 cm thick snow and white ice layer on a lake.
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is another strategy to adapt to low-light under-ice conditions42. Further
up in the food web zooplankton has developed survival strategies to
low-light under-ice conditions by feeding on mixotrophic micro-
organisms and allochthonous organic material, but for growth and
reproduction, a diet containing nutrient-rich photoautotrophs is still
essential43. Thus, despite a variety of survival strategies, snow and
white ice induced changes to the photoautotroph community cascade
through the food web, with substantial consequences for microbial,
zooplankton, and fish populations44,45.

Relevance and future perspective
Our sampling campaign focused on spatial and seasonal patterns. The
most obvious and relevant result was the consistent buildup of white
ice in spring until the time just before ice-off which we attribute to the
increased time window when air temperatures vary around the freez-
ing point. Under expected future global warming, many lakes in the
world will become exposed to these prolonged freeze-thaw cycles.
According to our study, such lakes will experience a shift in the ice
layer composition towards white ice conditions. We conclude that
white ice conditions in lakes need far more consideration than pre-
viously given. We suggest the use of Eq. (2) to re-examine ice safety
guidelines to account for ice instability during white ice conditions.
We also recommend considering the thickness of white ice as an
important regulator of physical, chemical, and biological processes
in lakes.

Methods
IceBlitz sampling campaign
We performed a global sampling campaign, named IceBlitz, within the
Global Lake Ecological Observatory Network (GLEON, https://gleon.
org) from December 2020 to April 2021. Participants of the campaign
were asked to conduct at least one sampling visit at an ice-covered lake
andmeasure (preferably at several locations on the same lake) total ice
thickness, the thickness of black and white ice, the thickness of snow
and/or slush layers on top of the ice layer, water temperature in the
drilling hole and air temperature 1.5m above the drilling hole using a
standardized protocol (Supplementary Information). The sampling
tookplace in31 lakes across theNorthernHemisphere (Fig. 1a, Table 2).
Altogether 167 ice quality measurements weremade. All data are open
access (see data availability). A detailed data description for Hobart
Lake is available as a USGS data release46. Two out of the 31 lakes had
additional icequality data available fromprevious years, i.e.,Mozhaysk
Reservoir (15 years of ice quality data during 1971–2021) and Lake
Vendyurskoe (ice quality data during spring before ice-off during
1997–2021). We used these data to evaluate in how far ice conditions
during previous years differed fromour sampling winter. Additionally,
we collected literature data on ice quality, which comprised 117 ice
observations from 18 lakes across the Northern Hemisphere (Fig. 1a,
Table 1).

Meteorological data
In addition to ice quality data, we analyzed air temperature data, i.e.,
Northern Hemisphere-mean monthly, seasonal, and annual means
from 1880 to present, downloaded from GISTEMP Team, 2022: GISS
Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard
Institute for SpaceStudies47,48. Thedata are given as anomalies over the
base period 1951 to 1980 (Fig. 1b). Data from the GISTEMP team were
also used to create a map showing the December through March air
temperature anomaly across the Northern Hemisphere in 2020/2021.
Maps were created on 2022-02-18 via https://psl.noaa.gov/data/
gridded/data.gistemp.html, choosing variable: air temperature and
statistics: Monthly Anomaly: 250 km smoothed. On the maps, we
located each lake from the IceBlitz campaign and allocated a Decem-
ber through March temperature anomaly in 2020/2021 to each lake
(Fig. 2a, b).

Statistics
All statistical analyses, except of the time series analyses, were per-
formed in JMP, version 14.2.0., SAS Institute Inc. For the smoothing
splines a lambda of 0.05 was chosen which commonly is used to
estimate a functional relationship between a predictor and a response
variable. Boxplots are outlier boxplots, also known as box-and-whisker
plots, where the bottom and top of the box show the 25th and 75th

quantiles and the lines that extend from the box are whiskers that
represent 1.5 times the interquartile range from the top and bottom of
the box. Values that fall above or below the end of the whiskers
are plotted as dots. Time series analyses were performed in R 4.0.2
(R Core Team, 2020) using linear models and checking for temporal
autocorrelation, i.e., lm(formula = ice~time). Time series analyses
were performed on April measurements for Lake Vendyurskoe. Data
from Mozhaysk Reservoir were not used for time series analyses
because ice quality was only measured during 15 out of 51 years from
1971 to 2021.

Data availability
The ice quality data generated in this study have been deposited in the
Swedish DIVA database and are available at http://urn.kb.se/resolve?
urn=urn:nbn:se:uu:diva-468290. All data are open access.
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