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Abstract
Conducting	 ecological	 research	 in	 a	way	 that	 addresses	 complex,	 real-	world	 prob-
lems	 requires	 a	 diverse,	 interdisciplinary	 and	 quantitatively	 trained	 ecology	 and	
environmental	 science	 workforce.	 This	 begins	 with	 equitably	 training	 students	 in	
ecology,	 interdisciplinary	science,	and	quantitative	skills	at	the	undergraduate	level.	
Understanding	the	current	undergraduate	curriculum	landscape	 in	ecology	and	en-
vironmental	sciences	allows	for	targeted	interventions	to	improve	equitable	educa-
tional	opportunities.	Ecological	forecasting	is	a	sub-	discipline	of	ecology	with	roots	
in	 interdisciplinary	and	quantitative	science.	We	use	ecological	forecasting	to	show	
how	ecology	and	environmental	 science	undergraduate	curriculum	could	be	evalu-
ated	and	ultimately	restructured	to	address	the	needs	of	the	21st	century	workforce.	
To	characterize	 the	current	 state	of	ecological	 forecasting	education,	we	compiled	
existing	resources	for	teaching	and	learning	ecological	forecasting	at	three	curricu-
lum	levels:	online	resources;	US	university	courses	on	ecological	forecasting;	and	US	
university	courses	on	 topics	 related	 to	ecological	 forecasting.	We	found	persistent	
patterns	(1)	in	what	topics	are	taught	to	US	undergraduate	students	at	each	of	the	cur-
riculum	levels;	and	(2)	in	the	accessibility	of	resources,	in	terms	of	course	availability	
at	higher	education	institutions	in	the	United	States.	We	developed	and	implemented	
programs	to	increase	the	accessibility	and	comprehensiveness	of	ecological	forecast-
ing	undergraduate	education,	including	initiatives	to	engage	specifically	with	Native	
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1  |  INTRODUC TION

Undergraduate	 ecology	 education	 prepares	 the	 next	 generation	
of	 scientists	 to	 address	 the	 complex	 environmental	 problems	 fac-
ing	 21st	 century	 society.	 Increasingly,	 environmental	 and	 eco-
logical	 problem-	solving	 requires	 using	 quantitative	 (Barraquand	
et	 al.,	 2014;	 Farrell	 &	 Carey,	 2018)	 and	 interdisciplinary	 (Boon	 &	
Van	 Baalen,	 2018;	 NASEM,	 2005)	 research	 methods	 and	 skills.	
Introducing	 undergraduate	 students	 to	 sub-	disciplines	 of	 ecology	
that	 focus	 on	 quantitative	 and	 interdisciplinary	 skills	 can	 increase	
students'	preparedness	to	contribute	to	ecological	and	environmen-
tal	research	and	problem	solving	in	graduate	school	and	in	their	ca-
reers	(Farrell	&	Carey,	2018;	Hounshell	et	al.,	2021).	Not	only	should	
education	focus	on	training	students	broadly	in	quantitative	and	in-
terdisciplinary	methods,	but	also	there	is	a	strong	need	for	targeted	
efforts	 that	promote	educational	equity	and	 inclusivity	 (Bowser	&	
Cid,	2021;	Graham	et	al.,	2013).	Providing	opportunities	to	students	
who	would	not	traditionally	receive	quantitative	and	interdisciplin-
ary	 training	 enables	 a	 greater	 diversity	 of	 scientists	 to	 contribute	
a	 broader	 range	 of	 ideas	 and	 perspectives	 which	 will	 inherently	
represent	more	 diverse	 interests	 from	 relevant	 parties	 (Bowser	&	
Cid,	2021;	Cheryan	et	al.,	2017;	Gardner-	Vandy	et	al.,	2021;	Graham	
et	al.,	2013;	Hofstra	et	al.,	2020;	Kozlowski	et	al.,	2022;	Morrison	&	
Steltzer,	2021;	NASEM,	2021a).	Numerous	recent	publications	have	
highlighted	the	continued	lack	of	diversity	among	science	students	
and	 professionals	 (Hunter	 et	 al.,	2010;	Miriti,	 2019,	2021;	 Riegle-	
Crumb	et	al.,	2019;	Schell	et	al.,	2020),	particularly	 in	quantitative	
and	data	 science	 fields	 (Paxton,	2020).	Consequently,	we	urge	 for	
greater	attention	to	how	to	improve	the	equity	of	science	education,	
as	one	component	of	addressing	this	pervasive	problem.

We	contend	that	ecological	 forecasting	 (EF)	offers	a	promising	
approach	to	 leveraging	ecology	and	environmental	science	educa-
tion	for	addressing	21st	century	environmental	challenges	 (Moore,	
Carey,	&	Thomas,	2022,	Moore,	Thomas,	et	al.,	2022; Box 1).	Making	
accurate,	quantitative	forecasts	about	the	future	state	of	ecosystems	
is	an	urgent	need	to	improve	scientific	understanding	of	ecological	
phenomena	and	to	implement	appropriate	policy	and	management	
decisions	(Dietze,	2017a).	Examples	of	quantitative	ecological	fore-
casts	include	forecasts	of	the	global	carbon	cycle	(Gao	et	al.,	2011),	
water	 quality	 forecasts	 (Carey	 et	 al.,	 2022),	 and	 epidemiological	
forecasts	 (Oidtman	et	al.,	2021),	each	of	which	 informs	policy	and	
management.	To	keep	pace	with	the	growing	demand	for	forecasts,	
an	increasing	number	and	diversity	of	scientists	must	be	available	to	

contribute	to	the	discipline.	This	means	that	more	scientists	must	be	
familiar	with,	or	even	have	expert	knowledge	on,	EF,	including	quan-
titative	 and	 interdisciplinary	ecological	 research	methods.	Despite	
its	 importance	 for	 21st	 century	 policy	 and	management	 (Bradford	
et	al.,	2020)	and	relevance	for	 learning	quantitative	and	 interdisci-
plinary	methods,	EF	is	seldom	taught	at	the	undergraduate	level.

EF	not	only	can	help	address	complex	environmental	problems,	
but	also	offers	an	approach	to	undergraduate	education	in	which	key	
concepts	and	skills,	including	quantitative	skills	and	interdisciplinary	
team	building,	can	be	taught	under	a	unifying	framework	(Box 1).	We	
take	an	approach	to	EF	consistent	with	the	Ecological	Forecasting	
Initiative	 (Dietze	&	Lynch,	2019),	a	grassroots	network	of	 interdis-
ciplinary	 researchers	 with	 the	 collective	 goal	 of	 building	 a	 global	
community	of	practice	around	near-	term,	iterative	EF.	This	approach	
is	 grounded	 in	 the	disciplines	of	 ecology	 and	 statistics,	 consistent	
with	the	tradition	of	predictive	ecology.	It	additionally	promotes	the	
integration	of	social	sciences	with	these	disciplines	to	improve	the	
applicability	of	forecasts	to	end	users,	science	communication,	and	
science	 literacy,	 to	name	a	 few	applications	of	 social	 science	con-
cepts.	As	an	emerging	sub-	field	with	an	active	scholarly	community,	
there	are	numerous	opportunities	to	consider	how	to	make	EF	more	
inclusive	 and	equitable	 to	 students	 and	professionals	 from	under-
represented	 backgrounds.	 Additionally,	 establishing	 community	
norms	in	an	emerging	sub-	field	may	allow	for	principles	of	inclusiv-
ity	and	equity	 to	become	part	of	 the	 identity	of	 the	 field	 from	 its	
inception,	an	approach	 that	may	be	easier	 to	 facilitate	 than	 trying	
to	change	norms	of	an	existing	discipline.	For	these	reasons,	EF,	an	
emerging	 sub-	field	with	a	 suite	of	pedagogical	benefits	 for	under-
graduate	students	(Box 1),	offers	a	timely	example	of	how	to	revise	
and	expand	the	existing	ecology	and	environmental	sciences	(EES)	
curriculum	to	better	meet	the	needs	of	undergraduate	students	and	
the	science	workforce	postgraduation.	While	EF	is	not	the	only	way	
to	 achieve	 more	 quantitative	 and	 interdisciplinary	 undergraduate	
training,	it	does	invite	EES	researchers	and	educators	to	engage	in	a	
larger	conversation	about	the	state	of	EES	education.

Despite	 persistent	 calls	 over	 decades	 for	 increasing	 attention	
to	be	 given	 to	quantitative,	 predictive	 ecology	 (Clark	 et	 al.,	2001; 
Dietze,	2017a;	Houlahan	et	al.,	2017;	Jørgensen,	2002),	undergrad-
uate	 students	 in	domain	 sciences	 (e.g.,	 biology)	 are	often	not	 suf-
ficiently	 introduced	 to	 quantitative	methods	 to	 contribute	 to	 this	
body	of	research	(Rawlings-	Goss	et	al.,	2018).	Many	higher	educa-
tion	 institutions	do	not	 require	quantitative	coursework	within	bi-
ology	and	environmental	 science	majors:	Quantitative	coursework	

American	undergraduates	and	online	resources	for	learning	quantitative	concepts	at	
the	undergraduate	level.	Such	steps	enhance	the	capacity	of	ecological	forecasting	to	
be	more	inclusive	to	undergraduate	students	from	diverse	backgrounds	and	expose	
more	students	to	quantitative	training.

K E Y W O R D S
curriculum,	ecological	forecasting,	inclusion,	STEM	education,	undergraduate	education
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    |  3 of 16WILLSON et al.

may	 only	 be	 offered	 in	 other	 disciplines,	 without	 collaboration	
with	 domain	 science	 instructors	 (Farrell	 &	 Carey,	 2018;	 Robeva	
et	al.,	2020).	Similarly,	courses	on	high-	level	quantitative	concepts,	
such	as	mechanistic	modeling,	are	infrequently	taught	at	the	under-
graduate	 level	 to	ecology	students.	At	the	time	of	publication	and	
to	the	authors'	knowledge,	fewer	than	15 courses	on	EF	are	offered	
across	the	United	States	(Appendix	S1,	Table	1),	according	to	both	
our	use	of	self-	reported	courses	on	EF	through	EFI	and	through	a	
search	 for	 EF	 courses	 in	 the	 course	 catalogs	 of	US	 land	 grant	 in-
stitutions	 (Appendix	 S1).	Collectively,	 this	 results	 in	 baccalaureate	

graduates	 who	 may	 be	 underprepared	 to	 contribute	 to	 research	
addressing	21st	century	global	environmental	problems,	such	as	EF	
research.

In	 addition	 to	 relying	 on	 quantitative	 methods,	 address-
ing	 21st	 century	 ecological	 research	 questions	 requires	 diverse	
teams	of	scientists	and	end	users.	Having	diverse	research	teams	
presents	 multiple	 benefits	 for	 science	 and	 society	 (National	
Research	Council,	2015).	Researchers	from	historically	underrep-
resented	groups	 tend	 to	make	more	novel	 connections	between	
scientific	 concepts	 (Hofstra	 et	 al.,	2020;	 Kozlowski	 et	 al.,	2022; 

BOX 1 Ecological forecasting

What is ecological forecasting?

Ecological	forecasting	(EF)	is	the	process	of	producing	quantitative	predictions	for	an	unknown	state	of	an	ecosystem	or	its	services	
with	quantified	uncertainty	(Carey	et	al.,	2022;	Clark	et	al.,	2001).	This	sub-	field	integrates	theory	and	methods	from	multiple	disci-
plines	outside	of	ecology	(Woelmer	et	al.,	2021),	including
•	 data	science
•	 computer	science
•	 statistics
•	 social	sciences

EF	is	a	relatively	new,	emerging	sub-	field	(Dietze,	2017a;	Lewis	et	al.,	2022),	meaning	that	opportunities	for	learning	EF	are	relatively	
infrequent,	but	also	that	opportunities	to	develop	curricula	at	the	undergraduate	level	and	to	consider	the	equity	of	EF	education	
are	abundant.

Why teach and learn ecological forecasting?

Teaching	undergraduate	students	ecology	through	the	perspective	of	EF	can	offer	instructors	a	way	to	integrate	multiple	pedagogi-
cal	benefits	in	a	unifying	framework.	Specifically,	EF
1. Facilitates connections between scientific concepts
•	 EF	introduces	students	to	concepts	from	multiple	disciplines	(e.g.,	ecology,	mathematics,	social	sciences)	under	a	unifying	framework	
(i.e.,	EF)	that	can	promote	interdisciplinary	thinking	for	solving	complex	problems	(Boon	&	Van	Baalen,	2018)	and	student	skill	building	
(Vogler	et	al.,	2018)

•	 Learning	about	ecological	modeling	(a	component	of	EF)	has	been	shown	to	increase	students'	“systems	thinking”—		students'	ability	to	
recognize	the	interrelatedness	of	components	of	an	ecological	system—		relative	to	a	traditional	ecology	education	(Carey	et	al.,	2020)

•	 EF	encourages	integration	of	the	social	sciences	with	the	natural	sciences,	which	can	increase	students'	perceptions	of	the	relevance	of	
the	natural	sciences	to	their	lives	(Tripp	&	Shortlidge,	2019)	and	offers	students	an	opportunity	to	navigate	multiple	interested	parties	in	
applied	science	contexts	(Parr	et	al.,	2007)

2. Improves student engagement over traditional teaching methods
•	 EF	emphasizes	the	real-	world	applications	of	interdisciplinary	science	training	(Boon	&	Van	Baalen,	2018),	which	facilitates	instruction	
using	project-	based,	active	learning	strategies	that	increase	engagement	(Graham	et	al.,	2013;	Vogler	et	al.,	2018)

•	 Teaching	EF	using	specific,	case-	based	examples	(see	Discussion:	Current	EFI	education	initiatives)	presents	the	opportunity	to	offer	
students	culturally	relevant	curriculum	(Harris	et	al.,	2020),	which	promotes	engagement	and	persistence	particularly	among	students	
from	underrepresented	backgrounds	(Corneille	et	al.,	2020;	Gardner-	Vandy	et	al.,	2021)

3. Prepares students for the scientific workforce
•	 Iterative	EF,	in	which	model	predictions	representing	ecological	hypotheses	are	repeatedly	confronted	with	data,	represents	one	of	the	
most	rigorous	tests	of	ecological	theory	(Dietze,	2017b).	Students	with	a	background	in	EF	enter	the	workforce	with	a	suite	of	tools	well	
suited	to	advancing	scientific	theory	through	iterative	forecasts

•	 EF	emphasizes	quantitative	skills,	such	as	modeling,	coding,	and	statistics,	thus	providing	a	means	to	introduce	students	to	skills	that	are	
useful	for	students	interested	in	pursuing	careers	in	any	domain	of	science	(Barraquand	et	al.,	2014)

•	 Predicting	the	state	of	ecosystems	and	their	services	under	specific	climate	and	management	scenarios	offers	students	the	means	to	
provide	policymakers	and	interested	parties	with	a	tool	for	making	policy	and	management	decisions

•	 EF	offers	students	an	opportunity	to	become	familiar	with	the	unique	benefits	and	challenges	of	contributing	to	interdisciplinary	
research,	which	has	become	increasingly	in-	demand	as	complex	global	change	problems	require	interdisciplinary	solutions	
(NASEM,	2005,	2022)

•	 Engaging	with	a	curriculum	that	includes	interface	with	end	users,	science	communication,	and	data	visualization	increases	students'	
science	literacy,	which	promotes	skills	such	as	problem	solving	and	adaptability	that	are	integral	to	the	21st	century	workforce	(Council	
et	al.,	2010)
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NASEM,	 2021a),	 suggesting	 that	 more	 diverse	 research	 teams	
produce	 more	 innovative	 research.	 Increasing	 the	 diversity	 of	
scientists	 also	means	 that	 the	 identities	 of	 those	working	on	 is-
sues	such	as	climate	change	better	represent	the	identities	of	the	
people	affected	by	the	same	issues	(Bowser	&	Cid,	2021).	Finally,	
recruiting	 students	 from	 historically	 underrepresented	 groups	
into	 the	 scientific	 workforce	 increases	 the	 number	 of	 qualified	
and	talented	workers	(Cheryan	et	al.,	2017;	Graham	et	al.,	2013).	
These	 reasons	 to	 promote	 diversity	 within	 scientific	 disciplines	
operate	concurrently	with	the	more	important	perspective	that	di-
verse	research	teams	are	morally	good	(Morrison	&	Steltzer,	2021; 
NASEM,	2022);	the	worthiness	of	diverse	research	teams	should	
not	rely	on	the	commodification	of	the	contributions	of	scientists	
from	underrepresented	backgrounds	(Gardner-	Vandy	et	al.,	2021).	
Making	concerted	efforts	to	improve	the	equity	of	educational	op-
portunities	represents	a	promising	way	to	improve	the	persistence	
of	 students	 from	 diverse	 backgrounds	 into	 scientific	 disciplines	
(Graham	et	al.,	2013).

Unfortunately,	numerous	barriers	hinder	 the	attainment	of	eq-
uitable	 science	 education	 and	 career	 opportunities	 in	 the	 United	
States.	 At	 the	 undergraduate	 level,	 students	 from	 marginalized	
ethnicities	 and	 genders	 show	 lower	 persistence	 in	 undergraduate	
science	 majors	 than	 White	 male	 students	 (Bowser	 &	 Cid,	 2021).	
Systematic	lower	persistence	of	students	from	marginalized	ethnic-
ities	 and	 genders	 is	 a	 result	 of	 the	numerous	 systemic	 barriers	 to	
participation	 these	 students	 face.	Factors	 contributing	 to	 the	per-
sistence	disparity	 include,	among	many	other	 inequities,	 a	general	
lack	of	culturally	relevant	science	curriculum	(Collins,	2018;	Corneille	
et	al.,	2020;	Rawlings-	Goss	et	al.,	2018)	and	inequality	in	access	to	
higher	 education	 resources	 (Dolcini	 et	 al.,	 2021;	 NASEM,	 2021b; 
Sanders	&	Scanlon,	2021).	Because	ecology	and	environmental	sci-
ence	research	and	curriculum	has	largely	been	constructed	using	a	
White,	Western	framework	(David-	Chavez	&	Gavin,	2018),	scientific	
topics	covered	 in	coursework,	 the	examples	used	 to	contextualize	
the	 information,	 and	even	what	 scientific	 questions	we	 choose	 to	
ask	can	be	irrelevant	and	inaccessible	to	students	from	marginalized	
backgrounds	(Reano,	2019).

Compounding	 these	 problems	 are	 the	 structural	 inequities	 in	
access	to	technology	and	higher	education	in	the	US.	Science	edu-
cation	can	be	inaccessible	to	students	without	consistent	access	to	
the	internet	or	to	computer	hardware	often	required	for	homework	
and	 online	 learning.	 Students	 without	 access	 to	 these	 resources	
are	 disproportionately	 from	 marginalized	 backgrounds	 (Dolcini	
et	 al.,	 2021;	 Sanders	 &	 Scanlon,	 2021).	 Similarly,	 highly	 selective	
higher	education	 institutions,	where	 instructors	are	more	 likely	 to	
have	disciplinary	expertise	in	emerging	research	sub-	fields	such	as	
EF,	disproportionately	enroll	White	students	(NASEM,	2021b).	This	
means	 students	 from	marginalized	backgrounds	may	not	have	 the	
ability	to	enroll	in	courses	on	topics	such	as	EF.

Here,	we	use	EF	 to	 show	how	EES	 researchers	 and	educators	
could	 begin	 to	 revise	 EES	 undergraduate	 education	 in	 the	United	
States	to	meet	the	demands	of	the	21st	century	scientific	workforce.	
Because	EF	is	an	emerging	sub-	field	(Woelmer	et	al.,	2021),	there	are	

few	existing	educational	resources	specific	to	EF,	making	resource	
development	 a	 high	 priority	 for	 the	 EF	 community.	 Consistent	
with	 recommendations	 from	 the	National	 Academies	 of	 Sciences,	
Engineering,	and	Medicine	on	recruiting	workers	into	the	scientific	
workforce	 (NASEM,	2021b),	we	 specifically	 emphasize	developing	
equitable	 educational	 opportunities	 for	 undergraduate	 students.	
Leveraging	 the	 attributes	 of	 EF	 as	 an	 emerging,	 quantitative,	 and	
interdisciplinary	sub-	field,	we	evaluate	how	EF	can	be	used	as	one	
approach	to	updating	and	revising	undergraduate	EES	curriculum	in	
a	way	 that	 simultaneously	 emphasizes	 quantitative	 and	 interdisci-
plinary	skills	and	promotes	educational	equity.

One	place	to	begin	revising	the	existing	EES	curriculum	is	to	un-
derstand	the	current	curriculum	 landscape	 (NASEM,	2020,	2021a; 
Rawlings-	Goss	 et	 al.,	 2018).	 Understanding	 what	 online	 materials	
and	courses	already	exist	 allows	educators	 to	 identify	gaps	 in	 the	
existing	 EES	 curriculum	 to	 which	 finite	 time	 and	 resources	 could	
be	allocated.	We	 first	 assessed	 the	existing	educational	 resources	
for	gaps	in	the	EES	curriculum	at	three	curriculum	levels	(Figure 1).	
We	focus	on	two	aspects	of	the	EES	curriculum	landscape	via	two	
questions.	 First,	we	 address	 the	 question	 “What	 patterns	 exist	 in	
the	availability	of	resources	for	teaching	and	learning	topics	related	
to	EF	at	the	undergraduate	level?”	Second,	we	address	the	question	
“Who	has	access	to	the	online	resources	and	courses	related	to	EF,	
based	on	who	has	access	to	the	infrastructure	required	to	access	on-
line	resources	and	to	the	institutions	at	which	courses	are	taught?”	
In	response,	we	discuss	programs	the	EF	community	has	initiated	to	
address	 the	gaps	we	 identified.	We	conclude	with	 a	discussion	of	
future	directions	for	the	EF	community,	with	applications	to	other	
EES	sub-	disciplines.

2  |  METHODS

To	examine	 the	current	 state	of	EF	undergraduate	 curriculum,	we	
defined	three	curriculum	levels	(online	resources;	forecasting	course	
lessons;	 and	 forecasting-	adjacent	 courses)	 (Methods:	 Description	
of	Curriculum	Levels).	We	collated	resources	available	for	teaching	
and	learning	EF	at	each	curriculum	level	(Methods:	Data	Collection).	
Then,	we	compared	the	resources	at	each	of	 the	three	curriculum	
levels,	both	in	terms	of	how	they	are	distributed	among	educational	
topics	associated	with	an	EF	education,	and	how	accessible	they	are	
to	students	from	diverse	backgrounds	and	at	diverse	higher	educa-
tion	institutions.

2.1  |  Description of curriculum levels

We	defined	multiple	curriculum	levels	(online	resources;	forecasting	
course	lessons;	and	forecasting-	adjacent	courses),	on	which	we	col-
lated	available	resources	for	teaching	and	learning	EF	(see	Methods:	
Data	collection).	We	examine	three	curriculum	levels	to	understand	
how	many	types	of	resources	contribute	to	the	availability	and	ac-
cessibility	of	ecological	forecasting	education	(Figure 1).
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    |  5 of 16WILLSON et al.

Online	resources	were	publicly	available	online,	without	the	need	
to	pay	or	ask	permission	to	access	the	material.	We	define	educational	
material	as	any	course	content,	video,	article,	hands-	on	 learning	op-
portunity,	code,	or	other	online	material	that	can	be	used	to	teach	or	
learn	about	EF	and	adjacent	 topics	 (e.g.,	basic	statistical	 techniques,	
foundational	domain	knowledge)	(see	Appendix	S1,	Table	3	for	a	list	of	
formats	of	educational	material	and	their	definitions).	Our	definition	
of	online	resources	ignores	the	contributions	of	massive	open	online	
courses	 (MOOCs),	 a	 growing	 platform	 for	 knowledge	 transfer	 to	 a	
large	quantity	of	students	(Zawacki-	Richter	et	al.,	2018).	We	chose	to	
omit	EF-	related	MOOCs	from	our	analysis	of	online	resources	to	limit	
the	complexity	of	our	data	collection	and	analysis	procedures	and	we	
recognize	 that	 this	choice	 impacts	our	characterization	of	online	 re-
sources	as	generally	having	shallow	material	coverage.

2.2  |  Data collection

We	 collected	 data	 at	 each	 curriculum	 level	 (Figure 1).	We	 began	
our	 search	 for	 online	 educational	 material	 by	 using	 Google	 to	

search	terms	related	to	each	of	our	EF	topics	(defined	below,	“Data	
Categorization”)	 in	 combination	 with	 terms	 such	 as	 “tutorial”	 and	
“learn”	(e.g.,	“ecology	tutorial,”	“learn	R").	These	searches	were	con-
ducted	iteratively	from	July	to	December	2020.	We	supplemented	
our	Google	searches	with	searches	of	the	course	and	lab	websites	of	
instructors	known	to	the	authors	to	participate	in	quantitative	ecol-
ogy	and/or	ecological	forecasting	education	(based	on	membership	
and	 participation	 in	 EFI	 and	 related	 communities	 [e.g.,	 Ecological	
Society	of	America])	during	 the	same	 time	period.	Finally,	we	cre-
ated	and	distributed	a	Google	Form	through	which	we	asked	other	
members	 of	 the	 EF	 community	 to	 submit	 other	 known	 online	 re-
sources,	which	was	disseminated	via	EFI	communications	(i.e.,	Slack,	
monthly	newsletter,	 and	via	word-	of-	mouth	during	working	 group	
meetings)	during	2020	(Figure 1).	A	complete	database	of	the	com-
piled	resources	is	available	via	QUBES	(Willson	&	Peters,	2021).	We	
acknowledge	 that	 our	 database	 of	 online	 resources	 is	 incomplete	
because	of	the	great	number	of	resources	available	on	the	internet,	
particularly	 for	 learning	basic	concepts	such	as	 statistical	 comput-
ing	languages.	However,	we	believe	our	database	is	a	representative	
subsample	of	all	resources	available	for	learning	EF.

F I G U R E  1 Conceptual	representation	of	methodology.	Data	collection	and	analysis	at	each	of	our	three	curriculum	levels.	From	left	to	
right,	dark	blue	represents	the	process	of	data	collection	and	analysis	for	online	resources,	teal	represents	the	process	for	forecasting	course	
lessons,	and	light	blue	represents	the	process	for	forecasting-	adjacent	courses.	For	each	curriculum	level,	data	were	collected	online	via	
Google	(online	resources),	course	syllabi	(forecasting	course	lessons),	or	course	catalogs	(forecasting-	adjacent	courses).	Data	were	organized	
into	the	forecasting	topic	that	best	represented	the	material	covered	in	the	resource	(multi-	headed	arrows)	and	the	distribution	of	resources	
within	each	forecasting	topic	was	displayed	in	pie	charts.	Black	double-	headed	arrows	represent	the	comparison	of	the	distribution	of	
resources	(ecological	forecasting	curriculum	landscape)	between	forecasting	course	lessons	and	online	resources	(left)	and	forecasting	
course	lessons	and	forecasting-	adjacent	courses	(right).	The	number	of	forecasting	topics	represented	in	the	pie	charts	is	random	in	this	
figure	and	serves	only	to	show	that	the	number	of	topics	can	differ	by	curriculum	level.
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6 of 16  |     WILLSON et al.

We	collated	a	list	of	forecasting	courses	from	which	we	identified	
topics	covered	in	individual	course	lessons.	EFI,	a	grassroots	organiza-
tion	focused	on	creating	a	community	of	practice	around	near-	term	EF,	
houses	a	database	of	known	forecasting	courses	on	its	website	(https://
ecofo	recast.org/resou	rces/educa	tiona	l-	resou	rces/).	 The	 courses	 are	
largely	 self-	identified,	 with	 instructors	 volunteering	 to	 include	 their	
syllabus	on	the	website;	when	we	knew	of	an	EF	course	that	was	not	
on	the	website,	we	additionally	asked	individual	instructors	to	submit	
their	syllabus	for	inclusion	on	the	website.	As	of	March	15,	2022,	the	
database	includes	nine	courses	at	the	undergraduate	and/or	graduate	
educational	level	that	fall	within	our	definition	of	a	forecasting	course	
and	have	a	syllabus	available	online	(Appendix	S1).	To	ensure	that	we	
did	not	bias	our	sample	by	including	only	courses	from	the	EFI	website,	
we	searched	the	course	catalogs	(i.e.,	including	every	department)	of	
US	land	grant	institutions	for	potential	EF	courses	and	contacted	the	
instructors	of	courses	thought	to	be	on	EF.	We	chose	to	sample	US	
land	grant	institutions	because	this	offered	a	representative	subsample	
of	all	US	higher	education	institutions,	with	substantial	representation	
of	 Minority	 Serving	 Institutions	 (e.g.,	 Hispanic-	Serving	 Institutions,	
Historically	 Black	 Colleges	 and	 Universities,	 Tribal	 Colleges)	 and	 2-	
year	colleges,	as	well	as	high	and	very	high	research	intensity	colleges	
and	universities	(Appendix	S1).	We	found	no	additional	courses	on	EF	
during	this	additional	search	(Appendix	S1).	Because	we	are	aware	of	
so	few	forecasting	courses	that	match	our	criteria	in	the	United	States,	
we	chose	to	include	both	undergraduate	and	graduate	courses	in	our	
analysis	of	forecasting	course	lessons.	For	each	of	these	nine	courses,	
we	used	the	syllabus	to	determine	what	topics	are	taught	during	the	
course.	Specifically,	we	categorized	each	lesson	title	from	the	course	
schedule	into	one	of	the	topics	of	EF	defined	below	(Figure 1).

Finally,	we	compiled	data	on	forecasting-	adjacent	courses	avail-
able	 at	 a	 subset	 of	 48	 higher	 education	 institutions	 in	 the	United	
States.	We	randomly	selected	 institutions	 from	a	 list	published	by	
The Edvocate	(Lynch,	2019).	We	chose	this	list	because	it	represents	
a	 comprehensive	 list	 of	 all	 colleges	 and	 universities	 in	 the	United	
States,	1900	higher	education	 institutions,	 including	2-	year	and	4-	
year	colleges,	private	and	public	universities,	and	for-	profit	and	not-	
for-	profit	 institutions,	 and	 includes	 institutions	 from	 all	 50	 states.	
Sampling	was	not	stratified,	so	our	random	subsample	is	represen-
tative	of	 the	 relative	 frequency	of	different	 institution	 types	 (e.g.,	
baccalaureate	colleges,	very	high	research	intensity	doctoral	univer-
sities).	For	each	institution,	we	systematically	read	the	most	recent	
course	catalog	and	recorded	undergraduate	course	names	and	de-
scriptions	 related	 to	 EF	 and	 the	 forecasting	 topic	 (defined	 below)	
that	best	defines	the	content	of	the	course.	More	detailed	explana-
tions	about	the	data	collection	procedure	for	each	curriculum	level	
are	available	in	Appendix	S1.

2.3  |  Data categorization

We	defined	general	topics	that	comprise	EF,	which	we	used	to	cat-
egorize	the	data	we	collected	at	each	curriculum	level	(Figure 1).	The	
topics	represent	the	skills	and	concepts	with	which	a	student	of	EF	

should	 ideally	become	familiar	during	their	education.	We	defined	
the	 forecasting	 topics	 via	 expert	 elicitation	 by	 multiple	 founding	
members	of	EFI,	 such	that	our	 topics	 represent	EFI's	current	view	
of	 the	 requirements	 for	 a	well-	rounded	education	 in	 EF.	 The	 top-
ics	represent	skills	and	concepts	from	multiple	disciplines,	including	
biological	sciences,	computer	science,	statistics,	and	social	sciences	
(Appendix	S1,	Table	3).	Our	definition	of	forecasting	topics	using	ex-
pert	elicitation	introduced	bias	in	favor	of	the	approach	to	EF	pro-
moted	by	EFI,	as	noted	in	the	Introduction.

The	 purpose	 of	 defining	 EF	 topics	was	 to	 assess	 the	 distribu-
tion	 of	 resources	within	 broad	 categories	 of	 knowledge	 and	 skills	
students	are	currently	learning	from	EF	at	the	different	curriculum	
levels.	We	classified	each	online	 resource	 into	one	or	more	 topics	
that	best	represent	the	subject	content.	We	classified	each	 lesson	
from	forecasting	courses	into	one	topic	that	best	represents	the	ma-
terial	covered	in	the	class	for	that	lesson.	Similarly,	we	categorized	
each	forecasting-	adjacent	course	under	the	topic	that	best	describes	
the	 course.	Examples	of	our	 classification	 scheme	are	provided	 in	
Appendix	S1,	Table	3.

EF	requires	concepts	from	a	suite	of	disciplines.	Specifically,	we	
have	included	three	topics	that	may	be	more	traditionally	associated	
with	the	humanities	and	social	sciences	than	the	physical	sciences:	
science	communication,	social	sciences,	and	ethics.	We	include	sci-
ence	communication	as	a	foundational	topic	of	EF	because,	as	a	field	
with	a	particular	emphasis	on	applied	research,	communicating	re-
search	and	outcomes	is	an	integral	component	of	many	applications	
of	EF	(Dietze,	2017b).	Similarly,	topics	in	the	social	sciences,	includ-
ing	decision	science	and	expert	elicitation,	offer	a	structured	meth-
odology	 for	 scientists	 interfacing	 with	 diverse	 interested	 parties	
and	incorporating	many	interests	into	forecasting	workflows,	while	
considering	ethics	(e.g.,	data	science	ethics,	computer	science	ethics,	
ecology	ethics)	ensures	that	applications	of	EF	operate	within	ethical	
boundaries	(e.g.,	ensuring	that	data	are	open	source	when	possible,	
crediting	knowledge	from	community	members	with	authorship	and	
acknowledgments).

Finally,	we	strongly	believe	that	any	ecological	research	should	
incorporate	the	voices	and	ways	of	knowing	of	all	interested	par-
ties	 in	 questions	 of	 the	 health	 and	 preservation	 of	 our	 natural	
landscapes	 (David-	Chavez	 &	 Gavin,	 2018;	 Dawson	 et	 al.,	 2019; 
Hill	et	al.,	2020).	Our	forecasting	topics	 include	one	type	of	cul-
turally	 relevant	 education	 under	 the	 title	 “Traditional	 Ecological	
Knowledge.”	We	 recognize	 that	 by	 focusing	 only	 on	 Traditional	
Ecological	Knowledge,	we	omit	other	categories	of	culturally	rel-
evant	 educational	 material	 (e.g.,	 culturally	 relevant	 educational	
materials	 for	Black	and	Hispanic	students;	Corneille	et	al.,	2020; 
Miriti,	2019;	Rawlings-	Goss	et	al.,	2018).	However,	during	our	data	
collection,	we	found	no	materials	at	any	curriculum	level	that	spe-
cifically	 focused	on	 providing	 culturally	 relevant	 forecasting	 ed-
ucation	 to	 students	of	minority	 identities	other	 than	 Indigenous	
students.	Therefore,	we	chose	to	define	this	topic	as	“Traditional	
Ecological	Knowledge”	 instead	of	 “Culturally	Relevant	Materials”	
to	 specifically	 highlight	 the	 lack	 of	 materials	 for	 students	 from	
other	minority	ethnic/racial	backgrounds.
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2.4  |  Data analysis

Our	data	analysis	focused	on	addressing	two	components	of	fore-
casting	 education	 attainability:	 (1)	 the	 distribution	 of	 resources	
among	forecasting	topics	at	each	curriculum	level	(Figure 1),	and	(2)	
the	accessibility	of	forecasting	education	in	terms	of	institution	type	
(e.g.,	the	selectivity	of	the	institution).

To	 address	 the	 distribution	 of	 resources	 among	 forecasting	
topics	at	each	curriculum	level	(i.e.,	whether	some	topics	are	more	
represented	within	the	available	resources	than	others),	we	used	�2 
tests	using	the	 freqtables	package	(Cannell,	2020)	 in	the	R	statisti-
cal	environment	(R	version	4.1.2)	(R	Core	Team,	2021).	We	interpret	
the �2	as	indicating	that	resources	are	unevenly	distributed	among	
forecasting	topics	when	the	results	are	statistically	significant	(i.e.,	
p < α	when	α = .05).	Using	a	graphical	representation	of	the	data,	we	
then	 specifically	 focused	on	 identifying	 topics	 that	 are	overrepre-
sented	and	underrepresented	at	each	curriculum	level.	For	EF	curric-
ulum	development,	 the	overrepresentation	of	some	topics	relative	
to	others	suggests	that	there	are	sufficient	resources	available	for	
those	 topics	 and	 additional	 resource	 development	 could	 focus	 on	
other	topics.	On	the	other	hand,	underrepresentation	of	some	top-
ics	 relative	 to	 others	 highlights	 gaps	 to	 fill	 with	 further	 resource	
development.

As	a	second	approach	to	characterizing	the	availability	of	re-
sources	among	curriculum	levels,	we	used	Fisher's	exact	tests	to	
quantify	 the	 dissimilarity	 between	 different	 curriculum	 levels.	
Specifically,	 we	 compared	 the	 distribution	 of	 resources	 among	
forecasting	 topics	 between	 online	 resources	 and	 forecasting	
course	 lessons,	 and	 between	 forecasting-	adjacent	 courses	 and	
forecasting	 course	 lessons.	 We	 compared	 forecasting	 course	
lessons	 to	 the	 other	 two	 curriculum	 levels	 because	 forecasting	
course	 lessons	comprise	our	best	 representation	of	what	EF	ex-
perts	 believe	 students	 should	 learn	 to	 become	 ecological	 fore-
casters.	Fisher's	exact	test	was	chosen	because	this	test	is	similar	
to	 a	 chi-	squared	 test	 when	 the	 dimensions	 of	 the	 contingency	
matrix	 are	 greater	 than	 2 × 2	 but	 is	 robust	 to	 zero	 frequencies.	
Fisher's	exact	 tests	were	computed	using	 the	 freqtables	package	
(Cannell,	2020),	altering	the	default	function	to	use	the	hybrid	ap-
proximation	option	for	large	contingency	tables	and	2000	Monte	
Carlo	permutations.	In	this	way,	we	not	only	considered	the	distri-
bution	of	resources	within	each	curriculum	level,	but	also	relative	
to	the	current	standard	(i.e.,	forecasting	course	lessons)	within	the	
sub-	field.

We	 considered	 the	 distribution	 of	 course-	based	 resources	
at	 different	 curriculum	 levels	 among	 institution	 types.	 We	 as-
signed	each	 institution	 a	 type	 (e.g.,	R1 = doctoral	 universities	with	
very	 high	 research	 activity,	 B = baccalaureate	 universities)	 using	
Carnegie	Classifications,	as	defined	by	Indiana	University's	Carnegie	
Classification	of	Institutions	of	Higher	Education	database	(https://
carne	giecl	assif	icati	ons.iu.edu/index.php).	 We	 then	 grouped	 the	
Carnegie	Classifications	to	simplify	the	interpretation	of	institution	
type	(see	Appendix	S1,	Table	4	for	the	grouping	system	of	the	nine	
classification	types).

We	conducted	a	 logistic	 regression	using	 the	glm()	 function	 in	
the stats	 package	 (R	Core	 Team,	2021)	 to	 quantify	 the	 difference	
in	 forecasting-	adjacent	 course	 offerings	 by	 institution	 type.	 Our	
logistic	 regression	used	a	binary	variable	corresponding	to	 institu-
tion	type	A/B	versus	M/D.	The	binary	classification	A/B	(nA/B = 535)	
corresponds	to	the	following	institution	types:	Associate's	Colleges	
(A),	 Associate's/Bachelor's	 Colleges	 (A/B),	 Bachelor's	 Colleges	 (B),	
and	Tribal	Colleges	and	Universities	 (TC).	The	binary	classification	
M/D	(nM/D = 950)	corresponds	to	institution	types	Master's	Colleges	
and	 Universities–	Smaller	 Programs	 (M3),	 Master's	 Colleges	 and	
Universities–	Larger	Programs	 (M1),	Doctoral	Universities–	High	 re-
search	activity	(R2),	Doctoral	Universities–	Highest	research	activity	
(R1),	 and	 Doctoral/Professional	 Universities	 (D/PU).	 The	 A/B	 and	
M/D	categories	are	the	response	variable	in	the	logistic	regression	
and	the	forecasting	topics	into	which	courses	fell	are	the	predictor	
variables.	We	 used	 this	 binary	 categorization	 to	 increase	 the	 sta-
tistical	 power	 of	 the	 analysis	 by	 including	more	 courses	 in	 fewer	
institution	type	categories.	We	grouped	Tribal	colleges	(TC)	with	as-
sociate's	and	baccalaureate	institutions	(A/B)	because	the	two	Tribal	
colleges	 included	 in	 this	analysis	do	not	offer	degrees	higher	 than	
bachelor's	 degrees.	 We	 removed	 the	 topics	 “Model	 Assessment”	
and	 “Traditional	Ecological	Knowledge”	 from	 this	analysis	because	
only	 one	 course	 was	 available	 for	 each	 topic,	 which	 limited	 our	
ability	 to	make	 inference	 regarding	 these	 topics.	We	 interpret	 the	
coefficients	of	the	model	as	the	odds	of	an	institution	being	an	as-
sociate's	or	baccalaureate	institution	(A/B)	relative	to	a	master's	or	
doctoral	institution	(M/D),	given	the	frequency	of	offering	courses	
in	a	given	forecasting	topic.

3  |  RESULTS

3.1  |  The EF curriculum landscape differs by 
curriculum level

Our	quantitative	analysis	of	resources	for	teaching	and	learning	EF	
reveals	 differences	 in	 how	 resources	 are	 distributed	 among	 fore-
casting	 topics,	with	different	 gaps	 existing	 at	 different	 curriculum	
levels	(Figure 2).	The	distribution	of	resources	within	the	forecasting	
topics	is	uneven	at	each	curriculum	level	(online	resources:	�2 = 364,	
df = 18,	n = 409,	p < .005;	forecasting	course	lessons:	�2 = 163,	df = 17,	
n = 192,	 p < .005;	 forecasting-	adjacent	 courses:	�2 = 2891,	 df = 17,	
n = 1485,	p < .005),	indicating	that	some	topics	are	more	intensively	
covered	than	others	at	each	curriculum	level.	Further,	the	distribu-
tion	of	 forecasting	course	 lessons	among	 the	 forecasting	 topics	 is	
more	even	than	the	distribution	of	online	resources	(Fisher's	exact	
test:	 nonline = 409,	 nlessons = 192,	 p < .005)	 and	 forecasting-	adjacent	
courses	 (Fisher's	 exact	 test:	 ncourses = 1485,	 nlessons = 192,	p < .005).	
This	implies	that	many	topics	are	over-		and	underrepresented	within	
online	 resources	and	 forecasting-	adjacent	courses	with	 respect	 to	
developing	a	comprehensive	EF	curriculum	at	each	of	these	levels,	
as	defined	by	evenly	covering	the	topics	identified	via	expert	elicita-
tion	to	comprise	an	EF	education.	For	example,	a	disproportionately	
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high	number	of	online	resources	are	dedicated	to	basic	concepts	of	
computer	coding	(Figure 2)	relative	to	both	the	number	of	resources	
dedicated	to	other	topics	among	online	resources	and	the	number	
of	resources	dedicated	to	basic	concepts	of	computer	coding	at	the	
other	curriculum	levels	(Table 1).	On	the	other	hand,	basic	concepts	
of	 forecasting,	such	as	what	a	 forecast	entails	and	why	prediction	
is	important	in	the	sciences,	are	an	underrepresented	topic	among	
both	 online	 resources	 and	 forecasting-	adjacent	 courses	 relative	
to	 its	 representation	 among	 forecasting	 course	 lessons	 (Figure 2,	
Table 1).

It	is	also	worth	noting	that	some	topics	are	not	represented	at	all	
at	one	or	more	curriculum	levels.	Ethical	considerations	in	forecast-
ing	and	in	related	disciplines	(ecology,	or	computer	and	data	sciences)	
were	not	represented	in	our	database	of	online	resources	and	only	
three	of	192	forecasting	course	lessons	in	three	of	nine	courses	cov-
ers	forecasting	ethics.	This	topic	highlights	important	considerations	
when	conducting	EF	research,	including	who	should	be	involved	in	
deciding	what	forecasts	are	made	and	whether	data	should	be	made	
publicly	available.	The	forecasting	topics	(see	Appendix	S1,	Table	3),	
Science	Communication	 and	Traditional	 Ecological	 Knowledge	 are	
also	not	represented	 in	forecasting	courses.	Among	our	sample	of	
forecasting-	adjacent	courses,	there	are	no	courses	specifically	cov-
ering	Data	 Assimilation	 or	 State	 Space	Models.	 These	 topics	 that	
are	not	represented	in	a	curriculum	level	represent	particularly	per-
sistent	gaps	in	EF	curricula	(Table 1).

3.2  |  Availability of forecasting and forecasting- 
adjacent courses differs by institution type

We	next	 considered	whether	 there	are	patterns	 in	 the	availability	
of	resources	at	the	course-	based	curriculum	levels	(i.e.,	forecasting	
course	lessons	and	forecasting-	adjacent	courses)	across	institution	
types.	In	general,	more	forecasting	and	forecasting-	adjacent	courses	
are	available	at	doctoral	universities	than	at	colleges	and	universities	
offering	only	associate's,	bachelor's,	or	master's	degrees	 (Figure 3; 
Table 2).	Forecasting	courses	are	currently	almost	exclusively	taught	
at	doctoral	universities	with	very	high	research	activity	(institution	

F I G U R E  2 The	ecological	forecasting	curriculum	landscape	differs	by	curriculum	level.	(a)	Online	resources.	(b)	Lessons	in	forecasting	
courses.	(c)	Forecasting-	adjacent	courses.	Colors	are	the	same	in	all	panels	and	correspond	to	the	figure	legend.	The	slices	corresponding	
to	the	forecasting	topics	are	in	the	same	order	in	each	panel.	The	colors	in	each	panel	are	in	the	same	order	as	in	the	figure	legend,	starting	
from	the	12:00	position	and	moving	counterclockwise	in	the	plots	and	starting	from	left	and	moving	top	to	bottom	in	the	legend.	Total	
number	of	resources	in	each	curriculum	level	is	shown	below	each	panel's	title.

n = 409
Open−access, Online Resources(a)

n = 192
Forecasting Course Lessons(b)

n = 1,485
Forecasting−Adjacent Courses(c)

Basics of Coding
Basics of Ecology
Basics of Forecasting
Basics of Statistics
Data Sources

Data Assimilation
Machine Learning
Mechanistic Models
Model Assessment
Probability & Uncertainty
State Space Models
Statistical Models

Data Manipulation
Data Visualization
Workflows & Open Science
Working with Data

Science Communication
Social Science
Traditional Ecological Knowledge

TA B L E  1 Examples	of	over-		and	underrepresented	topics	at	each	
of	the	three	curriculum	levels,	based	on	Figure 2.	These	examples	
serve	to	reinforce	the	examples	we	use	in	the	Discussion.	Readers	
are	invited	to	identify	other	over-		and	underrepresented	topics	
based	on	the	data	and	Figure 2.

Curriculum level
Example topics 
overrepresented

Example topics 
underrepresented

Online	resources Basics	of	coding Basics	of	Forecasting

Ethics

Forecasting	
course 
lessons

Ethics

Science	communication

Traditional	ecological	
knowledge

Forecasting-	
adjacent	
courses

Basics	of	
ecology

Basics	of	forecasting

Data	assimilation

State	space	models
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    |  9 of 16WILLSON et al.

type	R1,	n = 7/9),	while	 only	 one	 forecasting	 course	 is	 taught	 at	 a	
highly	selective	baccalaureate	institution	(institution	type	B,	Smith	
College;	Figure 3b,c)	and	one	is	taught	outside	of	the	university	set-
ting	(EFI	summer	course).

There	is	more	heterogeneity	in	the	type	of	institutions	offering	
forecasting-	adjacent	courses	than	 in	the	 institutions	offering	fore-
casting	courses	(Figure 3a).	While	more	forecasting-	adjacent	courses	
are	offered	at	master's	and	doctoral	universities	 (Figure 3a),	other	
institution	 types	 (i.e.,	 offering	 lower	degrees)	 offer	 courses	 corre-
sponding	to	almost	every	forecasting	topic	(Appendix	S1,	Table	3).	
Specifically,	 associate's	 colleges	 offer	 a	 range	 of	 courses	 relevant	
to	forecasting,	particularly	within	topics	associated	with	computer	
and	data	sciences	 (Figure 3a).	Our	 logistic	regression	model	offers	
insight	 into	 the	 topics	 that	 forecasting-	adjacent	 courses	 cover	 at	
different	 types	 of	 institutions.	 Specifically,	 we	 interpret	 the	 coef-
ficients	of	our	 logistic	 regression	 (Table 2)	as	 the	odds	of	an	 insti-
tution	being	an	associate's-		or	bachelor's-	granting	institution	(A/B)	
relative	to	a	master's-		or	doctorate-	granting	institution	(M/D),	given	
the	frequency	of	offering	courses	of	a	given	forecasting	topic.	Using	
this	 interpretation,	 three	of	 the	six	 topics	 indicating	a	higher	odds	
of	an	institution	being	A/B	(i.e.,	offering	less	advanced	degrees)	are	
introductory	topics,	while	three	are	related	to	more	advanced	top-
ics	(Table 2).	No	topics	representing	advanced	quantitative	concepts	
except	Machine	Learning	significantly	contribute	to	the	difference	
between	associate's	and	baccalaureate	institutions	and	master's	and	

doctoral	 institutions,	 although	 two	 topics	 (Data	Manipulation	 and	
Mechanistic	Models)	are	marginally	nonsignificant.

4  |  DISCUSSION AND 
RECOMMENDATIONS FOR NE X T STEPS

4.1  |  Gaps are visible in the existing resources at 
each curriculum level

Previous	 literature	has	discussed	the	importance	of	understanding	
the	 current	 curriculum	 landscape	 as	 a	 first	 step	 in	 improving	 cur-
riculum	 in	higher	education	 (NASEM,	2020,	2021a;	Rawlings-	Goss	
et	 al.,	 2018).	We	 identified	 resources	 that	 already	 exist	 and	 high-
lighted	 gaps	 where	 finite	 resources	 could	 be	 allocated	 to	 build	 a	
more	comprehensive	curriculum	in	the	context	of	EF.	For	example,	
we	 show	 that	 there	 is	 a	 need	 to	 introduce	 high-	level	 quantitative	
skills	 to	 undergraduate	 students	 in	 forecasting	 and	 forecasting-	
adjacent	courses	(Figure 2,	Appendix	S1).	This	finding	is	consistent	
with	previous	research	indicating	that	certain	data	science	skills	are	
underrepresented	in	undergraduate	education	(Emery	et	al.,	2021)	
and	that	undergraduate	EES	curriculum	is	an	appropriate	venue	for	
introducing	 students	 to	 high-	level	 quantitative	 skills	 (Barraquand	
et	al.,	2014;	Carey	et	al.,	2020).	This	finding	also	underscores	pre-
vious	 research	 findings	 that	 students	 recognize	 their	 own	 lack	 of	

F I G U R E  3 Institution	type	influences	the	availability	of	resources	in	each	forecasting	topic.	Institution	type	is	depicted	by	a	simplification	
of	Carnegie	Classification	system.	Categories	in	the	legend	are	as	follows:	A = Associate's	college,	A/B = Associate's/Bachelor's	College,	
B = Bachelor's	College,	D/PU = Doctoral/Professional	University,	M1 = Master's	Colleges	and	Universities	–		Larger	Program,	M3 = Master's	
Colleges	and	Universities	–		Smaller	Program,	R1 = Doctoral	University	–		Very	High	Research	Activity,	R2 = Doctoral	University	–		High	
Research	Activity,	TC = Tribal	College.	See	Appendix	S1,	Table	4	for	the	list	of	institutions	per	institution	type	and	the	Carnegie	Classification	
system.	(a)	The	number	of	forecasting-	adjacent	courses	per	institution.	Courses	per	institution	were	computed	by	dividing	the	total	number	
of	courses	per	forecasting	topic	and	institution	type	by	the	number	of	institutions	in	each	institution	type.	(b)	Graduate	and	undergraduate	
forecasting	course	lessons	per	institution.	Lessons	per	institution	were	computed	by	dividing	the	total	number	of	lessons	per	forecasting	
topic	and	institution	type	by	the	number	of	institutions	in	each	institution	type.	(c)	Undergraduate	forecasting	course	lessons	per	institution.	
As	in	(b),	but	only	visualizing	undergraduate	forecasting	courses	and	excluding	forecasting	courses	at	the	graduate	level.

State Space Models

Data Assimilation

Model Assessment

Traditional Ecological Knowledge

Workflows & Open Science

Social Science

Data Visualization

Probability & Uncertainty

Machine Learning

Basics of Forecasting

Mechanistic Models

Ethics

Data Manipulation

Science Communication

Working with Data

Data Sources

Statistical Models

Basics of Coding

Basics of Statistics

Basics of Ecology

0 30 60 90 120
Courses per Institution

B

A/B

A

R1

R2

D/PU

M1

M3

TC

Forecasting−Adjacent Courses(a)

0.0 2.5 5.0 7.5 10.0
Lessons per Institution

Forecasting Courses(b)

0 5 10 15
Lessons per Institution

Undergraduate Forecasting Courses(c)
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quantitative	training	 in	undergraduate	ecology	curriculum	and	ret-
roactively	 desire	more	 training	 in	 quantitative	 concepts	 and	 skills	
(Barraquand	et	al.,	2014).	These	skills	additionally	have	the	potential	
to	 improve	 students'	problem-	solving	abilities	 and	 scientific	work-
force	preparedness	(Barraquand	et	al.,	2014;	Farrell	&	Carey,	2018; 
Hounshell	et	al.,	2021).

Introductory	concepts	are	particularly	overrepresented	among	
online	resources	and	forecasting-	adjacent	courses.	This	is	relevant	
because	these	resources	can	supplement	formal	instruction	on	EF,	
offering	educational	opportunities	to	students	without	access	to	
forecasting	courses.	The	overrepresentation	of	introductory	con-
cepts	is	likely	because	these	topics	are	applicable	to	many	science	
domains	and	are	not	 specific	 to	EF.	This	 is	 encouraging	because	
such	 introductory	 concepts	 can	 similarly	 contribute	 to	 other	
quantitative,	 interdisciplinary	 EES	 curricula	 that	 are	 not	 specifi-
cally	related	to	EF.	Further,	 the	overrepresentation	of	some	top-
ics	 points	 to	 a	 positive	 feature	 of	 the	 EF	 curriculum	 landscape:	
multiple	 resources	 are	 likely	 to	 exist	 on	 the	 same	 introductory	
concepts,	 offering	 different	 perspectives	 and	 ways	 of	 teaching	
information	to	students	with	diverse	learning	styles.	We	suggest	
that	further	resource	development	efforts	may	not	need	to	focus	

on	 introductory	 concepts	 and	 instead	 can	 focus	 on	 underrepre-
sented	advanced	topics.

The	complete	absence	of	certain	forecasting	topics	helps	iden-
tify	gaps	where	new	resources	could	be	developed	to	offer	a	more	
comprehensive	 suite	of	 resources	 to	approach	EF	 in	 the	way	pro-
moted	by	EFI.	For	example,	online	resources	could	be	developed	to	
allow	students	to	explore	the	ethical	implications	of	making	ecolog-
ical	 forecasts.	 Similarly,	 topics	 related	 to	 disseminating	 forecasts	
to	interested	parties	could	be	incorporated	as	specific	lessons	into	
more	forecasting	courses	or	could	be	offered	as	forecasting-	adjacent	
courses	at	more	institutions.	Finally,	the	fact	that	there	are	few	re-
sources	 for	 incorporating	 non-	Western	 ways	 of	 knowing	 into	 EF	
courses	highlights	the	need	for	more	diverse	instructors	teaching	EF	
courses	and	contributing	to	resource	and	course	development.	We	
recognize	that	EES	educators	and	researchers	will	make	their	own	
decisions	about	which	topics	warrant	 their	own	courses	or	course	
lessons.	For	example,	the	topic	of	state	space	models	may	be	more	
suited	 for	 incorporation	 into	 existing	 statistical	modeling	 courses,	
rather	than	having	a	course	exclusively	on	this	topic.	We	anticipate	
that	 further	 refinement	of	our	 list	of	 topics	as	more	EF	educators	
contribute	to	our	research	will	help	the	EF	community	reach	consen-
sus	on	what	topics	deserve	their	own	courses	and	course	 lessons.	
Similarly,	other	EES	sub-	disciplines	should	consider	what	topics	are	
appropriate	for	entire	courses	and	course	lessons	upon	applying	our	
approach.

4.2  |  Limitations to gap identification

Educating	undergraduate	students	is	a	complex	undertaking,	mean-
ing	 that	 our	 results	 should	 be	 considered	 in	 the	 context	 of	 how	
students	learn.	For	example,	educators	understand	that	some	top-
ics	can	be	more	suitable	to	one	curriculum	level	than	another.	The	
inclusion	of	ethics	as	a	 lesson	within	forecasting	courses	may	help	
students	 make	 more	 connections	 between	 ethics	 and	 the	 devel-
opment	 of	 forecasts	 (Emery	 et	 al.,	 2021;	 NASEM,	 2020,	 2021b).	
Additionally,	teaching	interdisciplinary	topics	such	as	ethics	and	sci-
ence	 communication	within	 forecasting	 courses	 is	 consistent	with	
science	instructors'	role	and	virtue	responsibilities	(i.e.,	the	respon-
sibilities	 conferred	upon	 science	 instructors	 as	 science	 instructors	
and	as	moral	agents	in	the	practice	of	teaching	science	students,	re-
spectively)	to	teach	students	these	topics	within	the	context	of	the	
scientific	disciplines	 (Sethy,	2018).	When	topics	such	as	ethics	are	
embedded	into	disciplinary	courses,	our	method	for	determining	the	
topics	 taught	within	 forecasting-	adjacent	 courses	may	 have	 failed	
to	identify	that	ethics	was	taught.	Therefore,	 it	 is	possible	that	we	
have	underestimated	how	often	ethics	and	similar	topics	are	taught.	
Similarly,	the	mode	of	knowledge	transmission,	whether	online	(e.g.,	
online	 resources	 or	 virtual	 courses)	 or	 in-	person	 (e.g.,	 traditional	
courses)	may	impact	student	comprehension	and	learning	(Adedoyin	
&	Soykan,	2020).	While	we	did	not	consider	explicitly	the	mode	of	
knowledge	transfer	in	this	study,	we	encourage	future	studies	to	do	
so.	Finally,	it	is	possible	that	we	mischaracterized	the	availability	of	

TA B L E  2 Coefficients	from	the	logistic	regression	comparing	the	
prevalence	of	courses	in	each	forecasting	topic	among	associate's-		
and	bachelor's-	granting	institutions	(A/B)	and	master's-		and	
doctoral-	granting	institutions	(M/D).

Forecasting topic Estimate [95% CI] p- value

Intercept 1.06	[0.81,	1.38] .68

Basics	of	ecology 2.24	[1.60,	3.16] <.001

Basics	of	forecasting 9.46	[2.10,	42.7] .003

Basics	of	statistics 1.74	[1.20,	2.51] .003

Data	manipulation 1.89	[0.93,	3.84] .07

Data	sources 0.89	[0.55,	1.44] .63

Data	visualization 1.47	[0.60,	3.61] .39

Ethics 8.52	[2.45,	29.6] <.001

Machine	learning 2.68	[1.00,	7.20] .05

Mechanistic	models 3.08	[0.95,	9.96] .06

Probability	&	Uncertainty 1.73	[0.61,	4.96] .29

Science	communication 1.38	[0.74,	2.55] .30

Social	science 1.51	[0.47,	4.89] .48

Statistical	models 1.43	[0.92,	2.22] .11

Workflows	&	Open	science 0.38	[0.11,	1.27] .11

Working	with	data 3.44	[1.65,	7.16] <.001

Note:	The	left	column	includes	the	names	of	the	forecasting	topics	
used	to	predict	the	institution	type	at	which	the	course	is	offered	
(either	associate's/baccalaureate	institution	or	master's/doctoral	
institution).	The	middle	column	includes	the	coefficient	estimates	and	
95%	confidence	intervals	(CIs)	in	brackets.	The	right	column	includes	
the p-	values	of	the	coefficients,	indicating	whether	the	coefficient	is	
significantly	different	from	zero.	Rows	are	shaded	gray	if	the	p-	value	
is	significant	at	� = .05.	The	p-	value	for	the	topic	“Machine	Learning”	
is	below	�	before	rounding.	Coefficients	have	been	exponentiated	to	
represent	odds.
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    |  11 of 16WILLSON et al.

resources	by	failing	to	account	for	the	depth	to	which	a	topic	is	cov-
ered	in	a	given	resource.	For	example,	if	many	resources	cover	sta-
tistical	models	at	a	surface	level,	students	may	in	reality	have	fewer	
resources	available	to	them	to	learn	statistical	models	than	to	learn	a	
topic	that	is	covered	by	few	resources,	but	more	in	depth.

Similar	to	considering	the	context	in	which	forecasting	topics	are	
taught,	by	assuming	 that	 forecasting	course	 lessons	 represent	 the	
“ideal”	distribution	of	 resources	among	forecasting	topics,	we	rec-
ognize	 that	we	 introduce	 some	bias	 into	our	 analysis.	 Specifically,	
the	composition	of	 forecasting	courses	 is	heavily	dependent	upon	
who	 is	 teaching	 forecasting	 and	 which	 resources	 the	 instructors	
are	using	 to	 structure	 their	 lessons.	Similarly,	many	current	EF	 in-
structors	 share	 resources,	 such	 as	 textbooks	 and	 syllabi	 (e.g.,	 on	
EFI's	 website),	 contributing	 to	 strong	 nonindependence	 between	
EF	 courses	 in	 our	 database.	Owing	 to	 both	 the	 nonindependence	
between	EF	courses	and	common	demographics	between	students	
in	EF	courses	 (e.g.,	mainly	graduate	 students	 in	ecology	and	envi-
ronmental	sciences,	often	with	prior	exposure	to	quantitative	con-
cepts	and	coding	and	attending	wealthy	universities),	there	may	be	
shared	 expectations	 between	 EF	 courses	 regarding	 the	 concepts	
and	skills	students	have	prior	to	the	course.	For	example,	many	cur-
rent	EF	courses	expect	students	to	enter	EF	courses	with	founda-
tional	knowledge	in	ecology	and	statistics.	We,	therefore,	advocate	
for	repeating	our	approach	to	analyzing	the	EF	curriculum	landscape	
and	 continuing	 to	 use	 forecasting	 course	 lessons	 as	 the	 expected	
distribution	of	courses,	as	EF	matures	as	a	discipline.

4.3  |  Patterns exist in the accessibility of resources 
at each curriculum level

Equally	 important	 to	 the	 distribution	 of	 existing	 resources	 among	
forecasting	 topics	 is	 the	accessibility	of	 resources.	Accessibility	of	
online	 resources	 is	 restricted	 to	 students	with	 reliable	 broadband	
internet	access	and	personal	computers.	Significant	portions	of	stu-
dents	 in	 rural	 areas,	 Tribal	 communities,	 low-	income	 households,	
and	 from	 traditionally	 underrepresented	 racial	 and	 ethnic	 back-
grounds	are	less	likely	to	have	reliable	internet	and	computer	access	
than	“traditional”	students,	who	are	mainly	from	urban	and	subur-
ban,	middle	class,	White	households	(Dolcini	et	al.,	2021;	Sanders	&	
Scanlon,	2021).

Aside	 from	online	 resources,	 the	 accessibility	 of	 courses,	 both	
forecasting	and	forecasting-	adjacent,	is	biased	toward	highly	selec-
tive	institutions.	Based	on	our	representative	database	of	forecast-
ing	and	forecasting-	adjacent	courses,	we	show	that	all	 forecasting	
courses	and	a	substantial	portion	of	forecasting-	adjacent	courses	are	
taught	at	doctoral-	granting	institutions	with	very	high	research	ac-
tivity	(R1	or	highly	selective	baccalaureate	institutions	(B;	Figure 3,	
Table 2).	We	recognize	that	we	may	have	missed	some	forecasting	
courses,	especially	if	they	are	not	labeled	as	such	in	course	descrip-
tions.	Similarly,	by	analyzing	a	subsample	of	all	US	higher	education	
institutions,	 we	 have	 missed	 a	 great	 deal	 of	 forecasting-	adjacent	
courses	at	unsampled	institutions	and	even	in	sampled	institutions,	

some	courses	without	sufficient	course	description	online	were	in-
evitably	missed.	Nevertheless,	our	analysis	highlights	that	students	
living	in	areas	with	limited	options	for	higher	education	(e.g.,	areas	
with	 only	 community	 college	 options;	 “academic-	match	 education	
deserts”)	 may	 be	 unable	 to	 enroll	 in	 forecasting	 courses	 (Klasik	
et	al.,	2018).	This	disparity	is	compounded	by	the	fact	that	80%	of	
White	Americans	enroll	in	the	top	500	higher	education	institutions,	
where	forecasting	courses	are	more	likely	to	be	offered,	while	75%	
of	 students	 from	underrepresented	 racial	 and	ethnic	backgrounds	
do not	enroll	in	the	top	500	institutions	(NASEM,	2021b).	This	high-
lights	the	fact	that	the	racial/ethnic	identity	and	socioeconomic	sta-
tus	of	students	influence	the	accessibility	of	forecasting	education,	
disparities	which	should	become	a	high-	priority	consideration	in	the	
development	of	EF	curriculum.

Although	we	did	not	consider	 them	 in	 this	analysis,	 the	 rise	of	
MOOCs	offers	a	promising	way	to	deliver	course	content	on	topics	
related	 to	 ecological	 forecasting,	 including	 quantitative	 concepts,	
to	students	with	access	to	any	higher	education	institution,	not	just	
those	with	 access	 to	highly	 selective	 institutions	 (Zawacki-	Richter	
et	al.,	2018).	However,	 learning	via	MOOCs	presupposes	that	stu-
dents	have	access	 to	 the	 internet	 and	 the	 computer	hardware	 re-
quired	for	attending	the	course	and	completing	assignments.	As	 is	
true	for	any	online	resource,	these	assumptions	do	not	hold	for	many	
students	living	in	rural	communities,	Tribal	communities,	low-	income	
households,	among	other	 living	arrangements	(Dolcini	et	al.,	2021; 
Sanders	&	Scanlon,	2021).	We	advocate	for	future	iterations	of	this	
analysis	 to	 include	MOOCs	and	for	the	continued	development	of	
MOOCs	related	to	ecological	forecasting	and	quantitative	ecology.	
We	additionally	urge	resource	developers,	educators,	and	research-
ers	 to	 additionally	 consider	 the	 needs	 of	 students	 in	 such	 low-	
internet	and	resource	environments.

The	fact	 that	most	advanced	topics	related	to	EF	 (e.g.,	mecha-
nistic	and	statistical	models,	probability	and	uncertainty)	are	equally	
represented	at	associate's	and	bachelor's-	granting	institutions	com-
pared	 to	master's	and	doctoral-	granting	 institutions	 (Table 2)	 indi-
cates	 that	advanced	quantitative	curriculum	 is	 similarly	developed	
at	both	of	these	institution	types.	Students	at	both	institution	types	
could	benefit	from	more	training	in	advanced	quantitative	concepts,	
consistent	with	the	fact	that	advanced	quantitative	concepts	tend	to	
be	 less	well	 represented	among	 forecasting-	adjacent	courses	 than	
introductory	 concepts	 (Figure 2).	 Meanwhile,	 the	 fact	 that	 fewer	
forecasting-	adjacent	 introductory	 courses	 are	 available	 across	our	
subsample	of	master's	and	doctorate-	granting	institutions	highlights	
that	these	could	benefit	from	coordination	of	introductory	course-
work	with	partnering	2-	year	institutions	(e.g.,	community	college	to	
university	programs).

4.4  |  Application to other disciplines

The	analysis	of	both	the	availability	and	accessibility	of	undergradu-
ate	educational	resources	should	not	be	interpreted	as	limited	to	EF.	
Researchers	and	educators	in	other	sub-	disciplines	of	EES	can	assess	
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the	availability	of	resources	for	teaching	and	learning	their	discipline	
by	 identifying	the	topics	relevant	to	the	discipline.	Further,	two	of	
our	main	conclusions	are	applicable	to	any	EES	researcher	or	educa-
tor	 interested	 in	 improving	the	availability	and	accessibility	of	EES	
education.	First,	the	relative	lack	of	educational	resources	in	more	
advanced	statistical	and	computational	concepts	suggests	that	ad-
ditional	quantitative	resources	could	improve	the	education	of	EES	
undergraduate	 students.	 Second,	 the	 fact	 that	 EF	 resources	 at	 all	
three	curriculum	 levels	have	strong	barriers	 to	access	 that	dispro-
portionately	affect	students	 from	marginalized	communities	 is	ap-
plicable	to	the	entire	EES	community.	Increasing	the	accessibility	of	
educational	resources	across	curriculum	levels	should	be	a	priority	
for	EES	educators	and	researchers	as	a	community.

4.5  |  Progress and future directions

4.5.1  |  Current	education	initiatives

Here,	we	describe	several	initiatives	we	have	implemented	to	begin	
addressing	 identified	 gaps	 in	 EF	 education.	 These	 initiatives	were	
co-	developed	 by	 the	 co-	authors	 while	 the	 analysis	 of	 the	 avail-
ability	 and	 accessibility	 of	 ecological	 forecasting	 education	 was	
undertaken.	 The	 initiatives	 are	 designed	 to	 meet	 two	 objectives:	
(1)	 increase	representation	of	underrepresented	minority	students	
in	data	science	education	in	the	United	States	and	(2)	increase	the	
number	 of	 resources	 for	 teaching	 and	 learning	 about	 high-	level	
quantitative	concepts	related	to	ecological	forecasting.	To	increase	
the	 representation	of	 underrepresented	minority	 students	 in	data	
science,	we	have	developed	a	partnership	between	 the	Ecological	
Forecasting	 Initiative	 and	 staff	 and	 faculty	 from	 three	 Minority	
Serving	 Institutions	 with	 high	 Native	 American	 enrollment	 (Salish	
Kootenai	College,	University	of	New	Mexico—	Gallup,	and	California	
Polytechnic	State	University—	Humboldt).	The	objective	of	this	part-
nership	is	to	identify	the	specific	barriers	to	participation	of	students	
from	 marginalized	 backgrounds	 and	 attending	 under-	resourced	
higher	education	institutions	and	begin	reducing	the	identified	bar-
riers.	 To	 increase	 the	 resources	 available	 for	 teaching	 and	 learn-
ing	 quantitative	 concepts,	members	 of	 the	 Ecological	 Forecasting	
Initiative	 partnered	 with	 Environmental	 Data-	Driven	 Inquiry	 and	
Exploration	(EDDIE)	to	develop	educational	modules	on	quantitative	
concepts.	 Importantly,	 these	 modules	 emphasize	 specific	 compo-
nents	of	ecological	forecasting	that	we	identified	as	being	underrep-
resented,	including	uncertainty	quantification	and	data	assimilation.	
Through	these	current	initiatives,	we	are	beginning	to	address	some	
of	 the	 gaps	 in	 both	 the	 availability	 and	 accessibility	 of	 ecological	
forecasting	education	identified	in	our	analysis.

Native	American	undergraduate	students	are	a	subset	of	under-
represented	minority	students	in	the	sciences	in	the	United	States,	
with	 pervasive	 socioeconomic	 barriers	 to	 success	 in	 the	 univer-
sity	 context	 (Alexiades	et	 al.,	2021).	Consistent	with	objective	 (1),	
we	are	currently	evaluating	existing	data	science	and	EF	resources	
to	 address	 the	 accessibility	 of	 EF	 education	 for	 Native	 American	

undergraduate	 students.	 It	 is	 understood	 that	 lack	 of	 internet	 ac-
cess	is	a	barrier	to	many	students	across	the	country;	however,	this	
problem	 is	 exacerbated	 among	Native	American	 communities	due	
to	chronic	disenfranchisement	of	Tribal	citizens	and	the	continued	
legacy	 of	 colonization	within	 the	 United	 States.	 According	 to	 the	
FCC,	across	the	country,	about	6%	of	individuals	lack	internet	access	
(Federal	 Communications	 Commission,	2012).	 In	 contrast,	 18%	 of	
Tribal	reservation	residents	do	not	have	access	to	the	 internet.	Of	
the	limited	access	available	on	reservations,	there	is	a	high	reliance	
on	smartphones	and	cellular	services	for	access	to	the	internet.	As	
a	result,	we	are	evaluating	whether	(1)	materials	can	be	used	in	low	
to	no	internet	environments;	(2)	materials	can	be	used	on	mobile	de-
vices,	the	only	computers	some	students	have;	and	(3)	materials	can	
be	modified	to	meet	technical	needs	of	communities,	such	as	being	
modified	to	be	used	in	no	internet	environments	or	on	smartphones.	
This	initiative	has	started	with	considering	the	needs	of	students	at	
the	University	of	New	Mexico—	Gallup,	a	2-	year	institution	with	high	
enrollment	of	members	of	the	Navajo	Nation.

Bridging	the	gap	between	objectives	(1)	and	(2),	increasing	rep-
resentation	of	underrepresented	minority	 students	 and	 increasing	
resources	for	teaching	and	learning	quantitative	concepts,	we	have	
integrated	Traditional	Ecological	Knowledge	into	an	R	Data	Analysis	
course	at	Salish	Kootenai	College	(SKC).	SKC	is	a	Tribal	college	serv-
ing	members	of	nearly	70	Tribes,	making	efforts	to	teach	students	
how	to	 incorporate	the	questions,	 issues,	and	experiences	of	their	
communities	 into	 applied	 science	 (e.g.,	 via	 ecological	 forecasting)	
particularly	 relevant.	Students	were	taught	 to	use	the	R	statistical	
computing	 language	 to	 quantitatively	 analyze	 water	 quality	 data	
using	a	K'avi	Tribe	Water	Quality	Dataset.	Water	quality	data	analysis	
is	relevant	to	the	production	of	mandatory	reports	that	many	Tribal	
governments	must	send	to	the	US	Environmental	Protection	Agency	
(EPA)	annually.	The	K'avi	Tribe,	the	Water	Quality	Dataset,	and	the	
reference	 watershed	 are	 fictional,	 created	 so	 that	 no	 one	 Tribe	
would	feel	singled	out	or	excluded	when	this	class	is	taught	at	SKC.	
The	 complexity	 of	water	 resources	within	 the	 fictional	watershed	
and	the	10-	year	dataset	reflect	realistic	landscape	and	water	quality	
conditions	present	at	many	Reservations	in	the	Intermountain	West,	
US.	Indeed,	the	dataset	is	an	amalgam	of	data	collected	by	one	co-	
author	(Smies)	for	five	different	Tribes	in	Montana,	US.

Additionally,	the	Traditional	Ecological	Knowledge	(TEK)	sites	
included	in	the	K'avi	Tribe	Water	Quality	Dataset	mirror	the	spir-
itual	 and	cultural	uses	of	water	 resources	by	many	Tribes	 in	 the	
West	(Rattling	Leaf	Sr,	2022).	Today,	the	EPA	(the	primary	funder	
of	Tribal	water	quality	programs)	only	evaluates	monitoring	data	
based	upon	physical	and	biological	parameters.	Tribes	are	 left	to	
create	their	own	TEK	analysis	methods	and	many	Tribal	managers	
are	 not	 equipped	with	 the	 resources	 to	 do	 so.	 As	 a	 result,	 TEK	
values	are	not	given	equal	protection	via	Tribal	water	quality	stan-
dards,	despite	their	importance.	In	response,	students	in	the	SKC	
R	Data	Analysis	course	were	tasked	with	ranking	TEK	values	as-
sociated	with	the	important	spiritual	and	cultural	sites	in	the	K'avi	
Tribe	watershed.	 Then,	 the	 students	were	 taught	 coding	 strate-
gies	that	allowed	them	to	combine	the	quantitative	and	qualitative	
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datasets.	 Data	 visualizations	 of	 the	 combined	 data	 created	 new	
and	 more	 powerful	 ways	 to	 evaluate	 the	 physical	 and	 cultural	
health	 of	 the	 watershed.	 By	 ascribing	 equal	 value	 to	 both	 the	
Western	and	Indigenous	scientific	approaches,	students'	analyses	
more	 fully	described	ecosystem	function.	This	approach	encour-
ages	students	to	learn	quantitative	concepts	within	a	framework	
that	facilitates	making	connections	between	coursework	and	their	
lives	and	cultural	values,	an	approach	that	has	been	shown	to	im-
prove	the	persistence	of	Native	American	students	in	undergrad-
uate	studies	(McMahon	et	al.,	2019).

We	 address	 objective	 (2)	 by	 expanding	 the	 breadth	 of	 re-
sources	 available	 for	 teaching	 and	 learning	 ecological	 forecasting	
via	 Macrosystems	 EDDIE.	 Macrosystems	 EDDIE	 modules	 provide	
students	 and	 faculty	 with	 hands-	on,	 real-	world	 learning	 activities	
to	 bolster	 their	 understanding	 of	 macrosystems	 ecology	 through	
modeling	 and	 forecasting	 (Macro	syste	msEDD	IE.org).	 The	 new-
est	 four	modules	 (modules	 5–	8)	 are	 primarily	 focused	 on	 teaching	
macrosystems	 ecology	 and	 EF	 concepts	 using	 National	 Ecological	
Observatory	Network	data	(Carey	et	al.,	2020;	Farrell	&	Carey,	2018; 
Hounshell	et	al.,	2021;	Moore,	Thomas,	et	al.,	2022,	Moore,	Carey,	&	
Thomas,	2022;	Woelmer	et	al.,	2022).	Each	of	the	four	forecasting-	
focused	Macrosystems	EDDIE	modules	covers	different	components	
of	 the	 iterative	 forecasting	 cycle,	 which	 include	 building	 a	 model,	
quantifying	uncertainty,	generating	a	forecast,	communicating	a	fore-
cast,	assessing	a	forecast,	and	updating	a	forecast	with	observations.

4.5.2  |  Future	directions

Coursework,	such	as	forecasting	and	forecasting-	adjacent	courses,	
cannot	be	fully	inclusive	without	considering	in-	classroom	inclusive	
best	practices	 (Rawlings-	Goss	et	al.,	2018),	such	as	active	 learning	
strategies	(Corwin	et	al.,	2018;	Graham	et	al.,	2013),	 including	cul-
turally	relevant	examples	(Harris	et	al.,	2020),	and	providing	alterna-
tive	evaluation	methods	 (Miriti,	2019),	among	others.	Our	analysis	
neglected	 this	critical	component	of	EF	curriculum	by	 focusing	on	
the	courses	themselves,	rather	than	the	context	 in	which	they	are	
taught.	 Future	 efforts	 should	 include	 more	 opportunities	 for	 in-
structors	to	learn	about	inclusive	pedagogy	best	practices,	opportu-
nities	for	instructors	and	forecasting	practitioners	to	discuss	barriers	
to	inclusive	instruction,	and	the	implementation	of	working	groups	
aimed	toward	addressing	the	identified	barriers.

Numerous	recent	publications	have	highlighted	the	necessity	of	
targeted	interventions	to	improve	the	persistence	of	students	from	tra-
ditionally	underrepresented	racial	and	ethnic	groups,	including	Black,	
Hispanic,	 and	 Indigenous	 students,	 in	 scientific	 disciplines	 (Bowser	
&	Cid,	2021;	Cheryan	et	al.,	2017).	We	have	undertaken	numerous	
efforts	to	develop	curricula	that	address	the	needs	of	Indigenous	stu-
dents.	However,	few	efforts	within	the	EFI	community	have	focused	
on	the	needs	of	other	racial	and	ethnic	minorities,	including	Black	and	
Hispanic	students.	Strategies	to	improve	Black	and	Hispanic	student	
persistence	can	be	similar	to	those	targeting	Indigenous	students,	in-
cluding	the	 incorporation	of	Black	students'	cultural	values	 into	the	

curriculum	 (Collins,	 2018;	 Corneille	 et	 al.,	 2020),	 addressing	 local	
community	 problems	 through	 coursework	 (Corneille	 et	 al.,	 2020),	
and	 applying	 the	 curriculum	 to	 students'	 lived	 experiences	 (Harris	
et	 al.,	2020).	 Future	efforts	 should	 focus	on	 identifying	 and	 imple-
menting	strategies	for	developing	EF	curriculum	that	improves	Black	
and	Hispanic	student	persistence,	 including	partnerships	with	Black	
and	 Hispanic	 educators	 and	 forecasting	 practitioners.	 Additionally,	
future	EF	curriculum	development	efforts	should	consider	providing	
resources	and	courses	in	languages	other	than	English.
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