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Abstract

As climate and land use increase the variability of many ecosystems, forecasts

of ecological variables are needed to inform management and use of ecosystem

services. In particular, forecasts of phytoplankton would be especially useful

for drinking water management, as phytoplankton populations are exhibiting

greater fluctuations due to human activities. While phytoplankton forecasts

are increasing in number, many questions remain regarding the optimal

model time step (the temporal frequency of the forecast model output), time

horizon (the length of time into the future a prediction is made) for maximiz-

ing forecast performance, as well as what factors contribute to uncertainty in

forecasts and their scalability among sites. To answer these questions, we

developed near-term, iterative forecasts of phytoplankton 1–14 days into the

future using forecast models with three different time steps (daily, weekly,

fortnightly), that included a full uncertainty partitioning analysis at two drink-

ing water reservoirs. We found that forecast accuracy varies with model time

step and forecast horizon, and that forecast models can outperform null esti-

mates under most conditions. Weekly and fortnightly forecasts consistently

outperformed daily forecasts at 7-day and 14-day horizons, a trend that

increased up to the 14-day forecast horizon. Importantly, our work suggests

that forecast accuracy can be increased by matching the forecast model time

step to the forecast horizon for which predictions are needed. We found that

model process uncertainty was the primary source of uncertainty in our phyto-

plankton forecasts over the forecast period, but parameter uncertainty

increased during phytoplankton blooms and when scaling the forecast model

to a new site. Overall, our scalability analysis shows promising results that

simple models can be transferred to produce forecasts at additional sites. Alto-

gether, our study advances our understanding of how forecast model time step

and forecast horizon influence the forecastability of phytoplankton dynamics

in aquatic systems and adds to the growing body of work regarding the pre-

dictability of ecological systems broadly.
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INTRODUCTION

Globally, ecosystems are experiencing unprecedented cli-
mate and land use change (Solomon et al., 2007;
Vitousek, 1994), resulting in increased variability in their
functioning (e.g., Komatsu et al., 2019; Rillig et al., 2019;
Smith et al., 2009). As a result of this greater variability,
management of the ecosystem services upon which soci-
ety depends is increasingly challenging (Hines et al.,
2019; Manning, Loos, et al., 2019). Thus, new predictive
approaches to anticipate future ecosystem responses to
global change are needed to assist managers and the pub-
lic as they respond to changing ecosystem states (Clark
et al., 2001; Dietze et al., 2018).

Freshwater ecosystems, which provide integral ser-
vices to society (e.g., drinking water, fisheries, irrigation,
hydropower), are particularly threatened by human activ-
ities (Jimenez Cisneros et al. 2014; Millenium Ecosystem
Assessment, 2005). Freshwater lakes and reservoirs are
experiencing rapid changes in water quality, including
increased phytoplankton biomass in many waterbodies,
due to climate and land use change (Carey et al., 2012;
Ho et al., 2019; Paerl & Paul, 2012; Sinha et al., 2012).
Increased phytoplankton biomass poses a potent risk to
drinking water (Carpenter et al., 1998). Because of their
toxins, odors, and scums, high phytoplankton concentra-
tions increase the need for drinking water treatment,
which is estimated to cost >$2 billion annually in the
United States (Dodds et al., 2009).

Anticipating future lake and reservoir phytoplankton
concentrations is critical to drinking water management.
There is a great need to predict both phytoplankton
blooms, which are large, ephemeral aggregations of phy-
toplankton biomass that can have substantial negative
effects on drinking water quality (Cheung et al., 2013;
Ewerts et al., 2013; Qin et al., 2010; Tarczy!nska
et al., 2001), as well as “baseline,” or non-bloom, phyto-
plankton concentrations in drinking water lakes and res-
ervoirs. Having forecasts of both bloom and non-bloom
phytoplankton conditions provide complementary infor-
mation for drinking water managers. For example, know-
ing preemptively when a high-impact yet rare bloom will
occur would allow managers to order additional treat-
ment supplies in advance or provide swimming closure
notices before the bloom occurs (Carey, Woelmer, Lofton,
et al., 2021). Similarly, daily water treatment operations

could be improved by forecasts of non-bloom conditions,
which would provide important information on “typical”
water quality conditions that occur over the majority of
the year, allowing managers to choose depths from which
to draw water. Here, we define predictions of blooms as
the prediction of maximum or peak phytoplankton con-
centrations in a year, whereas predictions of non-bloom
conditions are represented by mean or median phyto-
plankton concentrations. Despite the great need for scal-
able phytoplankton forecasts across many waterbodies, it
remains unclear how well they can be predicted under
bloom and non-bloom conditions.

Providing near-term, iterative forecasts, or future esti-
mates of ecological variable(s) with quantified uncer-
tainty, may be especially useful for management as they
provide information on a timescale that is relevant for
decision-making (Carey, Woelmer, Lofton, et al., 2021).
Additionally, a full analysis of the relative contribution of
different sources of uncertainty (Table 1) in forecasts is
crucial to both properly inform management decisions
(Berthet et al., 2016; Dietze, 2017; Morss et al., 2008) and
iteratively improve forecast performance by constraining
large sources of uncertainty (Dietze, 2017; Luo
et al., 2011). Finally, building a forecasting framework
that readily scales from one location to another is critical
to furthering the field of ecological forecasting.

Current phytoplankton forecasts are often made at
multiple forecast horizons to provide predictions at sev-
eral timepoints in the future. Forecast horizon, or the
length of time into the future at which a forecast is made,
is generally expected to decrease the forecast’s predictive
accuracy (Dietze, 2017; Petchey et al., 2015). However,

TABL E 1 Definitions of uncertainty sources that can contribute
to total forecast uncertainty (derived from Dietze, 2017).

Uncertainty
source Definition

Driver data Uncertainty in the forecasted estimates of
model covariates (e.g., meteorology)

Initial condition Uncertainty in the observed conditions
when a forecast is created

Parameter Uncertainty in model parameter values

Process Uncertainty due to the inability of a model
to reproduce observed conditions
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forecasts that extend to longer time horizons (!1–
2 weeks) may be more useful decision support tools than
1–2 day forecasts by providing managers longer lead
times for implementing interventions (e.g., Carey,
Woelmer, Lofton, et al., 2021, Thomas et al., 2020). Fore-
casts are often made at longer time horizons by propagat-
ing forecasts forward over multiple time steps.
Importantly, the time step of a forecast, or the temporal
frequency of the forecast model output, may also influ-
ence prediction accuracy by representing different pro-
cesses that occur over different time periods. However,
the forecast time step is not generally taken into account
when choosing a forecast model. As a result, finding a
balance between the time horizon at which forecast accu-
racy deteriorates and the time horizon that provides the
most useful decision support tool for managers is a criti-
cal step in advancing ecological forecast applications. For
predictions made further into the future, it remains
unknown whether models that are developed for that
time step perform better than models that simply propa-
gate daily forecasts out to multiple time steps, a focus of
this study.

While the number of phytoplankton forecasts have
increased in recent years, there is still a substantial range
in the time step at which phytoplankton are forecasted
(reviewed by Rousso et al., 2020). A majority of phyto-
plankton forecasts are made using a daily or sub-daily
time step, which is then used to forecast time horizons
ranging from 1 day to 14 days into the future (e.g., Chen
et al., 2015; Kehoe et al., 2019; Loos et al., 2020; Page
et al., 2018; Xiao et al., 2017). Daily or sub-daily forecasts
have variable but reasonable success forecasting non-
bloom dynamics and timing of bloom events, but are
often unable to capture the magnitude of phytoplankton
blooms, resulting in under-prediction (Chen et al., 2015;
Huang et al., 2013; Massoud et al., 2018; Rajaee &
Boroumand, 2015; Recknagel et al., 2016) or over-
prediction (Loos et al., 2020; Mao et al., 2009; Page
et al., 2018) of bloom concentrations. Moreover, these
forecasts may be less accurate at forecasting multiple
days or a week into the future, a lead time that is needed
for drinking water managers to change treatment opera-
tions (e.g., Thomas et al., 2020). In contrast, phytoplank-
ton forecasts that use much longer time steps
(i.e., monthly or seasonal) show relatively high perfor-
mance at predicting both bloom and non-bloom condi-
tions (Manning, Wang, et al., 2019; Park et al., 2019;
Rajaee & Boroumand, 2015), but lose the ability to cap-
ture short-term variability due to the coarseness of their
model time step.

Forecasts on a weekly or fortnightly time step are
comparatively rare (but see Recknagel et al., 2016), and
none that we are aware of which compare the relative

success of prediction at multiple time scales within the
same ecosystem. However, given that most lake and res-
ervoir monitoring programs typically collect weekly or
fortnightly manual phytoplankton samples (Arhonditsis
et al., 2004; Gerling et al., 2016; McGowan et al., 2017;
Read et al., 2015; Wang et al., 2011), developing forecast-
ing workflows on a weekly or fortnightly time step may
be readily available for many waterbodies. In the mean-
time, the few but increasing number of lakes and reser-
voirs that have high-frequency phytoplankton sensors
(e.g., Marcé et al., 2016) provide an ideal test bed for
assessing the performance of phytoplankton forecasting
models that operate on different time steps (sensu
Hamilton et al., 2015).

To examine the effect of model time step on phyto-
plankton forecast skill, we developed !600 days of near-
term, iterative phytoplankton forecasts with quantified
uncertainty for a drinking water reservoir. We made fore-
casts during bloom and non-bloom conditions using
three time series models built on different time steps:
daily, weekly, and fortnightly. To assess the scalability of
our forecasting framework, we adapted the framework
and applied it to an additional drinking water reservoir
to produce 1 year of forecasts and compared the skill of
the forecasts at both sites. We addressed four questions in
this study: (1) How well can we forecast phytoplankton
a) over the entire forecast period, as well as b) under
bloom and non-bloom conditions? (2) What is the effect
of forecast model time step on forecast performance?
(3) How do the major sources of phytoplankton forecast
uncertainty vary with forecast horizon and over time?
And (4) how do forecast skill and uncertainty contribu-
tions change when scaled to an additional study site?

METHODS

Study site

Forecasts were produced for near-surface chlorophyll
a (henceforth “chl a”, a common metric of phytoplank-
ton biomass) at Falling Creek Reservoir (FCR). FCR is a
small (0.119 km2), shallow (maximum depth = 9.3 m),
eutrophic reservoir located in Vinton, Virginia, USA
(37.30" N, 79.84" W, Figure 1). FCR is dimictic, with ther-
mal stratification occurring annually from approximately
May to October (Carey et al., 2019). FCR has a history of
phytoplankton blooms and is primarily fed by one major
upstream tributary that has been monitored with a weir
since 2013 (Gerling et al., 2014, 2016). The reservoir is
owned and operated as a drinking water source by the
Western Virginia Water Authority (WVWA), who par-
tnered with our research team throughout forecast
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development (described by Carey, Woelmer, Lofton,
et al., 2021). This partnership informed several aspects of
our forecasting framework, including the location of the
chl a sensor used for updating forecasts, the time steps of
interest for management decision-making, and forecast
delivery mode. While we note that this study produced
hindcasts (following the definition of Jolliffe &
Stephenson, 2003), we refer to them as forecasts for
consistency.

Forecasting overview

Forecasts of near-surface (!1.0 m depth) chl a at FCR were
produced over the course of !600 days (from 2 January
2019 to 15 August 2020) using daily, weekly, and fortnightly
autoregressive (AR) linear models developed using observa-
tional sensor data from FCR. For each forecast, model
driver and validation data were collected via automated sen-
sors at the study site and wirelessly uploaded to an online
data repository using secure sensor gateways (Figure 2: Step
(1). At each model time step, new data up to the day being
forecasted were appended to the historical training data set
and used to re-parameterize the AR models (Figure 2: Steps
(2–3). Forecasted model driver data included shortwave
radiation and forecasted discharge to the reservoir from the
major inflow. Shortwave forecasts were downloaded from
the National Atmospheric and Oceanic Administration
Global Ensemble Forecasts System (NOAA GEFS) reposi-
tory. Forecasts of future discharge were modeled using
observed sensor discharge measurements on the inflow at
FCR and NOAA forecasted precipitation as inputs (see
Thomas et al., 2020 for a detailed description) (Figure 2:
Step (4). Uncertainty was propagated for four different
uncertainty types (process, initial condition, parameter, and
driver data, see Table 1 for definitions) (Figure 2: Step 5).

We generated probabilistic daily forecasts that had a
1-day, 2-day, 3-day, … up to 14-day time horizon, weekly
forecasts that had a 1-week and 2-week (i.e., 7-day and
14-day) time horizon, and fortnightly forecasts that had a
2-week time horizon (i.e., 14-day; Figure 2: Step 6). Thus,
to summarize, there were 14 forecast horizons for the
daily model, two horizons for the weekly model, and one
horizon for the fortnightly model. To develop and run
our forecast models, we used a combination of linear
parametric and Bayesian statistical methods. We used
parametric linear model selection on historical data to
select model covariates and initial parameter values (see
Model development and training). To produce forecasts,
we applied our model in a Bayesian framework (see
Bayesian forecasting framework).

All driver data are published in the Environmental Data
Initiative (EDI) repository (Carey, Breef-Pilz, Bookout et al.,
2021, Carey, Hounshell, Lofton et al., 2021, Carey, Lewis
McClure et al., 2021, Carey, Woelmer, Lewis et al., 2021)
and all forecast output and code is available in Zenodo
(https://doi.org/DOI:10.5281/zenodo.5963867).

Reservoir monitoring data set overview

Our research team has monitored physical, chemical,
and biological conditions at FCR since 2013. This long-
term data set was used to develop and train the AR

F I GURE 1 Map of Falling Creek reservoir, Vinton, VA, USA
(37.30" N, 79.84" W) study site showing locations of the weir,
meteorological station, and chl a sensor. Forecasts were generated
for the location where chl a measurements were collected.
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models prior to the beginning of the forecast period and
includes manual and automated sensor measurements of
chl a at the deepest site of the reservoir, meteorological
variables from a meteorological station on the dam of the
reservoir, and sensor measurements of discharge at the

major inflow stream to the reservoir (Figure 1; see
Appendix S1: Section S1 for more details on each of these
data sets). Because sampling primarily occurred from
May to October in 2013–2016, we began running our
models during the second week of May so that

F I GURE 2 Summarized workflow for development of forecasts, from data acquisition and quality assurance/quality control (QAQC)
(Step 1), assimilation of new data (Step 2), refitting of the model with new observations (Step 3), acquisition and processing of model driver
data (Step 4), quantification of uncertainty sources (Step 5), and production of forecasts (Step 6). This process occurs once a day for each
forecast model (daily, weekly, fortnightly). NOAA GEFS refers to the National Atmospheric and Oceanic Administration Global Ensemble
Forecasts System.
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observations in the first week of May served as the AR
lag, not the October observations.

Model development and training

We used standard linear model selection techniques
(Appendix S1: Section S2) to select covariates for the AR
models (following Box & Jenkins, 1970; Quinn &
Keough, 2002) for forecasting surface chl a (1.0 m) using
the monitoring data set described in Appendix S1: Sec-
tion S1. We chose an autoregressive linear model to cap-
ture the high temporal autocorrelation common in
phytoplankton, as was demonstrated in our data set
(Appendix S1: Figure S4). While this model is relatively
simple in its representation of phytoplankton dynamics,
we wanted to test the ability of a data-driven model that
was easy to implement for examining the effect of differ-
ent model time steps and horizons at multiple sites, fol-
lowing numerous previous phytoplankton predictive
studies (Rousso et al., 2020).

We used a weekly data set of surface chl a from 2013 to
2016 to select covariates for our AR model. We chose the
weekly data set, as opposed to the daily data set, because it
had the longest historical data coverage, dating back to
2013, whereas the daily data set only began in summer
2018. When developing our linear model, we aimed to meet
the assumptions that variables are normally distributed and
found that square-root transformation of our chlorophyll
data led to a better fit of normality than log-transformation.
Meteorological and discharge data were aggregated to daily
summaries (mean, median, maximum, and minimum) on
the same day as the chl a observations. Any weeks with
missing data from May to October over the 4 years (n = 18
out of 107 weeks total) were linearly interpolated using the
na.approx() function in the zoo package (Zeileis &
Grothendieck, 2005) to allow for a consistent time interval
in the training data. To determine the influence of these lin-
early interpolated training data points on model perfor-
mance, we conducted an identical model analysis using
only observed data without interpolated data points, which
showed no substantial change in model accuracy
(Appendix S1: Figure S1). Variables that did not follow a
normal distribution were transformed to meet the assump-
tions of a linear model (Appendix S1: Table S2). Our best-
performing weekly model (which also serves as the process
model for our Bayesian analysis) was

Ctþn ¼ β1þβ2Ctþβ3Stþnþβ4DtþnþƐ ð1Þ

Where Ct is the AR term or mean daily chl a at the cur-
rent time, t. The response, Ctþn, is the mean daily chl
a concentration at the forecasted time horizon, n days in

the future, where n is the time step at each time horizon
of the model (e.g., n = 1–14 days for daily forecasts, 7 and
14 days for weekly forecasts, and 14 days for fortnightly
forecasts). Stþn is the mean daily shortwave on the next
time horizon, and Dtþn is the mean daily discharge on
the next time horizon. Ɛ is normally distributed random
noise with mean = 0 and SD of σ. Parameter (β1, β2, β3,
and β4Þ, and process error standard deviation (σ) values
from the linear model fitting were used as initial parame-
ter values in a Markov Chain Monte Carlo simulation
when forecasting (see Bayesian forecasting framework for
more details).

Given that the model drivers likely have varying
effects on phytoplankton at different time scales, we per-
formed the model selection analysis separately for the
daily and fortnightly data sets to determine if the same
covariates would be significant for the different time
scales. We found that, for both the fortnightly and daily
data sets, the same model (covariates of mean shortwave
radiation and mean discharge) was within two AICc units
(Akaike information criterion corrected for sample size)
of the top model (Appendix S1: Tables S6–S8), indicating
a similar model performance (Burnham &
Anderson, 2002). Therefore, we used the same weekly
model covariates (an AR term, shortwave radiation, and
discharge) for all model time steps (daily, weekly, fort-
nightly) in our forecast analysis.

To examine the influence of drivers averaged over
daily to weekly scales, we developed models using drivers
that were cumulatively averaged over a week compared
to drivers which were point estimates on the day of the
forecast. We found little difference in the effect of model
prediction accuracy (Appendix S1: Figure S2). Thus, the
results presented here use driver data that are forecasted
or observed on the day being predicted.

Although the data sets used to develop AR forecasts
spanned different durations and temporal resolutions
(Appendix S1: Table S2), we used a similar number of
observations to train all models with differing time steps
to enable comparability of model forecast performance
when logistically possible. Due to data availability, the
training data set for the daily chl a models ranged from
15 August 2018 to 15 December 2018 (n = 110 observa-
tions), while the weekly and fortnightly data set ranged
from May to October each year in 2013–2016
(n = 107 weekly observations and n = 53 fortnightly
observations).

Bayesian forecasting framework

Using the model covariates selected from the weekly
training data set (mean shortwave radiation and mean
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discharge) and initial parameter values, we used a Bayes-
ian framework to fit distributions for model parameters
on each forecast day for the daily, weekly, and fortnightly
models following the workflow outlined in Figure 2, Step
2a. This fitting occurred iteratively on every day in which
a forecast was produced. Forecasts were produced and
evaluated from 2 January 2019 to 15 August 2020 (hereaf-
ter, the full forecast period) for all forecast models.

Our state-space Bayesian model followed the same
form as Equation 1), except with the process model and
data model separated to allow the partitioning of model
process and observation uncertainty. The process
model was:

Clatent
tþn ~ normal β1þβ2Clatent

t þβ3Stþnþβ3Dtþn,σadd
! "

ð2Þ

with the following data model:

ytþn ~ normal Clatent
tþn ,σobs

! "
ð3Þ

where σadd and σobs are the standard deviation parame-
ters describing normally distributed additive process
uncertainty and normally distributed observation uncer-
tainty, respectively. y are the observations and Clatent

t are
the latent states that represent the modeled distribution
before observation noise is added. All other parameters
are the same as described above in Equation 1). We used
uninformative priors for the β1, β2, β3, and β4 parameters
by assuming normal distributions with large standard
deviations:

βi ~ normal 0,1000ð Þ: ð4Þ

Similarly, σadd had an uninformative prior with a uni-
form distribution:

σadd ~ uniform 0:001,100ð Þ: ð5Þ

The parameter σobs was a constant that was estimated
using the standard deviation of a linear regression
between our two sensor data sets of chl a derived from
the CTD chl a and EXO chl a (Appendix S1: Section S3).

To estimate posterior distributions, we ran four Mar-
kov Chain Monte Carlo (MCMC) chains, with an adapta-
tion period of 1000 iterations, a burn-in period of 1000
iterations, and a sample size of 10,000 iterations. Initial
starting values for each parameter were taken from the
linear model fit for each parameter value (see Model
development and training). The latent state was initialized
using the first observation in the training data set, and

the MCMC was run using all data up to the day being
forecasted. The posterior output from the MCMC distri-
bution for all parameters and latent states were saved as
inputs to the forecast model to quantify uncertainty
(Figure 2, Step 5). MCMC chains were assessed for con-
vergence using the potential scale reduction factor of the
Gelman-Rubin statistic (R^). All R^ values for all parame-
ters in all forecast models were 1 or 1.01, indicating that
the model had converged on a parameter estimate both
within and among MCMC chains.

Observed model driver and validation data were auto-
matically uploaded to a GitHub repository in real-time
(Figure 2, Step 1) (https://github.com/FLARE-forecast/
FCRE-data) and added (or assimilated) into the training
data set for fitting model parameter distributions in the
Bayesian framework (Figure 2, Step 2). New data were
assimilated according to the time step of the model
(i.e., daily, weekly or fortnightly). All models (daily,
weekly, and fortnightly) were re-fit using the entire data
set (including training data) up to the day being forecast
using MCMC (Figure 2, Step 3) methods for each forecast
day to allow the parameter values to evolve over time.
MCMC analyses were carried out using the rjags package
(Plummer, 2019) within the R statistical environment.
For each forecast model and for every forecast run, we
estimated the posterior distributions of parameters using
MCMC, then sampled the posterior distributions of
parameters, process error, and latent states to combine
with forecasted driver variables to produce forecasts of
chl a at each forecast horizon.

Forecast evaluation

To address Q1, we evaluated our forecasts’ performance
post-hoc for three time periods: (1) the entire !600-day
period during which multiple forecasts were produced at
FCR, (2) non-bloom conditions, and (3) bloom condi-
tions. Bloom conditions were determined as any time
when observed chl a concentrations were above a bloom
threshold. The threshold for bloom conditions was deter-
mined as four times the SD of historical chl a at FCR
from CTD chl a data set (17.1 μg/L; Carey et al., 2019).
We chose four SDs as our threshold, rather than three
SDs (e.g., Healy, 1979), because of the high-frequency
nature of our sensor data, which may increase the likeli-
hood of outliers due to sensor fouling and phytoplankton
quenching (Hamilton et al., 2010; McBride & Rose, 2018;
Rousso et al., 2021). Forecasts were evaluated as occur-
ring under bloom conditions any time the observed chl
a was above this threshold on the day the forecast was
initiated or any days when chl a was above this threshold
within the 14-day forecast horizon. We included this
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second set of days in order to evaluate anticipatory pre-
dictions of bloom conditions before they occurred. Fore-
cast performance over time was calculated for all three of
these periods using root mean squared error (RMSE).

We also quantified the performance of our forecasts
relative to a null persistence forecast (following Harris
et al., 2018). A null persistence model assumes that the
chl a concentration at the next time step is the same as
the current time step while accounting for process error
and observation uncertainty. The null forecast was fit for
each forecast day in rjags using a random walk MCMC
simulation following the same methods as described in
Methods: Bayesian forecasting framework in which pro-
cess error was estimated and observation uncertainty was
calculated by sampling from a normal distribution
around the observed chl a concentration (SD = 0.21,
Appendix S1: Section S3).To create an ensemble null
forecast, we randomly sampled 441 times from the distri-
bution of predicted chl a for each forecast day. For RMSE
statistics, the mean of all ensembles was used.

Last, to address Q2, we performed the same forecast
evaluation as above and compared the relative skill of
our forecast models across matching forecast horizons
(e.g., we compared daily forecasts to weekly forecasts at
the 7-day horizons, and daily, weekly, and fortnightly
forecasts at the 14-day horizon).

Uncertainty quantification and
partitioning (Step 5 in Figure 2)

To address Q3, we quantified total uncertainty in all fore-
casts and partitioned uncertainty among the individual
sources (process, initial condition, parameter, and driver
data, Table 1) using a separate post-hoc analysis
(Figure 2, Step 5). All sources of uncertainty were
included in each forecast (Figure 2, Step 6). We chose
441 ensembles by multiplying the 21 NOAA GEFS
ensembles by 21 discharge forecast ensembles. The
resulting number of 441 ensembles was both within the
constraints of computational abilities and large enough
to allow for a reasonable spread of uncertainty. Further,
441 ensembles was below the effective sample size of all
parameters within the MCMC chain, and therefore an
appropriate number of samples to pull from the posterior
distributions (Appendix S1: Table S9).

To quantify initial condition and parameter uncer-
tainty, we sampled a randomly selected index from the
joint posterior distributions of the latent state and param-
eter distributions, respectively, 441 times. Similarly, pro-
cess error was estimated using a normal distribution with
a mean of zero and a SD sampled from the MCMC poste-
rior distribution of σadd (Equation 5) for each of the

441 ensemble members. Meteorological driver data
uncertainty was estimated by running the forecasts with
the 21 unique NOAA GEFS meteorological forecasts,
looping through the 21 ensembles for all 441 forecast
ensemble members. Because the NOAA GEFS forecasts
were statistically downscaled from regional forecasts to
our study location (see Thomas et al., 2020 for methods),
there is inherent uncertainty in downscaling, although
we did not quantify its contribution in this study. Dis-
charge driver data uncertainty was estimated by ran-
domly sampling from a normal distribution around the
discharge forecast for each ensemble member, where the
normal distribution was defined using the discharge fore-
cast estimate as the mean and the standard deviation of
the residuals of the linear model between observed and
forecasted discharge as the standard deviation in the nor-
mal distribution (following Thomas et al., 2020). To parti-
tion the relative contributions of uncertainty sources
through time, we performed a post-hoc uncertainty anal-
ysis conducted for all forecast models. We quantified
each individual source of uncertainty by propagating only
that source, using the methods described above, while
removing the contribution of the other sources for each
week forecast (daily, weekly, and fortnightly). In the
analysis, initial condition uncertainty was removed by
initializing the forecast using the mean value of the pos-
terior distribution of the latent state of chl a, parameter
uncertainty was removed by using the mean values of the
posterior parameter distribution, process uncertainty was
removed by not adding any process uncertainty (i.e., not
sampling from the normal distribution describing model
error), meteorological uncertainty was removed by using
only one of the members from the weather forecast
ensemble, and discharge uncertainty was removed by not
sampling from the normal distribution describing error
in the discharge model. The proportion of variance in the
forecast output for each uncertainty source relative to
total variance summed across all sources was then calcu-
lated over the forecast period and for each forecast
horizon.

Forecast scalability to new locations

To address Q4 and test the scalability of our forecasting
framework to other locations, we produced forecasts at
an additional drinking water reservoir, Beaverdam Reser-
voir (BVR). BVR is also located in Vinton, Virginia
(37.31, '79.82) and is owned and operated by the WVWA
(Appendix S1: Figure S3). BVR is slightly larger
(0.39 km2) and deeper (13.0 m maximum depth) than
FCR and is fed by numerous small inflow streams. Dis-
charge in two of the largest contributing inflows has been
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sampled occasionally, allowing us to produce modeled
estimates of inflow discharge to the reservoir. Like FCR,
BVR is dimictic with thermal stratification occurring
annually from approximately May through October
(Carey et al., 2019). BVR has a history of deep-water phy-
toplankton blooms (Hamre et al., 2018), but has overall
lower phytoplankton concentrations at the surface than
FCR, allowing for a novel comparison between forecasts
of surface phytoplankton in a system with lower surface
phytoplankton concentrations (FCR historical median
chl a, 5.4 μg/L; BVR historical median chl a, 3.4 μg/L).
Because the aim of this analysis was to assess the scal-
ability of our forecasting framework to a new site, we
chose to use only the weekly model of our three (daily,
weekly, fortnightly) forecast model timesteps at BVR, as
it was the intermediate option of the three and provided
training data dating back to 2013.

Moreover, BVR is an ideal test case for our scalability
analysis due to its availability of data streams for apply-
ing our forecasting model. In August 2020, an EXO sonde
collecting chl a fluorescence data was installed at the sur-
face (!1.5 m) of BVR (Carey, Breef-Pilz, & Book-
out, 2021). Because of its proximity to FCR, we used the
same observational meteorological data (daily mean
shortwave radiation) for model training, and NOAA
GEFS forecasts of shortwave radiation to drive the
forecasts.

Producing estimates of inflow to BVR was slightly
more challenging than in FCR because the reservoir’s
inflows have not been routinely monitored, nor is there
a high-frequency sensor measuring discharge into the
reservoir. However, we used a publicly available water-
shed model, the Thornthwaite-Mather Water Balance
(TWMB) model (see Appendix S1: Section S4 for a full
description), coupled with observed soil characteristic
data (Soil Survey Staff, 2021), and observed precipita-
tion and air temperature from our meteorological sta-
tion to model daily inflow rates to BVR over the
training period (2013–2016). When producing forecasts
of discharge at BVR, we used NOAA GEFS forecasts of
daily precipitation and air temperature to drive the
TWMB model.

In summary, to produce weekly forecasts of chl a at
BVR, we followed the same framework as at FCR (see
Methods: Forecasting Framework), resulting in 1-week
and 2-week forecasts every day from 1 August 2020 to
31 August 2021. On each day a forecast was made, all
available observational data up to the day being fore-
casted were used to fit the model in a Bayesian frame-
work. We then used forecasts of shortwave radiation
from NOAA GEFS, as well as NOAA GEFS forecasts of
precipitation to drive the TWMB inflow model, to drive
our chl a forecasts. Additionally, we produced 1-week

and 2-week forecasts at FCR over this same period and
conducted a full uncertainty analysis for both FCR and
BVR to compare the relative performance of the forecast
model at both sites.

RESULTS

Observed chl a patterns during study
period

Chl a exhibited substantial variability over the forecast
period, which included two blooms in July 2019 and
March–April 2020 and rapid declines due to two copper
sulfate dosing events in February and March 2019
(Appendix S1: Figure S4). Observed chl a over the forecast
period exhibited a median chl a concentration of 7.3 (
7.2 μg/L (mean ( SD), and a maximum concentration of
55.7 μg/L, which occurred during the July 2019 bloom. The
magnitude of this large bloom greatly exceeded any previous
surface bloom recorded by chl a sensors in the reservoir
(Appendix S1: Figure S4). For comparison, the training data
set from May to October of 2013–2016 had a slightly lower
median concentration of 4.9 ( 4.3 μg/L, and the highest
recorded bloom during this period was 24.2 μg/L in October
2014 (Appendix S1: Figure S4). Further, the two blooms that
occurred during the forecast period exhibited different pat-
terns. The 2019 bloom lasted from 17 July to 5 August 2019,
whereas the 2020 bloom lasted intermittently from 16 March
to 23 April 2020 and was much more variable in concentra-
tion (Appendix S1: Figure S4).

The reservoir was actively managed as a drinking
water supply during the forecast period and was treated
with copper sulfate twice in 2019 to reduce phytoplankton
concentrations. Managers added 200 lbs (90.7 kg) of cop-
per sulfate on 28 February 2019 and 100 lbs (45.4 kg) on
20 March 2019, effectively decreasing chl a concentrations
to !0 μg/L on both days. These time periods were
excluded from subsequent analyses because they are not
an ecological phenomenon instantiated in the model and
thus could not have been predicted.

Q1a: Forecasts over the full !600-day
forecast period

Aggregated over the entire forecast period, daily, weekly,
and fortnightly forecasts predicted non-bloom chl
a dynamics with consistent accuracy (Figure 3), although
bloom events were predicted with variable accuracy.
Daily forecasts never outperformed a daily null model,
but weekly and fortnightly forecasts performed better or
the same as their respective null models (Figure 4a).

ECOLOGICAL APPLICATIONS 9 of 22
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Daily forecasts at a 1-day horizon over the entire fore-
cast period recreated observed dynamics with an overall
RMSE of 3.9 μg/L (Figure 3, Appendix S1: Table S10), less
than the observed historical standard deviation in chl
a in this system (4.3 μg/L), a range of error that should
still allow managers to make decisions with confidence.
However, daily forecasts at the 1-day horizon did not per-
form better than the null model, which also had a lower
RMSE (2.8 μg/L) than the historical standard deviation
(Figure 4a, Appendix S1: Table S10). Weekly forecasts
predicted chl a with an RMSE of 6.1 μg/L 7 days ahead
and an RMSE of 6.8 μg/L at 14 days ahead (Figure 3,
Appendix S1: Table S10), outperforming the null model
at both forecast horizons (Figure 4a). Similarly, fort-
nightly forecasts also outperformed the null model at the
14-day horizon, with an RMSE of 7.0 μg/L, compared to
7.9 μg/L for the null model (Figure 4a, Appendix S1:
Table S10).

Based on AR model selection, our forecasts were
driven by covariates of shortwave radiation and

discharge into the reservoir. Both discharge and short-
wave showed a negative relationship with chl a in all
forecast models, although the coefficients showed some
variation in magnitude over time. In contrast, the AR
chl a coefficient, intercept, and error term all remained
positive throughout the forecast period, although their
magnitude varied (Appendix S1: Figures S6–S8). The
parameter values for the environmental predictors (solar
radiation, discharge) were much higher in the weekly
forecasts than daily, and slightly higher in the fort-
nightly forecasts than the weekly forecasts, indicating
that solar radiation and discharge were stronger predic-
tors of chl a at longer time horizons. In contrast, the AR
chl a coefficient showed the opposite trend (higher in
daily forecasts, and lower in weekly and fortnightly).
This pattern indicates that daily forecasts are much
more sensitive to the AR chl a term than to environ-
mental predictors, while weekly and fortnightly fore-
casts have more weight on the environmental predictors
relative to daily forecasts.

F I GURE 3 Forecasted (black line) and observed (points) chl a concentrations over !600 days from daily (blue, panels [a]–[c]), weekly
(green, panel [d]–[e]), and fortnightly (purple, panel [f]) forecasts; the columns are grouped by forecast horizon, at 1 day (left column),
7 days (middle column), and 14 days (right column). The black lines show the mean of 441 forecast ensembles, and the gray shaded area
gives the 95% confidence intervals of the forecast ensembles. Please note the differences in axes among panels.
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Q1b: Forecasts during non-bloom versus
bloom conditions

Forecast performance was consistently and substantially
higher during non-bloom than bloom conditions
(Figure 4b vs. 4c). During non-bloom conditions, daily

forecasts still did not outperform the null model but at
least had similar performance as the null until the 9-day
forecast horizon (Figure 4b). In contrast, weekly and fort-
nightly forecasts were quite accurate under non-bloom
conditions and outperformed the null persistence models
at all forecast horizons (Figure 4b), with an overall RMSE
of 3.5 μg/L at the 7-day horizon and 3.1 μg/L at the
14-day horizon for weekly forecasts (Figure 4b) and
2.8 μg/L at the 14-day horizon for fortnightly forecasts
(Appendix S1: Table S10).

In contrast, forecasts of blooms did not consistently
outperform null forecasts. Bloom conditions were rare
and occurred over 19 days during July and August
2019 and intermittently over a period of 25 days in
March and April 2020, for a total of 44 out of 590 days,
or 7.5% of the forecast period. During these bloom
periods, daily forecasts always performed worse than
the null model (Figure 4c, Appendix S1: Table S10),
and weekly and fortnightly forecasts performed the
same or worse than the null model. Further, forecast
accuracy appreciably decreased during blooms, with
RMSE values ranging from 12 μg/L at the 1-day fore-
cast horizon to 23.8 μg/L for fortnightly forecasts at the
14-day horizon (Appendix S1: Table S10).

Forecast performance was markedly different
between the July 2019 and March/April 2020 blooms
(Figure 3). For the July 2019 bloom, daily forecasts were
able to predict the magnitude of the bloom at all forecast
horizons, but only accurately predicted the timing of the
bloom at a 1-day horizon (Figure 3a–c). At 7-day and
14-day horizons, peak chl a predictions highly exceeded
the observed magnitude of the bloom, and were predicted
only after the observed event occurred, with very large
uncertainty. In contrast, during the smaller, less persis-
tent bloom that occurred in March–April of 2020, daily
forecasts were able to predict both bloom magnitude and
timing.

In contrast to daily forecasts, weekly forecasts did
not successfully predict the magnitude of observed chl
a concentration for the July 2019 bloom, with peak
values being much lower than observed chl
a concentrations (Figure 3d–e). Like the daily forecasts,
weekly forecasts much more accurately predicted the
timing and magnitude of the March–April 2020 bloom,
with observed concentrations falling within the confi-
dence intervals of the forecast ensemble for almost all
7-day forecasts and 14-day forecasts.

Fortnightly forecasts underpredicted the magnitude
and did not predict the timing of the July 2019 bloom
(Figure 3e). However, the forecast performed much better
during the March–April 2020 bloom, with only a few
days of observed concentrations falling outside of the
confidence intervals of the forecast.

F I GURE 4 RMSE (root mean squared error) across 1–14-day
forecast horizons for daily, weekly, and fortnightly forecasts and
respective null models aggregated over (a) the full !600 day
forecast period, (b) non-bloom conditions only, and (c) bloom
conditions only. Note the different y-axis scale in panel (c).
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Q2: Effect of model time step on forecast
performance

There was a consistent trend in the effect of model time
step on forecast performance, as determined by compar-
ing the forecasts generated by multiple forecast models
(daily, weekly, fortnightly) at the 7-day and 14-day time
horizons. Weekly and fortnightly forecasts consistently
outperformed daily forecasts, a trend that increased with
forecast horizon except during bloom conditions
(Figure 4). Over the full forecast period, the weekly and
fortnightly forecasts had a >5 μg/L improvement in
RMSE over the daily model at the 14-day forecast horizon
(Figure 4a, Appendix S1: Table S10). However, the effect
of model time step was not as pronounced between the
weekly and fortnightly models, with weekly forecasts
sometimes only slightly outperforming fortnightly fore-
casts (e.g., Figure 4a vs. 4c).

Q3: Uncertainty partitioning analysis

Process error was the dominant source of uncertainty at
all forecast horizons for all forecast models, except for the
1-day forecast horizon, which had initial condition uncer-
tainty as the dominant source (Figure 5, Appendix S1:
Figure S9). The relative contributions of the different
uncertainty sources varied over time for all forecast
models (Figure 5). Process error remained the dominant
source of uncertainty for most of the forecast period at all
horizons greater than 1 day. However, parameter uncer-
tainty increased dramatically during the March 2019 cop-
per sulfate dosing and the July 2019 and March/April 2020
blooms. During these events, parameter uncertainty
became the dominant source of uncertainty for daily fore-
casts at 7-day and 14-day horizons (Figure 5a,c) and
increased sharply in importance for weekly and fortnightly
forecasts (Figure 5b,d). Meteorological driver data uncer-
tainty was a small contributor to the total uncertainty for
all forecast models but increased in contribution in the late
winter and early spring of 2019 (Figure 5b–d). Discharge
uncertainty made up a very small yet consistent propor-
tion of overall uncertainty throughout the year for all fore-
cast models and was a larger contribution of uncertainty
at the 14-day horizon for all forecasts (Figure 5b,d).

Interestingly, the July 2019 bloom resulted in a
greater increase in parameter uncertainty and total fore-
cast uncertainty than the March/April 2020 bloom
(Figure 5). The increase in both parameter and total
uncertainty in July 2019 was much larger for daily fore-
casts than for weekly or fortnightly forecasts. In particu-
lar, total variance increased by over seven-fold for the
daily model at the 14-day forecast horizon during the July

2019 bloom. Total variance also increased during copper
sulfate dosing events (late February and March) although
this increase was much smaller for weekly forecasts than
for daily forecasts (Figure 5a,c).

Q4: Forecast scalability to new locations

Our forecast model framework was successfully scaled
from FCR to BVR, producing weekly forecasts of sur-
face chl a at both sites from August 2020–August
2021. Forecasts at BVR matched well with observed
chl a at both the 1-week and 2-week horizon
(RMSE = 2.44 μg/L; 3.07 μg/L, respectively), with a
small decline in performance up to the 2-week forecast
horizon (Figure 6a,b). All forecasts at BVR showed
very high uncertainty around the forecast mean
throughout the forecast time period. Forecasts of chl
a at FCR over the same time period (RMSE = 5.36 μg/
L; 5.16 μg/L) were less accurate but had lower overall
uncertainty (Figure 6c,d).

While process uncertainty is still by far the largest
contributor of overall uncertainty (Figure 7) in forecasts
for FCR and BVR, parameter uncertainty had a higher
contribution in BVR than in FCR. Additionally, while
the overall contribution is much lower, both BVR and
FCR show a slight increase in weather driver uncer-
tainty over the late spring to mid-summer time period
(!February to August). Discharge driver uncertainty
remained a very small contribution to overall uncer-
tainty in FCR but was negligible in BVR. Total variance
between the two sites was similar at both 1-week and
2-week forecast horizons.

DISCUSSION

While the number of ecological forecasts is increasing
(Lewis et al., 2021; Luo et al., 2011; Rousso et al., 2020),
many questions remain regarding the appropriate time
scale at which to develop ecological models for forecast-
ing and management applications, the time horizon and
conditions under which ecological variables are predict-
able, the major sources of uncertainty in forecasts, and
their scalability across waterbodies (Clark et al., 2001;
Dietze et al., 2018; Petchey et al., 2015). Our work indi-
cates that forecast accuracy varies with model time step
and forecast horizon, and that weekly and fortnightly
chl a forecast models can outperform null estimates
under most conditions. Importantly, our work also
shows that sources of uncertainty, as well as forecast
accuracy, do not remain constant through time, and that
examining changes in uncertainty can elucidate
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mechanisms behind changes in forecast performance
(e.g., during bloom conditions when parameter uncer-
tainty increases and forecast skill decreases). Further,
we show that our forecasting framework can produce

accurate forecasts when scaled to another site. Alto-
gether, our study advances understanding of forecasting
phytoplankton dynamics in aquatic systems and adds to
the growing body of work regarding the forecastability

F I GURE 5 Relative proportion of forecast variance (uncertainty) over the forecast period (left y-axis) for (a) daily forecasts at 1 day,
(b) daily forecasts at 7 days, (c) daily forecasts at 14 days, (d) weekly forecasts at 7 days, and (e) weekly forecasts at 14 days, and (f)
fortnightly forecasts at 14 days. The black line represents the total variance over the forecasting time period (right y-axis).
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of rare, short-lived events (such as blooms) in ecological
systems broadly, which we explore below.

Importance of the forecast model time step

Forecast performance differed with model time step and
horizon (Figure 4), demonstrating that both are impor-
tant considerations when choosing a forecast model. For
the entire !600-day forecast period (i.e., primarily non-
bloom conditions), both weekly and fortnightly forecasts
outperformed daily forecasts at all horizons, indicating
that forecast accuracy depends on the time step of your
model. Specifically, our study shows that tuning a fore-
cast model to a longer time step may produce better fore-
casts than propagating a daily model to multiple
horizons. In practical terms, this indicates that if you are
aiming to forecast conditions in 1 week, rather than in
1 day, forecast performance may be improved by creating
a model at the weekly timestep. Interestingly, fortnightly
forecasts did not outperform weekly forecasts, which may
be due to a saturating effect of model time step on fore-
cast accuracy in predicting phytoplankton !1 week
ahead. Although phytoplankton are known to quickly
respond to changes on hourly to daily time scales

(Reynolds, 2006), our study demonstrates the benefit of
exploring the relevance of the weekly time scale, a time
period that may be better able to capture slower-moving
processes, such as nutrient delivery from inflow streams
(Liu et al., 2019). Further, weekly to fortnightly lead
times may actually be more useful for management deci-
sions than daily forecasts, providing more time to imple-
ment a water quality intervention, such as ordering
chemicals or filters for water treatment or choosing the
depth of extraction within the reservoir (Carey, Woelmer,
Lofton, et al., 2021).

Forecast skill compared to a null model

All the forecasts performed the same or worse than a null
persistence model during bloom conditions, and only
weekly and fortnightly forecasts outperformed the null
during non-bloom conditions (Figure 4a). Forecasts likely
underperformed compared to a null model during bloom
conditions due to an inability of our forecast models to
accurately replicate the processes occurring during
blooms. While weekly and fortnightly forecast models
were more skilled at predicting changes in phytoplankton
biomass during non-bloom conditions than a null model,

F I GURE 6 Forecasted (black line) and observed (points) chl a concentrations over 1 year at Beaverdam reservoir (panels [a], [b]) and
Falling Creek reservoir (panels [c], [d]) from weekly (green, panel [a], [c]), and fortnightly (purple, panel [b], [d]) forecasts; the columns are
grouped by forecast horizon, at 7 days (left column) and 14 days (right column). The black lines show the mean of 441 forecast ensembles,
and the gray shaded area gives the 95% confidence intervals of the forecast ensembles. Please note the differences in axes among panels.
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the information added by our forecasted covariates was
not sufficient to increase forecast skill over the null
model during bloom conditions.

It is not unusual for phytoplankton forecasts to per-
form similarly or worse than null models, especially at
the daily scale. While many forecasts of phytoplankton
variables do not currently compare forecasts with a null
model (Lewis et al., 2021), those that do report variable
performance, with many showing that forecast skill is
only greater than a null at monthly to yearly forecast
horizons. For example, Park et al. (2019) found that their
forecasts of marine chl a concentrations outperformed a
null model at horizons ranging from 1 month to 1 year.
In contrast, Page et al. (2018) and Kehoe et al. (2019)
both found that their daily phytoplankton forecasts per-
formed similarly or worse than a null persistence model,
in some cases with no improvement as forecast horizon
increased. These two phytoplankton studies support our
findings that daily forecasts did not always perform better
than a null model. However, the variability in null per-
formance across different types of ecological forecasts

(e.g., Harris et al., 2018; Lovenduski et al., 2019; Massoud
et al., 2018; Yeager et al., 2018) underscores the need for
more studies to integrate null models into forecast evalu-
ation metrics (following Harris et al., 2018, Dietze, 2017,
Lewis et al., 2021).

Challenges in forecasting phytoplankton
blooms

There are multiple potential reasons why forecast accu-
racy was much worse during bloom conditions relative to
non-bloom conditions (Figure 4). First, the decrease in
forecast performance may be due to a decrease in auto-
correlation of phytoplankton biomass during blooms,
which result in rapid and steep increases in biomass, as
opposed to non-bloom conditions, when biomass is rela-
tively stable from day to day. Second, our 2013–2016
training data included very few blooms, and even though
blooms did occur in our forecast period, a majority of the
time series remains dominated by non-bloom conditions

F I GURE 7 Relative proportion of forecast variance (uncertainty) for weekly forecasts from August 2020 to August 2021. The top row
shows the uncertainty analysis for Beaverdam Reservoir at 7 days (panel [a]) and 14 days (panel [b]), while the bottom row shows weekly
forecasts for Falling Creek reservoirs over the same time period at 7 days (panel [c]) and 14 days (panel [d]). The colors represent the relative
contribution of each uncertainty source (left y-axis), while the black line represents the total variance over the forecast period (right y-axis).
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(92.5%). This means that the training data set was inher-
ently biased to predicting non-bloom, as opposed to
bloom conditions. Third, the relative importance of pro-
cesses governing phytoplankton populations may change
between bloom and non-bloom conditions (Gray et al.,
2019, Ho et al., 2019, Ho & Michalak, 2019). Altogether,
our work follows many other studies that have also
observed that phytoplankton blooms are notoriously dif-
ficult to predict (e.g., Chen et al., 2015; Huang
et al., 2013; Loos et al., 2020; Massoud et al., 2018;
McGowan et al., 2017; Page et al., 2018; Recknagel
et al., 2016; Rigosi et al., 2011, 2015), and underscore the
need to expand our understanding of phytoplankton
bloom dynamics.

Forecast accuracy differed between the July 2019 and
March/April 2020 bloom events, indicating that phyto-
plankton dynamics during some blooms may be more pre-
dictable than others. It is possible that the differences in
predictive ability between blooms may be because of dif-
ferent phytoplankton taxa underlying the two blooms, but
unfortunately we do not have the data to test this hypothe-
sis (Appendix S1: Section S5). However, all forecast models
better predicted the March/April 2020 bloom than the July
2019 bloom (maximum concentration = 55.7 μg/L), likely
because the March/April 2020 bloom was much lower in
peak concentrations (maximum concentration = 24.2 μg/
L), and lasted a longer period of time, allowing the fore-
casts to adjust to elevated chl a concentrations (see
Appendix S1: Figures S6–S8 show dramatic changes in
parameter values in response to bloom events).

Capturing both the timing of onset and magnitude of
phytoplankton blooms is a critical benchmark of phyto-
plankton forecasts. While daily forecasts at a 1-day hori-
zon recreated both the timing and magnitude of the two
blooms, daily forecasts at time horizons greater than one
day overpredicted the magnitude and missed the timing
of the July 2019 bloom (Figure 3a,b,c). The autoregressive
component of our forecast models likely contributed to
the mismatch in the timing of bloom prediction at longer
time horizons (e.g., Figure 3c). As the model was updated
with the newest observed chl a concentration, the daily
model was able to predict higher concentrations, but only
after concentrations were already elevated. As a result,
the model did not accurately predict the bloom ahead of
time, but only responded to already elevated initial condi-
tions. In contrast, weekly and fortnightly forecasts did
not accurately predict the magnitude or timing of the
July 2019 bloom (Figure 3e–f). Accurately predicting both
the timing and magnitude of blooms has long evaded
phytoplankton research (Chen et al., 2015; Huang
et al., 2013; Loos et al., 2020; Massoud et al., 2018;
McGowan et al., 2017; Page et al., 2018; Recknagel
et al., 2016; Rigosi et al., 2011), with many of these

studies successfully predicting non-bloom conditions
with decreased accuracy during bloom conditions,
highlighting the importance of further understanding the
factors contributing to the onset of phytoplankton
blooms.

Forecast model simplicity

Forecasting phytoplankton using a simple empirical
modeling approach has limitations and benefits. Process-
based approaches (e.g., Loos et al., 2020; Mao et al., 2009;
Page et al., 2018; Xiao et al., 2017) are more likely to sim-
ulate numerous interacting processes, leaning less on his-
torical patterns than empirical approaches (sensu
Poff, 2018). In our case especially, the lack of large
blooms in our training data set (92.5% non-bloom), as
well as the chemical treatment and unnatural eradication
of blooms at our study site, inherently limited the ability
of the empirical model to predict bloom dynamics. How-
ever, even state-of-the-art process-based models often fail
to reproduce phytoplankton dynamics (e.g., Loos
et al., 2020; Page et al., 2018), and numerous studies doc-
ument that simpler models consistently out-perform
more complicated models, especially when used in pre-
dictive applications (Chevalier & Knape, 2020; Rousso
et al., 2020; Ward et al., 2014; Wood et al., 2020). Further,
using covariates that are readily predictable is crucial for
forecasting applications, making simpler models with
fewer covariates easier to convert from explanatory to
predictive applications. Similarly, process-based forecasts
such as Loos et al. (2020) and Page et al. (2018) require
repeated updating of model states such as nutrient con-
centrations and phytoplankton functional groups. In lieu
of frequent observations, these studies have to rely on
model simulations to estimate these states.

Last, while our forecast model does not provide a
direct explanation of mechanisms driving phytoplankton
dynamics, our model selection procedure identifies
covariates that are both readily forecastable and improve
forecasts of phytoplankton over other simple models such
as a null persistence model. Ultimately, a more balanced
approach that leverages both empirical and process-based
approaches may help to expand our predictive ability in
phytoplankton ecology (e.g., Buckley et al., 2018; Briscoe
et al., 2019; Read et al., 2019; Geary et al., 2020).

Forecast uncertainty

Uncertainty partitioning analyses can increase under-
standing of the mechanisms that drive overall forecast
uncertainty, ultimately leading to improvement in
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forecast skill (Dietze, 2017; Harris et al., 2018). At all
forecast horizons >1 day, forecast uncertainty was domi-
nated by process uncertainty, indicating that a better
understanding of the mechanisms driving phytoplankton
dynamics is critical to improving future forecasts. How-
ever, under bloom conditions (e.g., July 2019), parameter
uncertainty increased substantially, likely an indication that
parameter distributions were not inclusive of values that
could accurately recreate bloom dynamics (Appendix S1:
Figures S6–S8). Importantly, the increase in parameter
uncertainty may be inherently linked to process uncer-
tainty, given that the parameter values in our linear model
were not able to reflect the abrupt changes in phytoplank-
ton biomass, which may be better addressed by employing
a different model structure entirely (e.g., exponential
growth, see Rousso et al., 2020). Forecasts at BVR also
exhibit high parameter uncertainty. To the best of our
knowledge, it is not common for parameter uncertainty to
be a dominant source of uncertainty in phytoplankton fore-
casts, although many phytoplankton forecasts do not specif-
ically quantify this uncertainty source at all. Two other
studies found parameter uncertainty dominated in forecasts
of red pine growth and snow geese populations (Gertner
et al., 1996, Gauthier et al., 2016, respectively), although
both studies used process-based models.

Despite many forecasting studies citing driver uncer-
tainty as the dominant source of uncertainty (Dietze, 2017;
Jiang et al., 2018; Mbogga et al., 2010; Thomas
et al., 2020), we found that driver uncertainty (meteorolog-
ical and discharge) contributed only a very small portion
of forecast uncertainty. While the contribution of meteoro-
logical driver uncertainty varied throughout the year
(Figure 5), it only contributed a very small fraction of total
uncertainty, despite that we used the same weather data
forecast product (NOAA GEFS) as other studies.

Overall, our uncertainty analysis demonstrates that
the dominant sources of uncertainty in phytoplankton
forecasts may be different under bloom vs. non-bloom
conditions, but that until process uncertainty is ade-
quately constrained, other sources of uncertainty may
contribute a minimal proportion of overall uncertainty.
As a result, focusing efforts on improving process repre-
sentation of bloom and non-bloom dynamics must be a
priority before improvements to driver or initial condi-
tion uncertainty can be expected to substantially improve
forecasts.

Forecast scalability

Our scalability analysis showed that forecast performance
remained high when applying the same forecast model
and uncertainty structure in a new waterbody. Over a full

year, forecasts at BVR accurately predicted chl
a concentrations within 2.44 μg/L (RMSE) 1 week ahead,
a promising result suggesting that autoregressive models
can be readily applied in new systems. Despite the high
performance of the forecast mean when compared to
observational chl a, overall forecast uncertainty bounds
were higher than in forecasts produced for FCR over this
same time period. This is due to increased process and
parameter uncertainty, likely an indication that
covariates in the autoregressive model selected for FCR
may not be appropriate for BVR, which has distinct phy-
toplankton and hydrological dynamics (e.g., Hamre
et al., 2017, 2018). Over the forecasted time period in
BVR, we did not see any major bloom events, providing
limited support for examining how our forecast model
performs under bloom conditions specifically. Addition-
ally, BVR has numerous inflow streams, as opposed to a
single primary inflow at FCR, which may lessen the
importance of discharge as a driver for BVR’s phyto-
plankton dynamics. Indeed, our uncertainty analysis
between BVR and FCR showed that parameter uncer-
tainty was higher in BVR than FCR, and that process
uncertainty was dominant for both reservoirs, providing
support for our hypothesis that different predictors may
be important in BVR than in FCR.

Our scalability analysis indicates that our forecasting
framework can be successfully transferred to other
waterbodies. When scaling this framework to other sites,
we recommend developing unique autoregressive models
(with full model selection) for individual study sites to
determine which covariates are most informative to driv-
ing dynamics in individual ecosystems. In lieu of long-
term, high-frequency data streams for drivers such as
inflow discharge, we demonstrate an application that
uses freely available model structures (e.g., the TWMB
model) that can use available data to estimate the neces-
sary data streams. Other examples include using nation-
ally available meteorological data products such as
NLDAS or USGS stream gauge data. Overall, our scalabil-
ity analysis is promising for expanding forecasting frame-
works beyond a single system.

CONCLUSIONS

Our forecasting system successfully predicted phyto-
plankton biomass at multiple time scales over the course
of !600 days, requiring only two driver data streams and
as little as 5 months training data. Our forecasting system
highlights the feasibility of producing ecological forecasts
that leverage historical monitoring data sets and forecast-
able model covariates at multiple sites, as well as the
value of performing a formal uncertainty analysis on
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forecasts. Additionally, we emphasize the importance of
considering the time step of a forecast model when pro-
ducing forecasts at longer time horizons, which is critical
to improving the use of forecasts as decision support tools
for managers and the public. Further, by applying our
forecasting system to an additional study site, we show
that simple forecast models can be adapted for new loca-
tions using limited input data. Ultimately, this study pro-
vides insight on the predictability of freshwater
phytoplankton dynamics as well as helpful consider-
ations for developing ecological forecasts in a diverse set
of ecosystems.
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