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Abstract Temperate reservoirs and lakes worldwide are experiencing decreases in ice cover, which will
likely alter the net balance of gross primary production (GPP) and respiration (R) in these ecosystems. However,
most metabolism studies to date have focused on summer dynamics, thereby excluding winter dynamics from
annual metabolism budgets. To address this gap, we analyzed 6 years of year‐round high‐frequency dissolved
oxygen data to estimate daily rates of net ecosystem production (NEP), GPP, and R in a eutrophic, dimictic
reservoir that has intermittent ice cover. Over 6 years, the reservoir exhibited slight heterotrophy during both
summer and winter. We found winter and summer metabolism rates to be similar: summer NEP had a median
rate of �0.06 mg O2 L�1 day�1 (range: �15.86 to 3.20 mg O2 L�1 day�1), while median winter NEP was
�0.02 mg O2 L�1 day�1 (range:�8.19 to 0.53 mg O2 L�1 day�1). Despite large differences in the duration of ice
cover among years, there were minimal differences in NEP among winters. Overall, the inclusion of winter data
had a limited effect on annual metabolism estimates in a eutrophic reservoir, likely due to short winter periods in
this reservoir (ice durations 0–35 days), relative to higher‐latitude lakes. Our work reveals a smaller difference
between winter and summer NEP than in lakes with continuous ice cover. Ultimately, our work underscores the
importance of studying full‐year metabolism dynamics in a range of aquatic ecosystems to help anticipate the
effects of declining ice cover across lakes worldwide.

Plain Language Summary Lakes and reservoirs around the world are experiencing decreases in ice
cover duration, with many waterbodies starting to experience non‐continuous ice cover throughout the winter.
These changes in ice duration have the potential to influence carbon cycling, but to date few long‐term studies
have included winter data. We analyzed 6 years of minute‐resolution oxygen data from a small reservoir that
experiences non‐continuous ice cover to estimate whether the surface water was a source or sink of carbon at
daily, seasonal, and annual scales. We found that the reservoir was often a source of carbon to the atmosphere,
regardless of whether data from winter were included. Our results differed from previous studies conducted in
higher‐latitude lakes that experience continuous ice cover throughout the winter, potentially due to the already‐
short duration of ice cover in this reservoir. As the duration of ice cover continues to decrease across lakes and
reservoirs worldwide, our work highlights the need for studying how changing winter conditions—especially
non‐continuous ice cover—affects year‐round carbon cycling.

1. Introduction
Changing climate and the shrinking duration of winter are altering the role of freshwater ecosystems in the global
carbon cycle (IPCC, 2022), which can be quantified using functional ecosystem metrics (Brentrup et al., 2021;
North et al., 2023; Palmer & Richardson, 2009). One commonly used functional metric is net ecosystem pro-
duction (NEP), the balance of whole ecosystem gross primary production (GPP) and respiration (R), which can
elucidate whether freshwaters are net sources or sinks of organic carbon. Negative NEP indicates heterotrophy,
whereas positive NEP indicates ecosystem autotrophy (Lovett et al., 2006). Studies quantifying ecosystem
metabolism rates (i.e., NEP, GPP, and R) have primarily focused on the metabolism of naturally‐formed lakes in
the summer months (e.g., Richardson et al., 2017; Solomon et al., 2013; but see Williamson et al., 2021), leaving
substantial uncertainty as to how these rates vary among seasons and years in the face of climate change. Multiple
studies in north temperate lakes have shown that winter metabolism rates are more heterotrophic than summer
rates (Brentrup et al., 2021; North et al., 2023; Rabaey et al., 2021), and that the inclusion of winter rates in annual
estimates can shift lakes from autotrophic to heterotrophic (Brentrup et al., 2021), highlighting the importance of
monitoring lake and reservoir metabolism year‐round.
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Lakes and reservoirs can be net autotrophic or heterotrophic (Hanson et al., 2003; Hoellein et al., 2013), with
shifts between autotrophy and heterotrophy occurring throughout the year (Brentrup et al., 2021; Rabaey
et al., 2021). Some north temperate lakes with trophic states ranging from eutrophic to oligotrophic have been
found to be autotrophic in summers but heterotrophic in winters (Brentrup et al., 2021; North et al., 2023; Rabaey
et al., 2021), while other lakes in subtropical regions are autotrophic in both summer and winter (Hu et al., 2015).
While these few studies demonstrate that intra‐annual variation in metabolism can occur in at least some lakes,
there is still much uncertainty in the prevalence, magnitude, and drivers of intra‐annual variation in metabolism in
freshwater ecosystems. Understanding intra‐annual variation is important as previous work has found that
inferring annual NEP from summer‐only measurements can result in biased metabolism rates (Brentrup
et al., 2021). Additionally, annual metabolism estimates can vary substantially year to year (Pace et al., 2021;
Richardson et al., 2017), supporting the need for multi‐year metabolism studies to better understand how NEP
changes both within and among years.

Previous studies have shown that the environmental drivers of metabolism in naturally‐formed lakes during the
ice‐free period vary across lakes (Solomon et al., 2013), within years (Brentrup et al., 2021; Hu et al., 2015), and
among years (Oleksy et al., 2022; Richardson et al., 2017), but less is known about the drivers of metabolism in
human‐made reservoirs. For example, nutrient concentrations have been positively correlated with GPP and R
across lakes (Solomon et al., 2013) and between years (Richardson et al., 2017), whereas local meteorology (Hu
et al., 2015; Richardson et al., 2017), hydrology (Klug et al., 2012), and water temperature (Hu et al., 2015) have
been found to be important drivers of intra‐annual variation in metabolism. These important advances in our
understanding of metabolism in naturally‐formed lakes during the ice‐free period (Hanson et al., 2003; Hu
et al., 2015; Richardson et al., 2017; Solomon et al., 2013) set the stage for increasing our understanding of the
drivers of year‐round metabolism dynamics in human‐made reservoirs, which are understudied relative to
naturally‐found lakes (Doubek & Carey, 2017). In reservoirs, which have shorter residence times and greater
catchment to lake area ratios than naturally‐formed lakes (Hayes et al., 2017), we expect hydrology to be an
important driver of metabolism (Oleksy et al., 2022; Williamson et al., 2021), as shorter residence times will lead
to more rapid turnover of nutrients and organic carbon that can stimulate R and GPP (Catalán et al., 2016; Hanson
et al., 2003).

The presence of ice can affect winter metabolism estimates in lakes and reservoirs in contradictory ways, by either
stimulating or repressing phytoplankton growth (Jewson et al., 2009). In some cases, similar or even higher levels
of phytoplankton biomass can persist under‐ice when compared to ice‐free conditions, resulting in increased GPP
(Hampton et al., 2017; Jewson et al., 2009; Twiss et al., 2012). However, under other conditions (e.g., opaque ice
or snow cover), phytoplankton productivity may be limited, decreasing winter GPP and resulting in net het-
erotrophy (Jewson et al., 2009; Leppäranta et al., 2012; North et al., 2023). These variable responses highlight the
need for characterizing metabolism during ice‐covered periods as ice cover and thickness is decreasing on lakes
worldwide (Magnuson et al., 2000; Sharma et al., 2021; Weyhenmeyer et al., 2022). However, estimating ice‐
covered metabolism rates remains a major challenge due to the logistical difficulties of winter data collection,
especially in sites with intermittent ice that prevent safe conditions to sample and deploy sensors (Block
et al., 2019). As a result, most winter metabolism studies have been conducted in naturally‐formed lakes that
experience continuous ice cover throughout the winter (e.g., Brentrup et al., 2021; Huang et al., 2021; Obertegger
et al., 2017; Song et al., 2019). Consequently, research on intermittently ice‐covered freshwater ecosystems is
needed to improve our understanding of the role dynamic ice cover plays on annual metabolism rates as climate
change increases the prevalence of winters in which north temperate waterbodies experience intermittent or even
no ice cover (Sharma et al., 2019).

To improve our understanding of intra‐annual and inter‐annual variability in freshwater metabolism, we estimated
6 years of daily rates of GPP, R, and NEP using inverse modeling of high‐frequency dissolved oxygen (DO) data
in a eutrophic reservoir with variable and intermittent ice cover. These 6 years of data represent the longest
continuous record of metabolism calculated from inverse modeling of high‐frequency DO data, to the best of our
knowledge. We used these metabolism estimates to answer: (a) What is the inter‐ and intra‐annual variability of
metabolism in a dimictic reservoir that exhibits intermittent ice conditions in winter? (b) How do estimates of
winter metabolism affect annual metabolism estimates? and (c) What are the most important drivers of variability
in metabolism? We first predicted higher R and lower GPP estimates in winter (vs. summer) months. Second, we
expected that the inclusion of winter metabolism rates, especially in winters with extended ice cover duration,
would lead to higher annual R estimates and shift annual NEP toward heterotrophy, compared to winters with a
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shorter duration of ice cover. Finally, we expected that the magnitude of reservoir GPP and R estimates would be
positively correlated with nutrient and carbon concentrations and with reservoir inflow rates.

2. Methods
2.1. Analysis Overview
To quantify the magnitude and drivers of intra‐ and inter‐annual metabolism in a eutrophic reservoir, we modeled
GPP, R, and NEP using high‐frequency observational data, then used time series analysis to identify drivers of the
metabolic rates at multiple time scales. First, we monitored DO and multiple environmental variables over the 6‐
year monitoring period (Section 2.3). Second, we used an inverse model (Section 2.4) with inputs of high‐
frequency DO, water temperature at multiple depths, photosynthetically active radiation (PAR), and wind
speed (Section 2.3.1) to estimate GPP and R, from which we calculated NEP. Third, we classified seasons using
multiple approaches to compare metabolism at different times of year (Section 2.3.3 and 2.5.2). Fourth, we
quantified metabolism variability, differences in metabolism among seasons and years, and the importance of
environmental drivers, including meteorology, water chemistry, and hydrology, on reservoir metabolism
(Section 2.5).

2.2. Study Site
Falling Creek Reservoir (FCR) is a small eutrophic reservoir located in Vinton, Virginia, USA (37° 180 12″ N, 79°
500 14″ W; Figure 1a). FCR has a surface area of 0.12 km2, a maximum depth of 9.3 m, a mean depth of 4 m, and a
catchment to surface area ratio of 29:1 (Gerling et al., 2014; Howard et al., 2021). FCR is a drinking water source
located in a primarily deciduous forested catchment and is owned and managed by the Western Virginia Water
Authority. FCR is typically dimictic with summer thermal stratification usually occurring between March and
October and intermittent ice cover between December and February (Carey & Breef‐Pilz, 2022; Figure 1b).
Throughout the monitoring period of 9 November 2015–28 February 2022, the water level in FCR was managed
to be at full capacity, with only small fluctuations. Water residence time during the duration of the study had a
median of 185 days (interquartile range of 56–512 days), following the calculation methods of Gerling
et al. (2014). The reservoir is fed by one primary inflow, which contributes ⇠95% of the water budget (Gerling
et al., 2016).

2.3. Field Data Collection
2.3.1. High‐Frequency Sensor Data Collection
A high‐frequency optical DO sensor was deployed in the epilimnion at the deepest site in FCR to capture diel DO
dynamics over the 2015–2022 monitoring period (Figure 1). From 9 November 2015 to 31 December 2018, an
InsiteIG Model20 DO sensor (Insite Instrumentation Group, Slidell, LA, USA) measured DO concentration and
water temperature every 15 min at 1 m below the surface (Carey, Howard, et al., 2023). From 29 August 2018 to
28 February 2022, a YSI EXO2 sonde (YSI Incorporated, Yellow Springs, OH, USA) measured DO and water
temperature every 10 minutes at 1.6 m below the surface (Carey, Breef‐Pilz, & Woelmer, 2023). The EXO2 was
deployed at 1.6 m to correspond with a water outtake valve and was additionally equipped with chlorophyll‐a and
fluorescent dissolved organic matter sensors (Carey, Breef‐Pilz, & Woelmer, 2023). To harmonize the DO data
between the two sensors and calculate metabolism over a near‐continuous period from 9 November 2015 to 28
February 2022, we compared the 5‐month long period when both sensors were simultaneously deployed (August
2018 to January 2019), and applied a linear offset to the 1‐m InsiteIG sensor data from the 1.6‐m YSI DO sensor
based off the median difference between sensor observations (see Text S1 and Figure S1 in Supporting Infor-
mation S1 for details).

Water temperature profiles were collected at the deepest site of FCR with a suite of sensors during the monitoring
period. From 9 November 2015 to 14 January 2018, a depth profile of water temperature was measured at 1‐m
intervals from 1 m below the surface to just above the sediments (9 m) every 10–15 min using HOBO thermistors
(HOBO Pendant Temperature Data Logger, Bourne, MA, USA; Carey, Howard, et al., 2023). In July 2018,
NexSens T‐Node FR Thermistors (Fondriest Environmental Inc., Fairborn, OH, USA) were deployed at the same
site at FCR and also monitored water temperature at 1‐m intervals from the surface to the bottom of FCR every
10 min (Carey, Breef‐Pilz, & Woelmer, 2023). We applied standardized gap‐filling procedures to fill the
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continuous 5 months of missing values when no thermistors were deployed by using modeled temperature
profiles (Carey, Hanson, et al., 2022) and interpolated manual weekly profiles (see Text S2 in Supporting
Information S1).

A research‐grade meteorological station (Campbell Scientific, Logan, UT, USA) was deployed on FCR's dam
throughout the monitoring period (Figure 1) to collect one‐minute resolution downwelling shortwave radiation,
precipitation, air temperature, and wind speed measurements (see Carey & Breef‐Pilz, 2023b for sensor speci-
fications). We calculated PAR from downwelling shortwave radiation using the R LakeMetabolizer package
(Winslow et al., 2016). PAR and wind speed data were averaged to 10 or 15‐min resolution to match DO data used
in the metabolism model (Section 2.4). Meteorological data had three gaps due to sensor maintenance ranging in
duration from 16 to 77 days. We filled these gaps using downscaling corrections developed between observed
meteorology and data from the North American Land Data Assimilation System‐2 (NLDAS‐2; Xia et al., 2012;
Text S2, Figures S2 and S3 in Supporting Information S1). Reservoir inflow discharge was calculated every 15
minutes from the primary tributary to FCR (Figure 1) at a weir equipped with an INW Aquistar PT2X pressure
sensor (INW, Kirkland, WA; see Carey & Breef‐Pilz, 2023a for details).

Figure 1. (a) Map of Falling Creek Reservoir (FCR) and its primary inflow stream, located in Vinton, Virginia, USA. The
inset map depicts the location of the reservoir within the coterminous USA. The deep hole basin is the region of the reservoir
encompassed between the latitudes of 37°18010″ and 37°18015″. (b) Time series of ice cover duration in FCR in each winter
season of our study (operationally defined as 20 December–22 February, Section 2.5.2). White shading denotes ice‐covered
periods and light blue shading denotes ice‐free periods. Ice cover at FCR was classified as the presence of ice covering
greater than 50% of the deep hole basin of the reservoir.
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2.3.2. Weekly Environmental Driver Sampling
In addition to high‐frequency sensors, we collected weekly to monthly measurements of light and water chemistry
to determine drivers of metabolism variability. Light attenuation was estimated using light extinction coefficients
(Kd) from vertical PAR profiles collected at the deepest site of the reservoir using either a conductivity, tem-
perature, and depth (CTD) profiler (SBE 19 plus CTD profiler, Seabird Electronics, Bellevue, WA, USA) or
handheld PAR sensor (LiCor LI‐192 underwater quantum sensor, LI‐COR Biosciences, Lincoln, NE, USA)
weekly from spring to fall and monthly through the winter (Carey, Lewis, & Breef‐Pilz, 2023). When sensor data
were not available, light attenuation was estimated from Secchi disk measurements at a weekly frequency from
spring to fall and monthly through the winter (Carey, Breef‐Pilz, et al., 2023). Light attenuation measured via the
Secchi and PAR sensor profile methods gave similar Kd estimates (median Kd from sensorsà 1.0 m�1; median Kd
from Secchi à 1.1 m�1). We additionally calculated the derived mean daily mixed layer irradiance (Ē24), a
measure of mean light experienced by phytoplankton, from Kd, mixed layer depth, and daily incident irradiance
data (Ē0; Guildford et al., 2000; Pernica et al., 2017).

Throughout the monitoring period, we collected weekly (spring to fall) to monthly (winter) water samples at 1.6 m
for dissolved organic carbon (DOC), nitrogen (total nitrogen (N), nitrate, and ammonium), and phosphorus (total
phosphorus (P) and soluble reactive P). All N and P samples were analyzed colorimetrically using flow injection
analysis on a Lachat Instruments XYZ Autosampler ASX 520 Series and QuikChem Series 8500 (Lachat ASX
520 Series, Lachat Instruments, Loveland, Colorado, USA; Carey, Wander, et al., 2023). DOC was analyzed
using the persulfate catalytic method on a Total Organic Carbon Analyzer (TOCA) from OI Analytical from 2015
to 2016 (OI Analytical 1010 TOCA with 1051 autosampler, College Station, TX USA) and on a Vario TOC Cube
from Elementar from 2016 to 2022 (vario TOC cube, Elementar Analysensysteme GmbH, Hanau, Germany;
Carey, Wander, et al., 2023).

2.3.3. Ice Cover Monitoring
Ice cover at FCR was classified as the presence of ice covering greater than 50% of the deep hole basin of the
reservoir (Figure 1), regardless of ice thickness, and was determined using three methods (Carey & Breef‐
Pilz, 2022). First, the presence of ice was assessed by visual observation from observers standing at the deep hole
of the reservoir or from automated cameras (Carey & Breef‐Pilz, 2022). If visual observations were not available,
we next checked for the presence of inverse stratification via water temperature profiles, which was validated by
looking for changes in upwelling shortwave radiation and albedo from the reservoir (Carey & Breef‐Pilz, 2022).
Finally, we looked for the depletion of DO at 9 m depth in FCR, using an InSitu RDO Pro‐X Dissolved Oxygen
Sensor (InSitu Inc., Fort Collins, CO, USA) deployed at the same site as the epilimnetic DO sondes (Carey, Breef‐
Pilz, & Woelmer, 2023). This sensor collected DO measurements every 10 minutes and was used to monitor for
winter DO depletion, as hypolimnetic DO depletion is noticeable when ice cover duration exceeds one day (Carey
& Breef‐Pilz, 2022). When ice cover was present at FCR, the area surrounding the in‐lake sensors (Figure 1a) was
completely covered, providing reasonable assurance that any upstream atmospheric exchange of oxygen had a
negligible effect on DO dynamics at our monitoring site.

2.4. Metabolism Model
Daily estimates of GPP and R were calculated using an open‐water inverse modeling method that can account for
ice‐covered and ice‐free periods (Hanson et al., 2008, as implemented by Brentrup et al., 2021). Model input data
included epilimnetic DO concentrations, epilimnetic water temperature, water temperature profiles, wind speed at
10 m, and PAR. The open‐water model is based on Equation 1 (Hanson et al., 2008; Odum, 1956), in which
changes in DO concentration (dDO/dt) are calculated as:

dDO
dt à GPP � R á D Ö1Ü

where D is atmospheric oxygen flux.

DO dynamics were then modeled every 10–15 min (depending on sensor frequency) following Equation 2
(Richardson et al., 2017; Solomon et al., 2013; Van de Bogert et al., 2007):
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DOtá1 à DOt á g ⇥ It � r á Dt á γt Ö2Ü

where DOt and DOtá1 represent DO concentrations at times t and t á 1; g is the parameter describing the rate of
photosynthesis per It; It is incoming PAR at time t; r is the parameter describing a mean rate of respiration; Dt is
atmospheric flux of oxygen; and γt represents process error. It was not adjusted during periods of ice cover, as ice
is typically thin and transparent at FCR (Figure S4 in Supporting Information S1).

Atmospheric flux of DO was modeled every 10–15 min following Equation 3 (Richardson et al., 2017; Solomon
et al., 2013):

Dt à dt ⇥ Ö�ktÜ ⇥ ÖDOt � StÜ = zt Ö3Ü

where kt is the piston velocity of oxygen calculated using wind speed every 10 min (Cole & Caraco, 1998); St is
the saturation concentration of DO based on water temperature and atmospheric pressure; zt is the mixed layer
depth calculated based on the water density gradient using water temperature profiles following Coloso
et al. (2011); and dt is a binary variable used to represent if the DO sonde was above or below zt. A dt of one
indicates the DO sonde is above zt and oxygen can exchange with the atmosphere, versus a dt of 0 indicates the
sonde is below zt and oxygen cannot exchange with the atmosphere. Atmospheric flux was assumed to be zero
during periods of ice cover following Brentrup et al. (2021).

GPP and R were modeled as parameters through the optimization of the metabolism model in Equation 2 using a
Nelder‐Mead optimization algorithm that reduces the negative log‐likelihood of the error (γt) in Equation 2,
following Solomon et al. (2013) and Richardson et al. (2017), and based on Hanson et al. (2008) and Van de
Bogert et al. (2007). GPP and R were then scaled from 10 to 15 min rates to daily rates of GPP and R reported in
mg O2 L�1 day�1 (Richardson et al., 2017). We note that this model does not account for vertical diffusion of
oxygen to epilimnion, which has the potential to influence R during fall mixing. However, we did not observe
large changes in R during fall turnover, indicating that upwelling likely had a limited effect in our system (Figure
S5 in Supporting Information S1).

2.5. Statistical Analyses
2.5.1. Q1: What Is the Inter‐ and Intra‐Annual Variability of Metabolism in a Dimictic Reservoir?
To investigate inter‐annual and intra‐annual variation in metabolism rates, we compared metabolism between ice‐
free and ice‐covered periods within the winter, among seasons in the year, and across years. We were able to fit
estimates of GPP and R for 54% of the n à 2,302 total days in our time series when GPP and R were above
ecologically meaningful rates of 0.001 mg O2 L�1 day�1 (following Brentrup et al., 2021); values below those
rates were set as NA. Our proportion of model fits was similar to another study with 1 year of data that compared
ice‐covered and ice‐free metabolism (57% days acceptable fits; Brentrup et al., 2021). NEP was calculated for
days with acceptable estimates of both GPP and R. Kruskal‐Wallis rank sum tests were used to test for significant
differences in mean GPP, R, and NEP rates across years and seasons (Hollander & Wolfe, 1973) using the stats
package in R (R Core Team, 2023).

We compared intra and inter‐annual variability by calculating the coefficient of variation (CV) for GPP, R, and
NEP for the entire time series, across years and seasons, and for individual seasons and years (summary of
metabolism estimates provided in Table S1 in Supporting Information S1). We applied the Levene's test to check
for statistical differences among GPP, R, and NEP using the car package in R (Fox & Weisberg, 2019).

2.5.2. Q2: How Do Estimates of Winter Metabolism Affect Annual Metabolism Estimates?
There are many different ways to classify seasons in lakes and reservoirs (e.g., Gray et al., 2020; Jane et al., 2023;
Pierson et al., 2011; Rabaey et al., 2021; Woolway et al., 2022); here, we focus on results generated using
operational definitions for each season. We tested multiple seasonal classifications in our analysis, including the
use of seasons defined by solar equinoxes/solstices and thermal stratification periods, and note that alternate
season calculations did not affect our primary findings (Text S3, Table S2, and Figure S6 in Supporting Infor-
mation S1). In our operational definition of winter in FCR, winter was the period starting on the earliest date of ice
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cover recorded across all years of our study (20 December, observed in 2016, Figure 1b) and ending on the latest
day of ice cover recorded across all years of our study (22 February, observed in 2021, Figure 1b). Winter seasons
were then classified as the duration from 20 December of the previous calendar year through 22 February of a
given year (e.g., Winter 2020 was classified as 20 December 2019–22 February 2020). This operational definition
of winter was adapted from other studies studying lakes with continuous ice cover (Hampton et al., 2017; Pierson
et al., 2011; Woolway et al., 2022).

Similar to winter, summer was defined as the period starting on the earliest first day of continuous summer
thermal stratification recorded in any year of our study (9 March, observed in 2016) and ending on the latest day of
summer stratification recorded in any year of our study (2 November, observed in 2021). This definition was
chosen to correspond with other studies that operationally classify summer as the period of continuous thermal
stratification (Jane et al., 2023; Ladwig et al., 2022). We used two metrics to determine the onset and end of
summer stratification—both criteria had to be met for us to consider the reservoir stratified on a given date. First,
we assessed whether the difference in water density between epilimnetic (1 m below the surface) and hypo-
limnetic (1 m above the sediments) water was at least 0.1 kg m�3 (Woolway et al., 2021). Density is a robust and
widespread metric of stratification, with multiple studies using 0.1 kg m�3 as a threshold to determine the
presence of stratification (e.g., Andersen et al., 2017; Ladwig et al., 2021; Woolway et al., 2021). Second, we
analyzed whether Schmidt stability was greater than 2% of the summer maximum stability. Schmidt stability is a
common metric for determining the strength of stratification in lakes (Duka et al., 2021; Sahoo et al., 2016) and
was calculated using the rLakeAnalyzer R package (Winslow et al., 2019) according to Idso (1973) using water
temperature profiles and bathymetry of FCR (Carey, Lewis, et al., 2022). Calculating the percent of maximum
Schmidt stability enables comparison to other lakes or reservoirs. Together, we defined summer stratification as
beginning on the first day that both criteria were met for the subsequent 2 weeks, to remove spring and fall days
when stratification was setting up or intermittent. Following this definition, summer stratification ended on the
first day when the density difference was less than or equal to 0.1 kg m�3 and percent maximum Schmidt stability
was less than 2%.

The spring mixed period occurred between the first day after winter ended (23 February) and the day before onset
of summer stratification (8 March), and fall was considered the period between the day after the end of summer
stratification (3 November) and the day before winter began (19 December). Altogether, we defined a lake‐year to
span from 20 December of the prior calendar year to 19 December of a given year to prevent the transition
between years occurring mid‐winter and disrupting ecologically‐relevant within‐season dynamics (i.e., the 2016
lake‐year was 20 December 2015–19 December 2016).

We conducted non‐paired Wilcoxon tests to compare ice‐covered and ice‐free periods during the winter and
Kruskal‐Wallis tests to compare across seasons using the stats package in R (R Core Team, 2023). Dunn post‐hoc
tests were used to determine statistical differences between seasonal means when Kruskal‐Wallis results were
significant using the FSA package in R (Ogle et al., 2023). To test the effect of including winter metabolism rates
on annual estimates, we used a paired t‐test comparing annual estimates of NEP that included and excluded winter
rates.

2.5.3. Q3: What Are the Most Important Drivers of Variability in Metabolism?
To identify environmental drivers of metabolism, we developed autoregressive (AR) models for GPP, R, and NEP
at daily timesteps. We collated daily data for air temperature, precipitation, fluorescent dissolved organic matter,
chlorophyll‐a, reservoir inflow discharge, TN, nitrate, ammonium, TP, soluble reactive phosphorus (SRP), DOC,
Schmidt stability, Kd, and Ē24. We then developed correlation matrices to identify collinearity between potential
environmental driver variables, defined as when two variables had a Spearman rank correlation of r > 0.5. For
variables that had r > 0.5, we tested which of the correlated variables had a stronger correlation to the metabolism
variable of interest based on univariate scatterplots and retained only the variable with a stronger correlation
(following McClure et al., 2020).

After removing collinear variables, there were seven candidate variables for daily models of NEP (precipitation,
TP, DOC, SRP, nitrate, ammonium, Ē24), GPP (precipitation, TP, TN, SRP, nitrate, ammonium, Ē24), and R
(precipitation, TP, DOC, SRP, nitrate, ammonium, Ē24). We z‐transformed predictors to enable comparison of the
magnitude of coefficients in AR models. We then developed global models for each metabolism metric that
included an AR1 lag term to account for temporal autocorrelation (Box & Pierce, 1970) and all possible
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combinations of the non‐collinear predictor variables, and ranked models by AICc to determine which models
best predicted metabolism rates using the dredge function in the MuMIn package in R (Bartoń, 2022). All analyses
were conducted in R version 4.2.3 (R Core Team, 2023), with all code archived in a Zenodo repository (Howard
et al., 2024).

3. Results
3.1. Q1: What Is the Inter‐ and Intra‐Annual Variability of Metabolism in a Dimictic Reservoir?
The magnitude and variability in R, GPP, and NEP differed among variables when aggregated over the 6‐year
study (Figures 2 and 3). The absolute value of R was greater than GPP (Table 1), with a median R of
�0.99 mg O2 L�1 day�1 compared to 0.82 mg O2 L�1 day�1 (Wilcoxon test p < 0.001). R was more variable than
GPP (daily CVs of�1.29 and 1.05, respectively; Levene's test p < 0.001). NEP was near‐zero or slightly negative
in FCR (54% of days had negative NEP when NEP could be estimated, n à 1243), with a median daily rate of
�0.05 ⌃ 1.79 mg O2 L�1 day�1 (Figures 2 and 3; Table 1), indicating that FCR was net heterotrophic across the
study period. NEP was more variable than R throughout the study period (CV à �3.85; Levene's test p < 0.001)
but was not more variable than GPP (p à 0.08).

FCR exhibited greater inter‐annual variation in NEP than GPP and R throughout our study period (Figures 2 and
3). Across the 5 years with full data (i.e., 2015, 2017, and 2022 were excluded because they lacked estimates for
all seasons), median annual NEP estimates ranged from �0.27 mg O2 L�1 day�1 (in 2016) to 0.02 mg O2
L�1 day�1 (in 2019), and were statistically different across years (Kruskal‐Wallis H4 à 16.7, p à 0.002; Figure
S7, Table S3 in Supporting Information S1). Median annual GPP and R were not as variable as NEP across years
(Figure S7 in Supporting Information S1), with GPP ranging from 0.80 to 0.95 mg O2 L�1 day�1 and R ranging
from �0.96 to �1.16 mg O2 L�1 day�1 (Table S3 in Supporting Information S1). Neither GPP nor R were
statistically different among years (p à 0.22 and p à 0.16, respectively). Variation in CV in distinct years also
differed among metabolism rates, with annual NEP rates having the largest CV range (�6.63 to �2.40), while
annual R and GPP rates had similar ranges of annual CV (�1.06 to �1.41 and 0.73 to 1.12, respectively; Table S3
in Supporting Information S1).

While NEP was highly variable between years (Figure S7 in Supporting Information S1), GPP and R exhibited
higher variation across seasons (Figures 3 and 4), with median annual GPP and R estimates significantly different
across seasons (Kruskal‐Wallis H3 à 12.1, p à 0.01; and H3 à 9.9, p à 0.02; respectively; Figures 4a and 4b).

Figure 2. (a) Daily estimates of gross primary production (GPP; green points), respiration (R; brown points) in Falling Creek
Reservoir from November 2015 through February 2022. (b) Daily estimates of net ecosystem production (NEP) (gray points)
and 7‐day moving average of NEP (black line). (c) Boxplots comparing annual median NEP calculated from daily estimates
from all seasons; only spring, summer, and autumn (excluding winter); and only winter. The color of the points denotes
different years. Metabolism estimates are not included for 2017 due to missing dissolved oxygen data.
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GPP and R were greater in the summer than other seasons when aggregated across years (Table 1, Figures 4a and
4b). Winter had the lowest median annual rates of GPP and R among seasons (Table 1). NEP was not significantly
different between seasons (Kruskal‐Wallis H3 à 3.3, p à 0.34; Table 1; Figure 4c).

Altogether, seasonal differences in median GPP were nearly six times higher than inter‐annual differences
(seasonal and inter‐annual ranges à 0.89 and 0.15 mg O2 L�1 day�1, respectively; Table 1 and Table S3 in
Supporting Information S1), and four times higher in median R (seasonal and inter‐annual ranges à 0.91 and
0.20 mg O2 L�1 day�1, respectively; Table 1 and Table S3 in Supporting Information S1). In contrast, median
NEP seasonal differences were nearly five times less than inter‐annual variation (seasonal and inter‐annual
ranges à 0.06 and 0.29 mg O2 L�1 day�1, respectively; Table 1 and Table S3 in Supporting Information S1).

3.2. Q2: How Do Estimates of Winter Metabolism Affect Annual Metabolism Estimates?
FCR experienced intermittent ice cover in most years, with up to three separate periods of ice cover within a
winter season. Ice cover duration ranged from 0 days (2020) to 35 days of ice (2016) across the six winters
(Figure 1b). In 2017 and 2021, FCR exhibited three separate periods of ice cover throughout each winter, and in
2019 and 2022, two separate periods of ice cover occurred. In contrast, there was only one period of continuous
ice cover in 2016 and 2018 (Figure 1b).

Patterns of winter GPP, R, and NEP were variable among years and durations of ice cover (Figure 5). Overall, the
inclusion of winter NEP estimates did not have a statistically significant effect on annual NEP rates (t4 à �0.1,
p à 0.93; Figure 2b). Aggregated across all ice‐covered and ice‐free winter periods, NEP was not statistically
different in any year except for in 2019, when NEP was higher on ice‐covered days than ice‐free days in the winter
(Figure 6a). NEP was additionally not significantly different between ice‐covered and ice‐free days when

Figure 3. Distributions of gross primary production (GPP), net ecosystem production (NEP), and respiration (R) for (a) the entire time series, (b) for each season, and
(c) in winter ice‐covered and ice‐free conditions. Note differences in the x‐ and y‐axis ranges across panels.
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aggregated across years, though rates were slightly higher when ice‐cover was present (Wilcoxon test p à 0.07;
Figure 6b). R was only significantly different between ice‐covered and ice‐free days in winter 2016 (lower when
ice‐covered; Wilcoxon test pà 0.03). GPP was significantly different in 2016 and 2022, but the direction of effect
differed between the two years (higher when ice‐covered in 2022, lower in 2016; Wilcoxon test p < 0.05, Figure
S8 in Supporting Information S1).

3.3. Q3: What Are the Most Important Drivers of Variability in Metabolism?
Water chemistry variables were consistently important drivers of daily GPP (Table 2), but there were no sta-
tistically significant models with environmental predictors of R or NEP. NEP was more strongly correlated to R
(Spearman rho à 0.58, p < 0.001) than GPP (Spearman rho à 0.21, p < 0.001). The model fits varied across the

Figure 4. (a–c) Boxplots comparing median daily respiration (R), gross primary production (GPP), and net ecosystem production (NEP) estimates across seasons per
year. 2015, 2017, and 2022 were not included since they did not have estimates for multiple seasons.

Figure 5. Daily estimates of gross primary production (GPP; green points), respiration (R; brown points), and 7‐day rolling
average of net ecosystem production (NEP; black line) in different winter seasons. Blue‐shaded rectangles denote ice‐free
periods and white rectangles denote periods of ice cover. Metabolism estimates are excluded for winter 2017 due to missing
dissolved oxygen data.
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metabolism metrics, with substantially more variation explained by our candidate environmental predictors for
GPP (R2 à 0.55–0.57), versus R and NEP (R2 à 0; Table 2).

The top models predicting GPP had multiple environmental drivers (TN, SRP, ammonium, Precipitation, and
Ē24), which were all included in more than one best‐fitting model (Table 2). TN, SRP, and Ē24 were positively
associated with GPP in all of these models, and ammonium and precipitation were negatively associated with
GPP. Neither R or NEP had best‐fitting models with environmental drivers, as the top model for both metabolism
metrics only included the autoregressive lag term and had R2 values of 0 (Table 2). We additionally tested the
effects of water temperature on metabolism rates, but the inclusion of water temperature did not significantly alter
our results in Table 2 (Table S4 in Supporting Information S1).

4. Discussion
We observed large variability in metabolism rates throughout 6 years in a small eutrophic reservoir. While ice
cover duration varied substantially between years, annual metabolism estimates were similar between years
(Figure 2c), and winter had similar rates of NEP to other seasons (Figure 4). NEP was generally higher on ice‐
covered days than ice‐free days (Figure 6b), but this result was only statistically significant in winter 2019

Figure 6. (a) Boxplots of daily net ecosystem production (NEP) rates for each winter season comparing days with ice cover
(white) and days without ice cover (blue). (b) Boxplots comparing ice‐covered and ice‐free median daily NEP estimates per
year. There were no winter NEP estimates in 2018 on days with ice cover, and winter 2020 had no days of ice cover.

Table 2
Best‐Fitting (Within 2 AICc Units of the Top Model), Statistically Significant Autoregressive Models for Daily Gross Primary
Production (GPP), R, and Net Ecosystem Production (NEP), Listed in Descending Order

Model Equation AICc R2 p

GPP GPP à 0.29(GPPt�1) á 0.52(TN) á 0.23(Ē24) á 1.00 114.7 0.55 <0.001
GPP à 0.28(GPPt�1) á 0.50(TN) á 0.22(Ē24) á 0.10(SRP) á 1.02 114.8 0.56 <0.001

GPP à 0.28(GPPt�1) á 0.52(TN) á 0.21(Ē24) � 0.16(NH4) á 0.12(SRP) á 1.01 115.9 0.57 <0.001
GPP à 0.30(GPPt�1) á 0.53(TN) á 0.22(Ē24) � 0.11(NH4) á 1 116.4 0.55 <0.001

GPP à 0.27(GPPt�1) á 0.52(TN) á 0.21(Ē24) á 0.11(SRP) � 0.07(Precip) á 1.03 116.4 0.57 <0.001
GPP à 0.28(GPPt�1) á 0.53(TN) á 0.23(Ē24) � 0.06(Precip) á 1.02 116.5 0.55 <0.001

R R à �0.02(Rt�1) � 1.5 320.5 0.00 0.84
NEP NEP à �0.04(NEPt�1) � 0.23 314.9 0.00 0.61
Note. There were no statistically significant models for R and NEP, but we retained the base autoregressive models in the
table for comparison. We tested the effects of seven candidate environmental drivers, which were z‐transformed prior to
analysis. GPPt�1, NEPt�1, and Rt�1 are the one‐day autoregressive lag terms in each metabolism model. The environmental
drivers were: DOC à dissolved organic carbon, Ē24 à mean light experienced by phytoplankton, NH4 à ammonium,
NO3 à nitrate, Precip à total daily precipitation, SRP à soluble reactive phosphorus, TN à total nitrogen, and TP à total
phosphorus.
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(Figure 6a). GPP and R, but not NEP, differed significantly between seasons, with highest rates in the summer
(Figure 4), whereas NEP was the only metabolism rate with significant inter‐annual variation (Figure S7 in
Supporting Information S1). Water chemistry parameters were a significant driver of GPP, while R and NEP were
not significantly predicted by any of the other candidate environmental drivers (Table 2). Below, we explore how
our results inform our understanding of intra‐ and inter‐annual metabolism in a reservoir with intermittent ice
cover, as well as identify future directions for winter research.

4.1. Ice‐Covered Metabolism Rates Compared to Ice‐Free Metabolism
Contrary to our hypotheses, the inclusion of winter did not significantly alter annual NEP estimates (Figure 2c).
Within the winter, ice‐covered periods exhibited higher NEP than ice‐free periods in 1 year (2019), which had
intermediate ice coverage relative to the other years (Figures 5, Figure 6a), but it is possible that the duration of ice
cover at FCR (0–35 days per year) was overall too short to have a substantial effect on annual estimates in our 6‐
year study. Assuming that additional days of ice cover would exhibit the median NEP rates observed when ice‐
cover was present in this study, a back‐of‐envelope calculation suggests that even an additional 100 days of ice per
winter would not cause the inclusion of winter data to alter annual NEP estimates (Text S4, Table S5 in Sup-
porting Information S1). Consequently, multiple months of ice cover per winter may be needed for winter dy-
namics to significantly affect annual metabolism rates in our study reservoir.

Similar NEP rates across seasons were contrary to our prediction that NEP would decrease under ice, as observed
in a previous study (Brentrup et al., 2021). We expected that ice cover would lead to decreased primary pro-
duction, resulting in greater R than GPP (Huang et al., 2021; Obertegger et al., 2017). Instead, our results indicate
the opposite pattern, suggesting that ice‐covered conditions promoted greater rates of primary production
compared to ice‐free conditions in the winter (especially in Winter 2022; Figure 6). High concentrations of
phytoplankton under‐ice have been observed in other studies (Leppäranta et al., 2012; Reinl et al., 2023), in which
phytoplankton can use the ice surface as a substrate, promoting growth that may not otherwise occur in winter
months (Twiss et al., 2012). Additionally, clear and thin ice conditions may allow additional light penetration,
leading to a more favorable environment for ice‐covered phytoplankton growth (Leppäranta et al., 2012). FCR
may be especially likely to display clear ice conditions, as ice cover is often very short in the reservoir relative to
north temperate lakes (Weyhenmeyer et al., 2022), thus not providing enough time for ice layers to become
opaque as snow falls and freezes into ice or snowpack to accumulate on‐ice. Consequently, our study adds to the
growing literature that suggests that ice cover can increase GPP and NEP, not just R (Figure S8 in Supporting
Information S1).

Winter GPP and R estimates were significantly lower than in summer, but NEP was not significantly different
between the seasons (Figure 4). Higher GPP and R estimates in the summer relative to winter have been observed
in numerous studies (Hu et al., 2015; North et al., 2023; Rabaey et al., 2021), but similar rates of NEP among
seasons are less common (Hu et al., 2015). Multiple studies have shown that NEP can shift from autotrophic in the
summer to heterotrophic in the winter, with shoulder seasons (i.e., the spring and fall) showing intermediary rates
between summer and winter (Brentrup et al., 2021; Rabaey et al., 2021). We note that these previous studies were
conducted in higher‐latitude glacially‐formed lakes that experience multiple months of continuous ice cover
(Brentrup et al., 2021; Rabaey et al., 2021). The intermittent ice observed at FCR provides a unique comparison to
these systems, as we do not observe significant changes in NEP from summer to winter, possibly because the
shorter ice cover duration allows for an extended period of high light conditions relative to opaque ice, in turn
extending the phytoplankton growing period (Wetz et al., 2004).

4.2. Inter and Intra‐Annual Variability in Lake Metabolism
To the best of our knowledge, only two other studies have quantified metabolism rates in lentic waterbodies for
durations longer than one continuous year (Hu et al., 2015; Rabaey et al., 2021). In these studies (Hu et al., 2015;
Rabaey et al., 2021), both conducted in naturally‐formed lakes, the highest rates of GPP and R were observed in
the summer and the lowest rates were observed in the winter, similar to our findings. Hu et al. (2015) also found
that metabolism rates were more variable within a year across days than among years, while Rabaey et al. (2021)
did not compare inter‐annual variation in metabolism rates.

Contrary to expectation, we did not observe a shift in NEP across seasons. Unlike previous studies in which NEP
shifted from positive to negative between summer and winter (Rabaey et al., 2021), leading to changes in annual
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metabolism estimates (Brentrup et al., 2021), FCR exhibited similar NEP year‐round (Figure 4c). This consis-
tency across seasons may be potentially due to FCR's short ice cover duration or because it is a human‐made
reservoir and therefore may exhibit fundamentally different patterns of ecosystem functioning than the
naturally‐formed lakes examined by Brentrup et al. (2021) and Rabaey et al. (2021).

The prevalence of heterotrophy in reservoirs has been found to vary both over space and time, with previous
studies largely focusing on summer or ice‐free periods (Barbosa et al., 2023; Solomon et al., 2013; Williamson
et al., 2021). Reservoirs have exhibited both net heterotrophy (Barbosa et al., 2023; Solomon et al., 2013) and
autotrophy (Solomon et al., 2013), with some studies showing changes between years (Williamson et al., 2021).
We observed small shifts from autotrophy to heterotrophy in the winter (Figure 5), in addition to other seasons
(Figure 2b), which has also been observed in previous reservoir studies (Barbosa et al., 2023; Williamson
et al., 2021). Throughout the year, we observed mostly heterotrophic conditions, which was consistent with three
large oligotrophic reservoirs in Canada (Barbosa et al., 2023). It is possible that FCR consistently exhibited net
heterotrophy because of its short residence time and continuous loading of allochthonous carbon (Park
et al., 2009), motivating the collection of organic carbon quality data in future studies to test this hypothesis.

4.3. Water Chemistry Is an Important Driver of GPP
This study is one of the first to explore the role of water chemistry (C, N, and P concentrations) as drivers of
variation in metabolism rates within a reservoir over time, as several previous studies focused on the role of
chemistry across lakes (e.g., Hanson et al., 2003; Solomon et al., 2013) or only included meteorological and
physical drivers (e.g., Brentrup et al., 2021; Richardson et al., 2017). Nutrients were important drivers of GPP,
with TN appearing in all of the best‐fitting AR models, and SRP appearing in half (Table 2). The consistent
appearance of TN and SRP in the list of best‐fitting models predicting GPP support co‐limitation of phyto-
plankton growth in FCR, which has been previously observed in the reservoir (Hamre et al., 2017), as well as
numerous other freshwater ecosystems (e.g., Elser et al., 2007; Lewis et al., 2020; Paerl et al., 2016; Volponi
et al., 2023). The importance of TN (instead of nitrate or ammonium) also highlights the potential role of organic
N in FCR, which has been found to stimulate phytoplankton growth more than inorganic N forms (Volponi
et al., 2023). We observed that ammonium was negatively correlated with GPP, which contradicts previous work
showing that ammonium is the preferred N form for phytoplankton uptake (Raven et al., 1992). Despite this
unexpected relationship, other studies have found that high concentrations of ammonium can suppress algal
growth rates (Glibert et al., 2016), and can lead to decreases in N‐fixing cyanobacteria (Yang et al., 2023), which
often dominate FCR's phytoplankton community in summer months (Lofton et al., 2022). Light was additionally
found to be a driver of GPP (Table 2), which was consistent with previous studies (Hu et al., 2015; North
et al., 2023), and highlights the important role ice may play altering GPP rates in FCR (Leppäranta et al., 2012).

There were no significant environmental drivers of R or NEP in our AR models (Table 2), which contradicted our
expectation that inflow discharge or DOC would be a strong driver of R. Previous studies have shown that DOC is
often positively correlated with R and is an important driver across lakes (Barbosa et al., 2023; Hanson
et al., 2003; Solomon et al., 2013), but DOC did not appear in top models for R (Table 2). It is possible that our
candidate environmental predictors did not include the most important drivers of R or NEP in FCR. For example,
we did not include wind speed as a potential environmental driver because it was an input to the metabolism
model to calculate kt (Equation 3) or organic matter quality due to lack of data; both of these drivers have been
found to be important in other freshwater ecosystems (Brentrup et al., 2021; Jane & Rose, 2018). We found the
inclusion of water temperature (another input to the metabolism model) as an environmental predictor did not
alter our results (Table S4 in Supporting Information S1), which was unexpected given previous work showing
the importance of water temperature on R (Yvon‐Durocher et al., 2012), suggesting that the environmental drivers
of metabolism in FCR are complex and that monitoring of additional environmental variables is likely needed to
improve our understanding of its metabolism.

In addition to expanding environmental drivers of metabolism in future work, our study's limitations motivate
further follow‐up analyses. First, our work underscores the importance of monitoring metabolism in additional
reservoirs across years. Our study was limited by changes in DO and temperature sensors through the study, but
differences in metabolism between years with different DO and temperature sensors were minimal (Figure 4).
While we were only able to explore the effects of ice cover on metabolism in one reservoir, year‐round monitoring
and long‐term ice cover records for additional lakes and reservoirs is needed to improve our understanding of how
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winter conditions affect ecosystem function across a gradient of freshwater ecosystems. We additionally highlight
limitations in our model approach for accounting for vertical transport of oxygen during mixed periods, which did
not noticeably affect our results (Figure S5 in Supporting Information S1), but may be an important consideration
in future studies (e.g., Rose et al., 2014; Solomon et al., 2013). Second, in our analysis of the effects of winter ice
cover on metabolism, we were limited by the longest ice duration observed during our study period (35 days in
2016), which was two to four months shorter than previous winter metabolism studies (Brentrup et al., 2021;
Obertegger et al., 2017). Given the shorter ice cover duration in FCR, our results are inherently different from
prior ice‐cover studies that experienced deep snowpack on the ice that altered light penetration and GPP rates
(Leppäranta et al., 2012; North et al., 2023). Third, our monitoring data did not include records for ice thickness or
transparency, which would have improved understanding of the underwater light environment in the winter and
subsequent effects on GPP rates (Leppäranta et al., 2012), but were logistically impossible to collect due to the
danger of sampling intermittent ice conditions. Future work studying ice‐covered metabolism would benefit from
including under‐ice light measurements, when feasible. Finally, we were only able to present results on the effects
of ice cover on pelagic metabolism estimates, given the data available. Littoral site metabolism estimates can
differ significantly from pelagic estimates and be more sensitive to changes in environmental conditions (e.g.,
Lauster et al., 2006; Scordo et al., 2022; Van de Bogert et al., 2007; Ward et al., 2022); possibly leading to
differential responses in littoral metabolism to ice cover than what we observed here.

4.4. What Is Winter and Its Role in Freshwater Ecosystem Function?
In this study, we classify seasons using operational definitions to understand how intermittent ice cover is
affecting lake metabolism. Many previous winter limnology studies have either classified seasons based on
presence/absence of thermal stratification or solar seasons classifications (equinox and solstices; Ladwig
et al., 2021; Rabaey et al., 2021). Assessing thermal structure and density gradients from surface to sediments in a
waterbody allows determination of classical limnological periods in dimictic waterbodies, which include summer
stratification, spring and fall mixis, and ice‐covered winter inverse stratification (Gray et al., 2020; Pierson
et al., 2011; Woolway et al., 2022). However, this classification is not suited for waterbodies with intermittent ice
and inverse stratification, as seasons cannot be easily delineated if “winter” starts and stops multiple times. The
difficulty of using thermal stratification to delineate seasons because of intermittent ice led to our operational
definition of winter, in which we defined winter as the duration of the earliest day of ice cover recorded in our
study time period (20 December) to the latest day of ice cover recorded in our study period (22 February). This
classification led us to adjust our classification of a lake‐year to start on 20 December, similar to how hydrologic
studies use the water year (start date of 1 October) to account for snowpack formation (Granato et al., 2017). With
a consistent winter season across years, we were also able to compare the impacts of different ice cover durations
on not only annual metabolism rates (Figure 2b), but within seasons as well (Figure 6). We note that multiple other
delineations of seasons (thermal stratification, solar calendars) yielded qualitatively similar metabolism com-
parisons across seasons (Text S3, Figure S6 in Supporting Information S1), supporting the use of our operational
definition of seasons.

Decreases in ice cover and the increased prevalence of intermittent ice cover on waterbodies accelerate the need to
understand how changing winter is affecting freshwater ecosystem functioning. FCR at 37°N is a sentinel of
future conditions for lakes located at higher latitudes, which will continue to experience shorter ice cover du-
rations and increases in intermittency (Sharma et al., 2019). Decreasing ice cover is especially important given our
contrasting findings to previous winter metabolism studies that found winter NEP to be more heterotrophic than
summer NEP (Brentrup et al., 2021; Rabaey et al., 2021). If higher latitude lakes become more similar to FCR in
the future, with more similar winter and summer NEP dynamics, the role of lakes and reservoirs as carbon sources
or sinks may change.

5. Conclusions
Our results provide useful insight into the role of intermittent ice cover on reservoir ecosystem metabolism. We
observed heterotrophic conditions across seasons, and no significant influence of winter rates on annual meta-
bolism rates, differing from previous studies (e.g., Brentrup et al., 2021; Rabaey et al., 2021). We additionally
found that water chemistry was a consistent driver of variability in GPP. Our results may foreshadow future
metabolism dynamics in higher‐latitude lakes and reservoirs as ice cover duration decreases and intermittency
increases. Altogether, our work highlights the need for year‐round metabolism studies spanning multiple years to
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both provide better estimates of seasonal and annual metabolism, as well as establish baseline conditions as winter
conditions continue to change.

Data Availability Statement
All data used in this analysis are published in the Environmental Data Initiative (EDI) repository and cited
throughout the manuscript: Carey and Breef‐Pilz (2022, 2023a, 2023b), Carey, Lewis, et al. (2022), Carey, Breef‐
Pilz, et al. (2023), Carey, Lewis, and Breef‐Pilz (2023), Carey, Breef‐Pilz, and Woelmer (2023), Carey, Howard,
et al. (2023), and Carey, Wander, et al. (2023). Code used to conduct this analysis is published in a Zenodo
repository (Howard et al., 2024).
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