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A B S T R A C T

Adaptive physiological traits of cyanobacteria allow plasticity of responses to environmental change at multiple
time scales. Most conventional phytoplankton models only simulate responses to current conditions without
incorporating antecedent environmental history and adaptive physiological traits, thereby potentially missing
mechanisms that influence dynamics. We developed an individual-based model (IBM) that incorporates infor-
mation on light exposure history and cell physiology coupled with a hydrodynamic model that simulates mixing
and transport. The combined model successfully simulated cyanobacterial growth and respiration in a whole-lake
nutrient enrichment experiment in a temperate lake (Peter Lake, Michigan, USA). The model also incorporates
non-photochemical quenching (NPQ) to improve simulations of cyanobacteria biomass based on validation
against cyanobacteria cell counts and chlorophyll concentration. The IBM demonstrated that physical processes
(stratification and mixing) significantly affect the dynamics of NPQ in cyanobacteria. Cyanobacteria had high
fluorescence quenching and long photo-physiological relaxation periods during stratification, and low quenching
and rapid relaxation in response to low light exposure history as the mixing layer deepened. This work dem-
onstrates that coupling adaptive physiological trait with physical mixing into models can improve our under-
standing and enhance predictions of bloom occurrences in response to environmental changes.

1. Introduction

Non-photochemical quenching (NPQ) is an adaptive physiological
trait used in cyanobacteria in response to high solar radiation. When
light levels exceed cyanobacteria photosynthetic requirements, they can
trigger NPQ to avoid photooxidative damage (Müller et al., 2001; Kar-
apetyan, 2007). In aquatic environments, particularly at the water sur-
face in daylight conditions, NPQ considerably reduces fluorescence
yields (Bertone et al. 2018). Therefore, NPQ can lead to an incorrect
interpretation of cyanobacterial biomass (Karapetyan, 2007), as it re-
duces fluorescence readings from in situ fluorometric probes (Rousso
et al., 2021). NPQ consists of three distinct processes: energy-dependent
NPQ (qE), state-transition quenching (qT), and photoinhibition
quenching (qI) (Blommaert et al., 2017; Lucius et al., 2020). Each pro-
cess has different relaxation kinetics, ranging from seconds to hours. qE

relaxes or reverses within seconds, reducing fluorescence by up to 90 %
through the generation of a pH gradient across the thylakoid membrane,
linked to the xanthophyll cycle (Huot and Babin, 2010; Murchie and
Lawson, 2013). qT involves the detachment of light-harvesting complex
II (LHCII) from Photosystem II (PS II), which reduces photon absorption
and total excitation energy, typically relaxing within 5 to 20 min after
light exposure ends (Huot and Babin, 2010; Murchie and Lawson, 2013).
qI is associated with photoinhibition and damage to D1 proteins in Re-
action Centre II, preventing further photochemical reactions and taking
several hours to relax (Müller et al., 2001; Morrison, 2003; Huot and
Babin, 2010; Murchie and Lawson, 2013). These three processes are
coupled and require joint consideration (Behrenfeld et al., 1998; Moore
et al., 2006). Rousso et al. (2021) showed that prior light exposure in-
fluences the magnitude of NPQ and revealed a daily hysteresis pattern,
with greater fluorescence suppression occurring in the afternoon
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compared to the morning for the same level of irradiance.
The light exposure history of cyanobacteria, which affects phyco-

cyanin fluorescence and the estimation of cyanobacteria biomass by
fluorometers, is affected by both surface light availability and physical
processes in lakes. If turbulent mixing dominates over the average
population floating velocity, there might be a limited time for high light
exposure and the development of NPQ (Rousso et al., 2021; Ranjbar
et al., 2022). Thus, phycocyanin output from a fluorometer near the
water surface may provide a linear approximation of cyanobacteria
biomass (Bertone et al., 2018). Conversely, if buoyant surface pop-
ulations are not redistributed due to low rates of turbulent mixing, there
exists the potential for substantial NPQ development, especially under
high light levels (Rousso et al., 2021; Ranjbar et al., 2022); phycocyanin
fluorescence will therefore be disconnected from biomass (Bertone et al.,
2018). As such, understanding and prediction of NPQ and cyanobacteria
biomass could be improved by accounting for the light exposure history
of individuals and lake-scale physical processes (e.g., mixing). However,
existing modelling approaches commonly fail to capture physiological
responses of cyanobacteria to antecedent environmental conditions
concurrently with physical processes in the water column, leading to
inaccuracies in bloom predictions (Hellweger, 2017; Stow et al., 2022).
These inaccuracies motivate the need for new lake-scale modelling ap-
proaches that incorporate the effects of antecedent conditions on cells
(Xiao et al., 2022).

Individual-based models (IBMs) – sometimes referred to as agent-
based models – can include the time history of processes that affect
cyanobacterial bloom dynamics. Each bloom-forming element (e.g., cell
or filament) in an IBM can carry a memory (e.g., of light exposure his-
tory). In IBMs, each individual has also a set of attributes and behaviors
that are simulated as an individual entity influenced by environmental
conditions, such that multiple individuals capture the intra-specific
variability in cyanobacteria populations (Hellweger and Bucci, 2009;
DeAngelis and Grimm, 2014). In addition, IBMs can be coupled to hy-
drodynamic models to capture the effects of stratification and mixing
processes on the transport of cyanobacteria (Ranjbar et al., 2021). The
first use of an IBM in ecology was in the 1970s using the JABOWA forest
model (Botkin et al., 1972). However, the first IBM for cyanobacterial
blooms was developed about three decades later by Wallace et al.
(2000), who examined the relationship between Microcystis sp. buoy-
ancy regulation and diurnal stratification. To date, IBMs have only oc-
casionally been applied for cyanobacteria bloom modelling, mainly
because of their complexity and high data and computational demands
(Ranjbar et al., 2021).

In this study, for the first time, we modelled how cyanobacteria
growth, respiration, NPQ, and entrainment/disentrainment interact to
affect cyanobacteria biomass. For this purpose, we developed a novel
IBM that was coupled to a hydrodynamic model. The model was applied
to Peter Lake, Michigan, USA, in 2015, where a large bloom dominated
by the cyanobacterium Dolichospermum sp. (comprising 93 % of the total
community cell counts) occurred (Wilkinson et al., 2018). Therefore, the
IBM was adapted to Dolichospermum sp. Nonetheless, the model is ver-
satile and can also be adapted to the simulation of other bloom-forming
buoyant cyanobacteria species. The model tracks the growth, light
exposure history, and NPQ of each Dolichospermum filament as it is
transported and mixed in three dimensions. We predicted that thermal
stratification in a lake would lead to high daytime fluorescence
quenching, followed by extended periods of photo-physiological relax-
ation, while mixing would cause low daytime quenching and rapid
relaxation because of the low light exposure history of filaments. Testing
this prediction requires a model able to consider the effects of NPQ on
phycocyanin fluorescence measurements.

2. Methods

2.1. Study area

Peter Lake (Fig. 1) is a temperate lake (surface area = 2.7 ha, mean
depth = 5.7 m, maximum depth = 18 m) located in Gogebic County,
Michigan, USA (46.253◦ N, 89.504◦ W). The lake is oligotrophic to
mesotrophic, and cyanobacterial blooms have not been observed in the
lake except for periods of experimental fertilization (Buelo et al., 2022).
Peter Lake lacks perennial inflow or outflow streams (Pace et al., 2021).
A more detailed description of the study site can be found in Carpenter
and Kitchell (1993).

In a whole-lake experiment conducted in 2015, inorganic nitrogen
and phosphorus (20.3 mg N m−2 d−1 and 3.0 mg P m−2 d−1; N:P molar
ratio of 15:1) were added to the lake from day of year (DOY) 151 to 180
(i.e., 31 May to 29 June), resulting in a cyanobacterial bloom (Pace
et al., 2017). Between DOY 175 and DOY 179, chlorophyll a concen-
tration rose from approximately 23 to 40 μg L−1 after which it declined
to approximately 18 μg L−1 on DOY 182 (Pace et al., 2017).

Microscopic counts revealed that cyanobacteria, primarily Dolicho-
spermum sp., comprised 93 % of the phytoplankton biomass on DOY 180
(Wilkinson et al., 2018). In contrast, chrysophytes dominated the
phytoplankton community on DOY 166 and 229, constituting approxi-
mately 45 % and 68 % of the total biomass, respectively (Wilkinson
et al., 2018). A succession from chrysophytes to the cyanobacterium
Dolichospermum appears to correspond to the fertilization event. The
measured water temperature profiles show that the lake was more
strongly stratified on DOY 180 compared to DOY 166 and 229. The
interaction between stratification strength and the high ascent rate of
Dolichospermum sp. (Carey et al., 2012; Visser et al., 2016) could in part
explain its dominance on DOY 180. It is worth noting that in prior
nutrient fertilization studies of Peter Lake, Dolichospermum also domi-
nated (Cottingham et al., 1998). A plankton succession model (Cagle
and Roelke, 2024) or an IBM incorporating different species and coupled
with a hydrodynamic-ecological model would help us to better under-
stand species succession and the occurrence of the Dolichospermum in
Peter Lake in 2015.

The nutrient addition experiment caused a nutrient-replete condition
(i.e., no nitrogen or phosphorus limitation) that led to high phyto-
plankton biomass in Peter Lake (Pace et al., 2017). Our model was
applied to the period of DOY 175 to DOY 182 (i.e., 24 June to 1 July),
when the lake experienced stratification, followed by mixing on DOY
181. This allowed us to assess the effectiveness of our IBM in capturing
the impacts of both stratification and mixing conditions on the NPQ in
cyanobacteria.

2.2. Hydrodynamic (lake) model

MIKE 3 Flow Model FM (DHI, 2021) was used for hydrodynamic
modelling. The model is based on a numerical solution of the
three-dimensional incompressible Reynolds Averaged Navier–Stokes
equations, subject to the assumptions of Boussinesq and hydrostatic
pressure. The horizontal eddy viscosity is estimated using the Smagor-
insky formulation and the vertical eddy viscosity with the k-epsilon
formulation. The model accounts for heat exchange between water and
the atmosphere, calculated from latent and sensible heat flux, net
shortwave, and net longwave radiation.

The spatial discretization is performed using a cell-centered finite
volume method. For time integration, a semi-implicit approach is uti-
lized, treating horizontal terms explicitly and vertical terms implicitly.
Due to stability restrictions when using an explicit scheme, the time step
interval must be selected so that the Courant-Friedrich-Lévy (CFL)
number is less than one at all computational nodes. In MIKE 3 Flow
Model FM, the time step for the hydrodynamic calculations is dynamic
and determined to satisfy the mentioned stability criterion. In this study,
the overall time step interval, which determines the frequency at which
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output can be obtained from the model, was set to one minute. There-
fore, the hydrodynamic model produced one-minute output, including
three-dimensional currents, water temperature, and turbulent diffu-
sivity, as well as water level fluctuations. The model has been success-
fully used to simulate the hydrodynamic and thermal structure of inland
water bodies (e.g., Sokolova et al., 2013; Zhang et al., 2020). The
complete hydrodynamic model equations are available in the model’s
scientific documentation (DHI, 2021).

Xue et al. (2017) discussed the importance of three-dimensional lake
models to adequately resolve horizontal and vertical mixing processes
and reduce biases in lake surface temperature and thermal stratification.
On this basis, we used a three-dimensional hydrodynamic model to
simulate hydrodynamics in Peter Lake and drive the IBM. The model was
driven by atmospheric forcings including air temperature, wind speed
and direction, short and long wave radiation, precipitation, evaporation,
and relative humidity. Air temperature and wind data were collected by
a weather station deployed on a raft near the deepest point of Peter Lake
(Fig. 1). Precipitation, evaporation, and short and long wave radiation
data were obtained from the ERA5 reanalysis product available at a
spatial resolution of 0.25◦. Relative humidity was measured at the Noble
F. Lee Municipal Airport at Woodruff, located ~40 km southwest of
Peter Lake.

In the horizontal, the domain was configured with an unstructured
triangular grid with a resolution varying from 20 m to 50 m. In the
vertical, the three-dimensional domain comprised a combined sigma/z-
level vertical distribution and vertical resolution was set to 0.05 m to
enhance the representation of the vertical thermal structure, turbulent
mixing, and consequently, the mixing and transport of Dolichospermum
in the lake. A detailed description of model calibration is provided in
Section 2.4.

2.3. Individual-based model (IBM)

The IBM was developed in the MIKE ABM Lab environment (DHI
2021). The time step in the IBM was set to one minute. The length of the
simulation was one week, between the DOY 175 and DOY 182 in 2015.
At the beginning of the simulation, filaments were released between a
depth of 1.2 m and 1.3 m with a biomass of 13.81 pg C. At one-minute
intervals, the IMB was forced with simulated hydrodynamic model
outputs (i.e., three-dimensional currents, water temperature, and tur-
bulent diffusivity, as well as water level fluctuations) in a manner similar
to that of Ani et al. (2024). During each time step, Dolichospermum fil-
aments were subjected to the local environmental conditions, accrued or
lost biomass based on the balance between the photosynthesis and
respiration of filaments, and experienced light-induced fluorescence
quenching.

The lake environment was configured with unstructured triangular
grids for setting the hydrodynamic model domain. The computational
domain was the same for both the hydrodynamic model and IBM. The
filaments were able to move between grid cells in the model domain,

changing position according to their floating velocity and advection and
dispersion processes in the lake.

The IBM was developed to capture the interaction between physio-
logical traits and physical processes controlling the dynamics of the
Dolichospermum bloom. Adaptive physiological traits were incorporated
into the IBM. The main adaptive trait was the response of the filaments
to light exposure history. Prior light exposure was incorporated into the
IBM, enabling the model to replicate the pattern of hysteresis observed
in NPQ dynamics in cyanobacteria, showing greater fluorescence sup-
pression in the afternoon compared to the morning for the same level of
irradiance (Rousso et al., 2021). In addition, the coupled
IBM-hydrodynamic model considered lake-scale processes (e.g.,
three-dimensional mixing of cyanobacteria).

The main outputs of the IBM were the distribution of filaments,
biomass, and NPQ of Dolichospermum. A random walk technique (Visser,
1997) was used to capture the effects of sub-grid scale turbulent diffu-
sion on the trajectories of filaments, which helped to avoid the purely
deterministic and numerical synchronization effects.

Due to the complexity and high computational demand of IBMs
(Hellweger et al., 2016), it was not feasible to simulate each individual
cell that contributed to the bloom (e.g., the maximum number of Doli-
chospermum cells in Peter Lake in 2015 exceeded 2.0 × 105 cells m L–1).
To overcome this limitation, super individual-based modelling was used,
where a “super individual” represents a collection of numerous in-
dividuals, with the number of individuals represented determined by an
upscaling factor (Scheffer et al., 1995; Hellweger et al., 2016). In this
study, the upscaling factor was 4.09 × 1012 throughout the simulation
period. The number of super-individuals was 100 during the simulation
period, and changes in the modelled biomass were attributed to varia-
tions in the filament size, which was one of the model outputs.

2.3.1. Submodels of the IBM

2.3.1.1. Growth and respiration submodel. Model equations are given as
follows. Table 1 lists model parameters and state variables. In the IBM,
the maximum daily growth rate (μmax) of filaments was size-dependent,
with positive growth rate led to filament elongation and vice versa for
negative growth rate. The maximum growth rate of each filament at 20
◦C was determined based on the ratio of its surface area (s in μm2) to
volume (v in μm3) (Reynolds, 1989) as:

μmax = 1.142
(
sv−1)0.325 (1)

The net daily growth rate (μnet) was governed by the following
equation:

μnet = μmaxLTLL − μR (2)

where LT and LL are limitation terms applied to regulate growth
dependence on water temperature (T) and light (L) that a filament
experienced, respectively, and μR (d−1) is the respiration rate, which was

Fig. 1. Map of the USA and the location of Peter Lake is shown by the red inset (a). Bathymetry (m) of the lake and the location of the Peter Lake monitoring site is
shown by the blue inset (b).
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estimated as:

μR = Rθ(T−20) (3)

where R is a term for the combined effects of respiration and mortality at
20 ◦C, and θ is a coefficient governing the respiration/mortality response
to water temperature. R and θ were set to 0.1 d−1 and 1.1, respectively
(Ranjbar et al., 2022). The temperature limitation term was given by
(Prokopkin et al., 2006):

LT = exp

(
−
(T − T0

q

)2)
(4)

where T0 is the optimum temperature, and q is the thermal dispersion
parameter. T0 and q were set to 22 ◦C and 5 ◦C, respectively (Hellweger
et al., 2008). The light limitation term was governed by the following
equation (Prokopkin et al., 2006):

LL =
Iz

Iz + e+ uIz2 (5)

where Iz is the irradiance that a filament was exposed to at depth z, e
(μmol m−2 s−1) is the half-saturation constant, and u (m2 s μmol−1) is the
inhibition constant. The parameters e and uwere set to 114.25 μmol m−2

s−1 and 2.19 × 10−4 m2 s μmol−1, respectively (Hellweger et al., 2008).
Iz was estimated by Lambert-Beer’s law of exponential light extinction:

Iz = I0exp(−Kdz) (6)

where I0 (W m−2) is the surface irradiance, and Kd (m−1) is the light
extinction coefficient. I0 and Kd were determined based on photosyn-
thetically active radiation (PAR) measured on Peter Lake and in the
water column, respectively. To remove the effect of transient clouds on
surface PAR, the 60-minute moving average of PAR was used. Based on
μnet , the doubling time (Dtime), and filament size changes (DG,t) at the
current time step (t), were calculated as:

Dtime =
ln(2)
μnet

(7)

DG,t = Dt−1 × 2
Δt
Dtime (8)

where Dt−1 is the filament size at the previous time step (t−1) and Δt is
the time interval.

2.3.1.2. Non-photochemical quenching (NPQ) submodel. Experimental
results of Rousso et al. (2021) were used to determine the light-induced
fluorescence quenching in Dolichospermum in the IBM. Since light
exposure history affects the magnitude of NPQ (Rousso et al., 2021), we
aimed to develop a representation of NPQ which considers the cumu-
lative irradiance instead of instantaneous irradiance. The cumulative
light dose with a built-in recovery was calculated as:

CLt = max(ILt −PRR+CLt−1, 0) (9)

where CLt and CLt−1 (μmol m−2 s−1) are the cumulative light dose at the
current and previous time steps, respectively. ILt (μmol m−2 s−1) is the
instantaneous light dose at the current time step, and PRR is the
photosynthesis recovery rate from NPQ. The light-induced variability in
phycocyanin fluorescence observed in Rousso et al. (2021) was plotted
against CL calculated using Eq. (9) (Fig. 2a). The rate of NPQ (dNPQ,t) was
plotted against CL, and a linear trendline was fitted to the data points
(Fig. 2b). The equation of the trendline was used as dNPQ,t in the IBM:

dNPQ,t = α
(
− 3.0 ×10−6CLt +0.3

)
(10)

where α is the calibration coefficient. Based on dNPQ,t , NPQ at the current
time step (NPQt) was calculated as:

NPQt = NPQt−1 + dNPQ,t (11)

In the IBM, NPQt range was limited between zero and 90 % (Roesler
and Barnard, 2013) and was set to zero when CLt was zero.

2.3.1.3. Buoyancy and transport submodel. In line with Hellweger et al.
(2008), the floating velocity of filaments was set to 1.0 m d−1. The
transport of each filament depends on the interaction between its
floating velocity and advection and dispersion processes as discussed by
Ranjbar et al. (2021). The flow field and turbulent diffusivity derived
from the hydrodynamic model were used to capture the advection and
dispersion of filaments.

2.4. Model evaluation

In situ water temperature profiles, collected using a thermistor chain
spanning depths from 0.5 to 5 m near the center of Peter Lake (Coloso
et al., 2011), were used to assess the model’s ability to simulate the
hydrodynamics in the lake. For evaluation of the hydrodynamic model,
time series of measured and modelled Schmidt stability (St; Idso, 1973)
were also compared. Based on vertical water temperature profiles, St
denotes the energy required to fully mix the water column. The “Lake
Analyzer” tool was used for the calculation of St (Read et al., 2011).

To calibrate the hydrodynamic model, the transfer coefficient for
cooling, affecting the convective heat transfer between the water and
the atmosphere, and the Beta coefficient in Beer’s Law that determines
the short-wave penetration into the water were set to 0.00625 and 0.6,
respectively (note that the light extinction coefficient (Kd) varied be-
tween 1.4 and 1.7 m−1 based on PAR profiles). The minimum wind
speed used for the calculation of the convection flux is determined as the
larger value between the wind speed at the open boundary and the
critical wind speed. The default value for the critical wind speed is 2 m
s−1, but in this study, it was set to 3.7 m s−1. Furthermore, the maximum
vertical eddy viscosity was set to 1.0 × 10−6 m2 s−1, which is consistent
with values for a small, forested lake (Chapra, 2008; Zhao et al., 2021).
The results of the modelled temperature profiles and vertical distribu-
tion of cyanobacteria (i.e., accumulation of cyanobacteria during the
stratification period and their redistribution during the mixing event)
showed that the modelled vertical eddy viscosity was sufficiently ac-
curate to capture the vertical mixing processes given the difficulty in

Table 1
Model parameters and state variables used in the study.

Description Unit Value

Roughness height m 5.0 × 10−2

Drag coefficient Unitless 1.255 ×
10−3

Constant in Dalton’s law Unitless 5.0 × 10−1

Wind coefficient in Dalton’s law Unitless 9.0 × 10−1

Critical wind speed for latent heat flux m s−1 2
Transfer coefficient for heating Unitless 1.10 × 10−3

Transfer coefficient for cooling Unitless 6.25 × 10−3

Critical wind speed for sensible heat flux m s−1 3.7
Beta in Beer’s law Unitless 6.0 × 10−1

Light extinction coefficient m−1 1.4–1.7
Maximum vertical eddy viscosity m2 s−1 1.0 × 10−6

R, term representing the effects of respiration/
mortality at 20 ◦C

d−1 1.0 × 10−1

θ, respiration/mortality coefficient Unitless 1.1
T0, optimum temperature ◦C 22
q, thermal dispersion parameter ◦C 5
e, irradiance half-saturation constant μmol m−2

s−1
114.25

u, irradiance inhibition constant m2 s μmol−1 2.19 × 10−4

PRR, photosynthesis recovery rate from NPQ μmol m−2

s−1
800

α, NPQ calibration coefficient Unitless 1.2 × 10−2

Filaments velocity m d−1 1
Minimum cell biomass pg C cell−1 13.81
Chlorophyll a content per cell pg cell−1 1.65

M.H. Ranjbar et al.



Ecological Modelling 495 (2024) 110803

5

quantifying turbulence for a hydrostatic model (for more details see
Hodges et al., 2000; Rueda and MacIntyre, 2010).

The IBM was calibrated against Dolichospermum cell counts, which
were estimated from a relationship between the microscopic cyano-
bacteria counts and phycocyanin sensor readings at a depth of 0.75 m.
Phycocyanin was measured using a YSI 6600V2-4 multiparameter sonde
(Yellow Springs Instruments, Yellow Springs, Ohio, USA). The micro-
scopic counts were done on samples from DOY 145, 166, 180, and 229.
To obtain reasonable estimates of cell counts, phycocyanin readings on
DOY 180 were corrected to remove the influence of NPQ. Based on the
modelled fluorescence suppression, the NPQ correction factor and NPQ-
corrected phycocyanin readings were determined. The raw phycocyanin
readings (i.e., NPQ-impacted phycocyanin readings) were calibrated
with the correction factor to obtain corrected phycocyanin readings (i.e.,
NPQ-corrected phycocyanin readings). The total biovolume of Dolicho-
spermum (BV) was then correlated with the maximum phycocyanin
readings (PC) on DOY 145, 166, 180, and 229, and the following
equation was obtained:

BV = 4.70 × 10−5PC+ 0.083 (12)

Subsequently, Dolichospermum cell counts were calculated based on
the biovolume, in line with Rousso et al. (2022). Note that phycocyanin
readings on DOY 145, 166, and 229 were not corrected. Water-column
stability was high on DOY 180 (St = 163 J m−2), and filaments accu-
mulated near the water surface and experienced a high level of light,
leading to a significant NPQ. As a result, it was necessary to correct
phycocyanin readings on DOY 180 to remove the influence of NPQ and
obtain reasonable estimates of cell counts. In comparison with DOY 180,
water-column stability was lower on DOY 145 and 166 with St of
approximately 78 and 119 J m−2, respectively. St on DOY 229 was about
188 J m−2, but there was mixing between DOY 228 and 233 that reduced
St from 200 to 132 J m−2. Therefore, we assumed that filaments were
redistributed on DOY 145, 166, and 229 and received lower light than
DOY 180. As a result, it is reasonable to consider a linear relationship
between phycocyanin readings and biomass on those days.

Modelled Dolichospermum cell counts were determined based on the
number of filaments and constituent cells in the top 0.75-m layer of the
lake at each time step, and the number of constituent cells of each
filament was calculated by dividing the total filament biomass by the
minimum cell biomass (13.81 pg C cell−1). To match the estimated and
simulated Dolichospermum cell counts, PRR in Eq. (9) and α in Eq. (10)
were set to 800 μmol m−2 s−1 and 0.012, respectively.

To show the ability of the model to reproduce the observed cyano-
bacteria biomass, the IBM was also calibrated against the chlorophyll a
grab samples collected each day near the deepest point of Peter Lake at a
depth of 0.5 m. The modelled chlorophyll a was calculated based on the
chlorophyll a content per cell and the number of cells in the top 0.5-m
layer of the lake at each time step. To obtain the best agreement be-
tween model results and field data, chlorophyll a content per cell was set
to 1.65 pg cell−1 in the IBM.

To assess the performance of the model, mean relative absolute error
(MRAE) and correlation coefficient (r) were used. The MRAE was
calculated as:

MRAE = 1
n
∑n

i=1

|yi − ŷi |
ŷi

(13)

where n is the number of observations. yi and ŷi are simulated and
observed data, respectively.

3. Results

3.1. Hydrodynamic model results

From DOY 175 to 179, the water column was thermally-stratified,
and Schmidt stability (St) increased by about 30 J m−2. Then, the
water column was partially mixed, and St decreased from 168.6 J m−2 to
130 J m−2 by DOY 182 (Figs. 3 and 4b). Surface water temperature and
St also exhibited diel variations mainly in response to convective heating
and cooling (Figs. 3 and 4b). As observed in Fig. 4 and Table 2, the
hydrodynamic model accurately reproduced the thermal structure and
St under stratified and mixing conditions. Correlation coefficients of
0.997 for water temperature and 0.91 for St were noted between model
results and observations. Furthermore, an MRAE of 3.6 % and 2.8 %,
pertaining to water temperature and St, respectively, was obtained.

3.2. IBM results

During the period of stratification, near-surface Dolichospermum cell
counts and chlorophyll a concentration increased, but subsequently
decreased, which coincided with the mixing event (Fig. 5). PAR
measured by a weather station deployed on a raft near the deepest point
of Peter Lake varied modestly during the study period (Fig. 5a). Simi-
larly, the average instantaneous light (IL) dose experienced by filaments
in the top 0.75-m layer of the lake showed modest variability (Fig. 5b).

Fig. 2. Non-photochemical quenching (NPQ) observed by Rousso et al. (2021) (a) and rate of NPQ (dNPQ) versus cumulative light dose (CL), including recovery from
NPQ (b). The equation for best-fit line and the R-squared value are shown in (b). Based on the observed NPQ dynamics in Dolichospermum (a), dNPQ in the IBM was
calculated (b). Positive dNPQ represents NPQ development, while negative dNPQ represents NPQ relaxation in response to accumulated light exposure.
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However, the cumulative light (CL) dose encountered by the filaments
was significantly higher during the stratification period (DOY 175–179)
than during the mixing period (DOY 181–182) when filaments were
entrained and mixed more deeply (Fig. 5c). Low surface PAR on DOY
180 (Fig. 5a) led to filaments experiencing a low light dose (Fig. 5b,c).

Estimated Dolichospermum cell counts exceeded 2.0 × 105 cells mL–1

and then decreased to around 6.4 × 103 cells mL–1 over DOY 175 to 182
(Fig. 5d). As observed in Fig. 5d and Table 2, modelled NPQ-impacted
Dolichospermum cell counts were highly correlated with observations
(r = 0.78, MRAE = 19.7 %). Fig. 5d also shows the variation in the NPQ-
free Dolichospermum cell counts. The maximum difference between
NPQ-impacted and NPQ-free cell counts occurred around noon due to
high NPQ (Fig. 5d). As seen in Fig. 5d and Table 2, the agreement be-
tween the in situ fluorometry and modelled NPQ-free cell counts (r =
0.59, MRAE = 32.1 %) was lower than that between the in situ fluor-
ometry and modelled NPQ-impacted cell counts (r= 0.78, MRAE = 19.7
%). Therefore, incorporating NPQ into the IBM improved the model
predictions. NPQ was higher during stratification when NPQ relaxation
kinetics did not compensate for high light exposure (Fig. 5e). The NPQ
relaxation duration was shorter during the mixing event due to the lower
light exposure and relatively low NPQ (Fig. 5e).

Between DOY 175 and 179, chlorophyll a concentration rose from
approximately 23 to 40 μg L−1 after which it declined to approximately
18 μg L−1 on DOY 182 (Fig. 5f). There is a good agreement between daily
manual chlorophyll a samples and modelled chlorophyll a with a cor-
relation coefficient of 0.8 and an MRAE of 16.6 % at the time of grab
sampling in the mornings (Fig. 5f and Table 2).

Fig. 6 shows spaghetti plots of filament vertical distribution, IL, CL,
and NPQ at the individual level. Most filaments accumulated near the
water surface during the stratification period (Fig. 6a). As a result, they
experienced a higher level of instantaneous and cumulative light
(Fig. 6b, c), leading to more significant NPQ during the stratification
(Fig. 6d). However, the mixing event redistributed the filaments to

deeper depths (Fig. 6a). Therefore, the filaments encountered lower
light (Fig. 6b, c) and, in turn, lower NPQ with a shorter relaxation
duration (Fig. 6d).

4. Discussion and conclusions

We developed a dynamic, mechanistic IBM of Dolichospermum
focusing on adaptive physiological traits of cyanobacteria in response to
current and antecedent environmental conditions. In this study, the ef-
fect of NPQ was removed from fluorometric probe readings to distin-
guish between observed fluorescence and cyanobacteria biomass, which
is not possible with conventional cyanobacterial bloom models.

Variability in cyanobacteria cell counts observed by fluorescence
probes is not only driven by changes in biomass but also other artefacts
arising from complex interactions among growth and loss, NPQ, and
entrainment/disentrainment processes. When thermal stratification
occurred in Peter Lake and St increased, the filaments were exposed to
high levels of solar radiation in the near-surface region because their
vertical flotation velocity dominated over redistribution from turbulent
mixing. This accumulation in the illuminated and warm uppermost
layers increased cyanobacteria growth rates, leading to higher biomass
near the water surface. In addition, this accumulation led to higher
levels of NPQ, and the linear relationship between fluorescence and
cyanobacterial biomass was no longer valid. The growth resulted in a net
increase in Dolichospermum cells, however, denoted by increased fluo-
rescence in night-time observations (i.e., when NPQ relaxation had been
complete). After this growth period, mixing caused the filaments to be
redistributed away from the surface and decreased the near-surface
biomass. This redistribution also prevented sustained exposure of cya-
nobacteria to high surface irradiances (MacIntyre, 1993) which reduced
NPQ, but also limited growth through light limitation (cf. Visser et al.,
2016).

The model results show that the relationship between cyanobacteria

Fig. 3. Measured (a) and modelled (b) water temperature in Peter Lake in 2015 for the upper 5 m of the water column. Water temperature was measured by a
thermistor chain with a vertical resolution of 0.5 m (water temperature at depth of 4.5 m was determined by averaging the values of water temperature at depths 4
and 5 m). The simulated water temperature profile (b) had a vertical resolution of 0.05 m, in line with the vertical resolution of the hydrodynamic model.
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blooms and water column stability in lakes is crucial in understanding
the dynamics of these blooms. According to the model results, when
water-column stability is high, cyanobacteria can disentrain from the
turbulence and accumulate near the water surface, consistent with the
observations by Humphries and Imberger (1982) and Hozumi et al.
(2020). The accumulation of cyanobacteria near the water surface
promotes their growth, as they can experience higher temperatures and
light levels (Hozumi et al., 2020). Climate change is expected to have a
profound effect on the stratification and mixing regimes of lakes
(Woolway and Merchant, 2019), with significant consequences for
bloom dynamics (Carey et al., 2012). In dimictic lakes, like Peter Lake,
which typically undergo seasonal mixing in spring and autumn while
stratifying continuously during the warmer months in between, climate
change can result in prolonged stratification periods and elevated water

temperatures during the summer months (Shatwell et al., 2019). Some
dimictic lakes are projected to become predominantly monomictic lakes,
characterized by seasonal mixing only in winter (Ficker et al., 2017;
Shatwell et al., 2019; Woolway and Merchant, 2019). The prolonged
stratification can provide an extended period during which cyanobac-
teria can benefit from buoyancy.

The early cyanobacterial bloom IBM work by Wallace et al. (2000),
who examined the relationship between cyanobacteria buoyancy and
the daily stratification/destratification cycle, set a foundation for the
buoyancy and transport submodel of our IBM. Furthermore, the growth
and respiration submodel of the IBM was developed in line with the
prior literature (e.g., Hellweger et al., 2008). In addition, lake-scale
processes (e.g., three-dimensional mixing of cyanobacteria) were
incorporated into the IBM to enhance its predictive capability for
lake-scale responses (Stow et al., 2022). The novelty of this study lies in
the incorporation of responses of adaptive physiological traits of cya-
nobacteria to light history. Most previously published studies were
restricted to models in which state variables responded directly to
exogenous factors only at the current time step, thus preventing the
simulation of emergent physiological features of cyanobacteria, as dis-
cussed by Hamilton et al. (2021). Our IBM was adapted for Dolicho-
spermum sp., but it can take into account various traits of different
strains and species. Therefore, the model has the capability to capture
the intra- and interspecific variations and community structure of
phytoplankton, providing insight into why certain species are found
under certain environmental conditions (Litchman et al., 2010) and

Fig. 4. Comparison of simulated and measured water temperatures (a) and Schmidt stability (St) (b) in Peter Lake in 2015. The dashed line in (a) corresponds to the
1:1 line. St was calculated based on water temperature profiles.

Table 2
Goodness-of-fit metrics (correlation coefficient, r, and mean relative absolute
error, MRAE) for water temperature, Schmidt stability (St), chlorophyll a, and
Dolichospermum cell counts.

Model Variable r MRAE (%)

Lake model Water temperature 0.997 3.6
Lake model St 0.910 2.8
IBM Chlorophyll a 0.800 16.6
IBM with NPQ Dolichospermum cell counts 0.780 19.7
IBM without NPQ Dolichospermum cell counts 0.590 32.1
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advancing community predictions under climate change conditions. The
IBM model is also a step towards improving mechanistic understanding
of growth limitation and provides further opportunity to dynamically
model cell quotas at the individual level.

The IBM enabled the study of adaptive physiological traits in a way
that has not been possible using conventional models or statistical

techniques. The model depicted the effects of antecedent conditions
experienced by individuals on bloom dynamics and led to more accurate
predictions of dynamics. In conventional approaches, bloom-forming
colonies or filaments are often modelled as chemical molecules (i.e.,
pigments are equated to colonies\filaments) and average properties of a
population within a control volume are simulated (Hellweger and

Fig. 5. Variations in surface PAR (a), instantaneous light dose (IL) (b), and cumulative light dose (CL) (c), and comparison between modelled and 3-h moving
average of estimated Dolichospermum cell counts in the top 0.75-m layer of Peter Lake in 2015 (d). Non-photochemical quenching (NPQ) is shown in (e). A com-
parison between daily manual chlorophyll a samples and modelled chlorophyll a in the top 0.5-m layer is presented in (f). The curves in (b), (c), and (e) are the
average IL, CL, and NPQ that filaments in the top 0.75-m layer of the lake experienced at each time step. The red line in (d) shows Dolichospermum cell counts from in
situ fluorometry.

Fig. 6. Variations in depth of individual Dolichospermum filaments (multiple colours) (a), instantaneous light dose (IL) (b), cumulative light dose (CL) (c), and non-
photochemical quenching (NPQ) (d) experienced by the filaments in Peter Lake in 2015. The thick black lines represent mean values at each time step. NPQ range was
limited between zero and 90 % in line with Roesler and Barnard (2013).
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Kianirad, 2007). In statistical techniques, relationships between input
and response variables are used for hindcasts and near-term forecasts of
cyanobacterial blooms (Ralston and Moore, 2020). The key departure of
our model from other cyanobacteria models is its ability to incorporate
antecedent environmental history and adaptive physiological traits. The
IBM captured the light exposure history to resolve the dynamics of
fluorescence suppression and NPQ relaxation kinetics. With sustained
high light exposure during stratification, light-induced fluorescence
suppression was severe and NPQ relaxation kinetics were slow. Fluo-
rescence suppression was reduced, and NPQ relaxation occurred quickly
under fluctuating light experienced by cyanobacteria during vertical
mixing. NPQ can be relaxed within seconds to hours (Müller et al., 2001;
Huot and Babin, 2010). Quenching associated with photoinhibition can
take several hours as cells repair their photosynthetic apparatus (Müller
et al., 2001; Huot and Babin, 2010). In addition to capturing NPQ
relaxation kinetics, quantitative NPQ estimates from the model allow
distinction from temporal changes in phytoplankton biomass caused by
vertical mixing or growth. Thus, the IBM can be used to deconvolve the
cyanobacteria biomass variability driven by physical processes from that
driven by physiological processes. The universality of light-induced
quenching and the widespread use of fluorescence probes to estimate
cyanobacterial biomass in surface waters highlight the value of the IBM
for a better prediction of cyanobacterial bloom dynamics in lakes and
reservoirs worldwide.

In conclusion, the development of a mechanistic IBM for cyano-
bacterial bloom prediction in this study advanced our understanding of
adaptive physiological traits and antecedent environmental influences
on cyanobacterial blooms. Developing IBMs for understanding and
predicting cyanobacterial blooms is a promising area of research with
major implications for bloom management.
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