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Abstract

Communicating and interpreting uncertainty in ecological model predictions

is notoriously challenging, motivating the need for new educational tools,

which introduce ecology students to core concepts in uncertainty communica-

tion. Ecological forecasting, an emerging approach to estimate future states of

ecological systems with uncertainty, provides a relevant and engaging frame-

work for introducing uncertainty communication to undergraduate students,

as forecasts can be used as decision support tools for addressing real-world

ecological problems and are inherently uncertain. To provide critical training

on uncertainty communication and introduce undergraduate students to the

use of ecological forecasts for guiding decision-making, we developed a

hands-on teaching module within the Macrosystems Environmental

Data-Driven Inquiry and Exploration (EDDIE; MacrosystemsEDDIE.org) educa-

tional program. Our module used an active learning approach by embedding fore-

casting activities in an R Shiny application to engage ecology students in

introductory data science, ecological modeling, and forecasting concepts without

needing advanced computational or programming skills. Pre- and post-module

assessment data from more than 250 undergraduate students enrolled in ecology,

freshwater ecology, and zoology courses indicate that the module significantly

increased students’ ability to interpret forecast visualizations with uncertainty, iden-

tify different ways to communicate forecast uncertainty for diverse users, and cor-

rectly define ecological forecasting terms. Specifically, students were more likely to

describe visual, numeric, and probabilistic methods of uncertainty communication

following module completion. Students were also able to identify more benefits of

ecological forecasting following module completion, with the key benefits of using

forecasts for prediction and decision-making most commonly described. These

results show promise for introducing ecological model uncertainty, data visualiza-

tions, and forecasting into undergraduate ecology curricula via software-based
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learning, which can increase students’ ability to engage and understand complex

ecological concepts.

KEYWORD S
active learning, ecological forecast, ecology education, Macrosystems EDDIE, R Shiny,
teaching modules, translational ecology, undergraduate curricula, visualization literacy

INTRODUCTION

Communicating uncertainty in ecological models is a
pressing challenge across ecology, motivating the need
for new educational tools to train students in understand-
ing and interpreting uncertainty in model predictions.
Uncertainty in ecological model predictions is inherent
across ecological disciplines, ranging across population
and community ecology models (e.g., Bird et al., 2021;
Halpern et al., 2006), disease ecology models (e.g., Briggs
et al., 2009; McClintock et al., 2010), landscape ecology
models (e.g., Lechner et al., 2012; Wu et al., 2006),
and ecosystem models (e.g., Link et al., 2012;
Melbourne-Thomas et al., 2012). Sources of uncertainty
in ecological models include uncertainty in model param-
eter estimates, initial conditions, and the underlying
processes being modeled (Dietze, 2017). Combined
together, these sources of uncertainty can have important
implications for interpreting model results, as well as
their utility in decision-making (e.g., Berthet et al., 2016;
Cheong et al., 2016). However, uncertainty is rarely com-
municated or is communicated poorly (Boukhelifa &
Duke, 2009; Hullman, 2020), hindering the use of
model output for both advancing ecological understand-
ing and decision-making (Joslyn & Savelli, 2010;
Milner-Gulland & Shea, 2017). This is likely because
uncertainty is a difficult concept for most individuals to
understand (Belia et al., 2005), as well as to mathemati-
cally quantify and represent graphically with visualiza-
tions (Bonneau et al., 2014; Potter et al., 2012;
Spiegelhalter et al., 2011). Given low levels of visualiza-
tion literacy in both the general and scientific population
(Maltese et al., 2015), educational tools to improve com-
munication of ecological model uncertainty are critically
needed.

Ecological forecasting provides a powerful framework
for teaching students uncertainty communication and
data science skills, which are increasingly needed for
21st-century careers (Rieley, 2018; Vought &
Droegemeier, 2020). Ecological forecasts, which are
future, out-of-sample model predictions of ecological var-
iables with quantified uncertainty (Table 1), can serve as
useful decision support tools for a variety of users
(Bodner et al., 2021; Tulloch et al., 2020). Because of the

utility of forecasts in both informing decision-making
and the testing of ecological theory (Carey et al., 2022;
Dietze et al., 2018; Lewis, Rollinson, et al., 2022), ecologi-
cal forecasting is a rapidly growing subfield of ecology
(Lewis, Woelmer, et al., 2022).

Many near-term (day to decade ahead) ecological
forecasts are developed using the iterative forecasting
cycle (Lewis, Woelmer, et al., 2022), which has the poten-
tial to teach students foundational ecological forecasting
concepts (Moore, Thomas, et al., 2022). The iterative,
near-term forecasting cycle consists of multiple steps,
which parallel the scientific method: (1) make a hypothe-
sis about an ecological phenomenon; (2) develop or apply
an ecological model that represents that hypothesis
(e.g., a population-based model to predict bird abun-
dance); (3) quantify uncertainty around predictions;
(4) generate a forecast with uncertainty; (5) communicate
the forecast to users; (6) assess the forecast with observa-
tions; and (7) update the forecast with new data (Dietze
et al., 2018; Moore, Thomas, et al., 2022). Altogether,
teaching this iterative framework in ecology courses
could improve student understanding of complex ecologi-
cal concepts (Selutin & Lebedeva, 2017), as well as uncer-
tainty visualization skills.

Developing educational materials on ecological fore-
cast communication and interpretation presents several
unique challenges. First, forecasts are inherently uncer-
tain, yet they are needed to guide environmental man-
agement decisions, making it critical to properly
communicate the uncertainty associated with forecast
predictions (Berthet et al., 2016). Second, while there are
numerous studies on visualizing data uncertainty
(Olston & Mackinlay, 2002; Potter et al., 2012; Smith
Mason et al., 2017; Wiggins et al., 2018), little consensus
has emerged as to the best approach for visualizing fore-
cast uncertainty for both end user comprehension and
decision support. Third, it has been well-documented
that different approaches to visualizing uncertainty
result in varying levels of comprehension by users
(Cheong et al., 2016; Kinkeldey et al., 2017; McKenzie
et al., 2016; Ramos et al., 2013). Altogether, these chal-
lenges emphasize the need for thoughtful representation
of uncertainty in forecasts, as well as the need for
educational materials that teach students how to
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interpret and develop forecast visualizations for decision
support applications.

Several pedagogical methods may be useful for incor-
porating uncertainty visualization skills into introductory
ecological forecasting education. First, having students
create their own visualizations has been shown to
improve data visualization literacy (Alper et al., 2017;
Börner et al., 2016, 2019; Huron et al., 2014). Second,
teaching students how to produce a range of visualiza-
tions for the same forecast using a toolbox of different
visualization styles may enable them to communicate
their forecast to a broader range of users, as well as adapt
their visualizations for different user needs. For example,
teaching students how to communicate uncertainty in a
single forecast using multiple methods (e.g., representing
uncertainty with numbers, words, icons, and graphs such
as maps or time series; sensu Spiegelhalter et al., 2011)

can help illustrate the multitude of ways uncertainty can be
visualized and build students’ ability to interpret diverse
forecast visualizations. Third, teaching students to commu-
nicate forecast uncertainty using thresholds that are directly
meaningful for decision-making has proven utility in
uncertainty communication (Kox et al., 2018). For exam-
ple, communicating a forecast of the abundance of an
endangered species as a forecast index (e.g., the likeli-
hood of encountering that endangered species at a site)
may be a more effective communication style for some
forecast users by placing forecast output in a
decision-making context (see Table 1 for definitions).
Fourth, emphasizing the importance of identifying fore-
cast users and specifically the decisions that could be
made with forecasts could increase the relevance of eco-
logical forecasting for students. Presenting ecological con-
cepts in culturally and societally relevant contexts is

TAB L E 1 Glossary of uncertainty communication and ecological forecasting terms taught in Macrosystems Environmental Data-Driven
Inquiry and Exploration Module 8: “Using Ecological Forecasts to Guide Decision-Making” as well as examples of how each term is applied
to real-world, near-term forecasting.

Term Definition Example

Ecological forecast A prediction of a future event with uncertainty A forecast of the distribution and density of the invasive
spongy moth for 1 month into the future which
includes uncertainty

Forecast index A forecast output that translated into thresholds,
which are meaningful for decision-making

22% chance of spongy moth outbreak in a given location

Forecast output Future predictions with uncertainty generated
using a model

Spongy moth density is 24 individuals/km2

± 4 individuals/km2

Forecast user Anyone who can use a forecast to gain
understanding or make a decision

Scientist studying oak tree populations, homeowner, etc.

Forecast decision
use

A specific way in which a forecast is used to inform
a decision

A forecast of the density of invasive spongy moth guiding
a decision about buying moth insecticide

Forecast decision
use cases

Categories of forecast users defined by their
decision use needs (adapted from Raftery, 2016)

• Casual user: Users who do not require probabilistic
forecasts; for example, a park visitor interested in
which areas within the park are affected by
spongy moth

• Practitioner: Users who need an overall idea of
uncertainty; for example, homeowner deciding to
protect oak trees on their land in an area affected by
spongy moth

• Decision analyst: Users who require detailed
information about uncertainty; for example, a natural
resource manager deciding which area of a park to
treat for spongy moth invasion

Structured
decision-making

A formalized method of analyzing a decision by
dissecting its components

PrOACT is a structured decision-making tool, which
guides users through identifying and analyzing the
following components of a decision:

Problem
Objective
Alternatives
Consequences
Trade-offs

ECOSPHERE 3 of 23

 21508925, 2023, 8, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4628, W

iley O
nline Library on [20/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



known to stimulate student engagement (Cid &
Pouyat, 2013; Henri et al., 2022; Vance-Chalcraft &
Jelks, 2022) and can lead to more collaborative and effec-
tive research and management broadly within the scientific
community (Armitage et al., 2009; Cvitanovic et al., 2013).

In addition to the pedagogical approaches above, inte-
grating the concepts of decision science (e.g., through
structured decision-making or decision use cases, see
Table 1 for definitions; Clemen & Reilly, 2004; Gregory
et al., 2012) may help students better understand the
needs of different forecast users and correspondingly lead
to improved forecast visualizations. Current ecological
forecasting teaching materials have largely been
methodology-focused, omitting application and commu-
nication components (Willson et al., 2022). This focus on
methods skill-building, while very valuable, may fail
to engage students who have yet to master the com-
putational and quantitative skills needed for forecast
development. While development of methodological
skill-building is critical to training the next generation of
ecological forecasters, the technical skills associated with
uncertainty quantification or data assimilation may be
initially intimidating to ecology students who have not
yet had substantial mathematical coursework. Initially
learning about forecasting through the lens of data visu-
alization and decision science, which robustly demon-
strates the utility of ecological forecasting, can help
provide students with motivation to master the technical
quantitative skills needed for this emerging discipline.

To introduce students to key concepts in uncertainty
visualization and communication in the context of
using near-term ecological forecasts for real-world
decision-making, we developed a 3-h teaching module,
“Using Ecological Forecasts to Guide Decision-Making,” as
part of the Macrosystems Environmental Data-Driven
Inquiry and Exploration (EDDIE; MacrosystemsEDDIE.org)
program. The module entailed a short introductory lecture,
three scaffolded, hands-on forecasting activities embedded
within an online interactive tool built using an R Shiny
application (Chang et al., 2022), and discussion questions.
Instructors were also provided with a pre-module student
handout, which included suggested readings and discus-
sion questions to provide students with background infor-
mation before beginning hands-on module activities. To
test the effectiveness of our interactive teaching module on
students’ ability to learn uncertainty communication and
foundational ecological forecasting concepts within a deci-
sion support framework, we conducted pre- and
post-module assessment surveys. We analyzed the student
assessment data to determine how completion of the mod-
ule affected (1) students’ ability to interpret and communi-
cate uncertainty in forecast visualizations, and (2) students’

understanding of foundational ecological forecasting
concepts.

METHODS

Module overview

We designed Macrosystems EDDIE (MacrosystemsEDDIE.
org) Module 8 “Using Ecological Forecasts to Guide
Decision-Making” to teach students uncertainty communi-
cation and foundational ecological forecasting concepts
within a decision support framework (Figure 1). This is the
eighth module in the Macrosystems EDDIE teaching mod-
ule series (Carey et al., 2020; Hounshell et al., 2021; Moore,
Thomas, et al., 2022). Specifically, the module activities
encompassed a range of decision support concepts and
applications, such as structured decision-making through
role-playing and identification of forecast user needs. The
version of the module used for this study is archived and
available for download from Woelmer et al. (2022). All
module materials are publicly available for use and are iter-
atively updated following user feedback; the most recent
version of the module can be accessed at: https://serc.
carleton.edu/eddie/teaching_materials/modules/module8.
html. Our assessment focused on measuring student under-
standing of uncertainty communication and foundational
ecological forecasting as two important yet currently
overlooked concepts within undergraduate ecology curric-
ula (Willson et al., 2022).

This module, following the Macrosystems EDDIE
pedagogical framework (Carey et al., 2020), consisted of a
suite of three self-contained, scaffolded activities
(Activities A, B, and C) which can be adapted to meet the
needs of individual lecture or laboratory classes.
The three activities taught students different ways to
visualize forecasts (Activity A); how uncertainty in fore-
cast visualizations can influence decision-making
(Activity B); and how to create visualizations of probabi-
listic ecological forecasts tailored to a specific user
(Activity C). All Macrosystems EDDIE modules follow
the 5E Instructional Model (Bybee et al., 2006), which
uses activities to enable engagement, exploration, expla-
nation, elaboration, and evaluation. This module and
other Macrosystems EDDIE modules are primarily
geared toward the undergraduate level but can also be
applied in graduate-level courses (e.g., Moore, Thomas,
et al., 2022).

Because uncertainty interpretation and communica-
tion are not commonly integrated into undergraduate
ecology education (Willson et al., 2022), this module
introduced students to a broad suite of methods currently
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applied in visualization and decision science throughout
the module activities. These methods include: (1) creating
one’s own visualizations (Alper et al., 2017; Börner
et al., 2016, 2019; Huron et al., 2014); (2) visualizing uncer-
tainty in multiple ways (sensu Spiegelhalter et al., 2011);
(3) using meaningful thresholds for decision-making (Kox
et al., 2018); (4) identifying forecast users to increase
engagement and relevance (Cid & Pouyat, 2013; Henri
et al., 2022; Vance-Chalcraft & Jelks, 2022); and (5) consid-
ering forecast user decision needs to guide visualization
development (Raftery, 2016). These four methods are all
explicitly taught in this module, with some components
included in the three other Macrosystems EDDIE forecast-
ing modules. Specifically, both Module 5: Introduction to
Ecological Forecasting (Moore, Carey, et al., 2022) and
Module 6: Understanding Uncertainty in Ecological
Forecasts (Moore et al., 2021) incorporate multiple
methods of visualizing uncertainty, and Module 7: Using
Data to Improve Ecological Forecasts (Lofton et al., 2022)
teaches students to consider meaningful thresholds for
management decision-making.

Our module assessment (described below) focused on
two learning objectives (LOs) taught throughout the
module activities. The two LOs were: LO1, describe what
ecological forecasts are and how they are used
(Activities A, B, and C); and LO2, identify different ways
to represent uncertainty in a visualization (Activities A,
B, and C). In addition to LO1 and LO2, this module
included four additional LOs for instructors: LO3, identify

the components of a structured decision (Activity B); LO4,
discuss how forecast uncertainty relates to decision-making
(Activities A, B, and C); LO5, match forecast user needs
with different levels of forecasting decision support
(Activities A and C); and LO6, create visualizations
tailored to specific forecast users (Activity C). The activi-
ties within the module were designed to meet all six
LOs, with several activities targeting multiple LOs
(Appendix S1: Table S1). Our focus on LO1 and LO2 for
the assessment was motivated by the importance of
increasing the representation of foundational ecological
forecasting and uncertainty communication concepts,
respectively, in undergraduate ecology curricula
(Appendix S1: Table S1).

The module was taught and assessed with more than
250 undergraduate students in upper-level ecology,
freshwater ecology, or zoology courses across four insti-
tutions (Table 2). The module was designed for students
with little to no background in ecological modeling, eco-
logical forecasting, or data visualization, although a gen-
eral background in ecology would be helpful. All
content knowledge needed to complete the module
(e.g., defining an ecological model, an ecological fore-
cast, or a structured decision-making process) is pro-
vided in the introductory PowerPoint presentation and
R Shiny application. While the timing of when to intro-
duce this module will vary among instructors and
courses, in our experience, instructors have most often
used this module at the end of the semester to

F I GURE 1 Conceptual diagram of the two learning objectives (LOs) associated with uncertainty communication and foundational
ecological forecasting concepts taught in Macrosystems Environmental Data-Driven Inquiry and Exploration Module 8: “Using Ecological
Forecasts to Guide Decision-Making.” Within the larger circles, each bubble shows the corresponding assessment questions, which tested
the effectiveness of the module in meeting these LOs. Descriptions of the assessment questions are in Table 3 and the full assessment
questions can be found in Appendix S1: Tables S1 and S2.
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emphasize the impact of ecology broadly for informing
decision-making.

Detailed module description

The module included an introductory PowerPoint lec-
ture, a suite of three activities embedded within an
R Shiny application accessed in a web browser, and dis-
cussion questions. First, the PowerPoint presentation
(~20 min) introduced students to the key concepts taught
in the module, including a general introduction to eco-
logical forecasting and a case study of an ecological fore-
casting application with visualization examples.
Instructor notes for each slide were provided, as well as
an “introduction to R Shiny” guide for students and
instructors who were not previously familiar with using
R Shiny applications.

For the case study within the introductory
PowerPoint lecture, students were given an example of a
forecast of the future distribution of the invasive spongy
moth (Lymantria dispar) and introduced to different
types of forecast users and corresponding decisions that
different forecast users could make, as well as different
ways of visualizing the same forecast for individual fore-
cast users’ decision use cases (Table 1). For example, a
homeowner deciding whether to treat the oak trees on
their property to prevent spongy moth invasion might
benefit from a forecast index visualizing the percent like-
lihood of spongy moth colonization in a particular loca-
tion. In contrast, a natural resource manager deciding
where to prioritize conservation efforts of a native com-
petitor of spongy moth might prefer a map of spongy
moth densities and associated uncertainty across the
region. Through the case study, students were shown a

range of visualization types that can be altered to suit
different decision use cases. Students were taught about
how uncertainty can be represented and communicated
using several methods, including numbers, words, icons,
and graphs. For example, using the same forecast, uncer-
tainty could be communicated with numbers (“22%
chance of a spongy moth outbreak”), words (“low risk of
spongy moth outbreak”), an icon (showing a “traffic
light” symbol indicating “green” for low risk), or a graph
(a map of the likelihood of an outbreak across a region)
(Appendix S1: Figure S2). Within these four categories,
students were taught how to communicate forecast out-
put (e.g., the density of spongy moths in a given area, see
Table 1 for an example), which uses output directly from
a forecast model. In addition, they were taught to com-
municate using a forecast index, which is forecast output
that is translated into an index based on some threshold
that is meaningful to decision-making (e.g., the likeli-
hood of a spongy moth outbreak; Table 1; Appendix S1:
Figure S2).

Second, following the presentation, students were
instructed to access the module via the R Shiny applica-
tion and work through the module activities A, B, and C
with a partner. R Shiny is an interactive tool built within
the R coding environment that allows users to interact
with complex data through a simple web browser inter-
face (Chang et al., 2022; Kasprzak et al., 2020), increasing
the ease of use. Applications developed using R Shiny
have been proven effective at teaching students challeng-
ing topics in a variety of educational settings
(e.g., Fawcett, 2018; Moore, Thomas, et al., 2022). All
module activities were designed to meet one or more of
the module LOs (Appendix S1: Table S1).

Within the Shiny app, students first completed
Activity A, “Explore ecological forecast visualizations and

TAB L E 2 Summary of courses that participated in the assessment of Macrosystems Environmental Data-Driven Inquiry and
Exploration Module 8 “Using Ecological Forecasts to Guide Decision-Making.”

Institution Course level Class name Carnegie code

No.
students
enrolled

No.
unique

instructors Mode

Albion College Upper-level
undergraduate

Ecology Baccalaureate College:
Arts and Sciences
Focus

8 1 In-person

University of Georgia Upper-level
undergraduate

Ecology
Lab/Honors
Ecology

Doctoral/Research
University

250 7 In-person

Virginia Tech Upper-level
undergraduate

Freshwater
Ecology

Doctoral/Research
University

31 1 In-person

University of
Wisconsin-Madison

Upper-level
undergraduate

Zoology Doctoral/Research
University

25 1 Virtual

Note: Carnegie codes are categories of universities based on educational and research activity at each institution (https://carnegieclassifications.acenet.edu).
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decision use,” in which they individually selected an
ecological forecast from a curated list of current forecast-
ing systems (Appendix S1: Table S2), answered several
embedded questions about how their selected forecast is
visualized and how it can be used, and then compared
their answers with their partner. Through these activities,
students directly addressed LO1 (“Describe what ecologi-
cal forecasts are and how they are used”) by analyzing
forecasts and identifying forecast users and LO2
(“Identify different ways to represent uncertainty in a
visualization”) by analyzing how or whether their fore-
cast visualizes uncertainty.

In Activity B, “Make decisions using an ecological
forecast,” students completed an in-depth case study in
which they role-played as resource managers and made
decisions about optimizing multiple objectives using two
different forecast visualizations (Figure 2a). The use of
role-playing as an active form of learning has
documented success in education, especially in science
education (Howes & Cruz, 2009), but has not been tested
in ecological forecasting education specifically. Students
were given a case study in which they were asked to
role-play as water managers and make decisions about
whether or not they should allow a swimming race in a
drinking water reservoir given different forecasts of
potentially toxic algal blooms occurring at the time of the
race (see Appendix S1: Text S1 for a full description of
the case study scenario).

As part of Activity B, students were taught to use
structured decision-making techniques to apply their
management objectives for the drinking water case study.
Specifically, students were taught the PrOACT structured
decision-making tool (see Table 1 for definition,
e.g., Hammond et al., 2002; Hemming et al., 2022). With
a goal of optimizing four different management objec-
tives identified using the PrOACT tool (Figure 2a.3), stu-
dents created hypotheses about how to manage the
drinking water reservoir each day as the forecasts were
iteratively updated over time (Figure 2a.1; Appendix S1:
Figure S3). They completed this objective twice using
forecast visualizations, which represented uncertainty
using two different methods (Figure 2a.1,a.2). Students
were encouraged to work through this activity indepen-
dently and consult with their partner as needed. Finally,
students answered questions about how different forecast
visualizations influenced their ability to make decisions
about managing the reservoir. The culminating discus-
sion of Activity B asked students to discuss how they
might improve or alter the visualizations for their deci-
sion needs as a water resource manager. Students
addressed LO1 in Activity B by using ecological forecasts
to make decisions, and LO2 by making decisions using
different types of uncertainty visualizations.

In Activity C, “Create a customized visualization of
an ecological forecast for a forecast user,” students
worked individually to choose a different forecast user
that was not a drinking water manager (e.g., a swimmer)
of the same drinking water forecast they used in
Activity B (Figure 2b,c). Students identified a decision to
be made by their forecast user (e.g., whether or not to go
swimming in a lake based on an algae threshold). Based
on the decision that they identified, students created a
customized forecast visualization for their user.
Additionally, students explored the underlying forecast
distribution by examining the mean, median, and upper
ranges of the forecast to better understand the uncer-
tainty underlying the forecast. Lastly, students compared
their visualizations with their partner, who chose a differ-
ent forecast user. This Activity C advanced student
understanding of LO1 by connecting the forecast to a
variety of potential users. By comparing across forecast
users, students were also encouraged to think about how
different users might benefit from different types of visu-
alizations (Figure 2b,c), contributing to their understand-
ing of LO2.

At the end of Activity C (as well as between com-
pletion of each activity, time permitting), instructors
were guided to bring the student pairs back together
for a full group discussion and answer any remaining
questions. A list of discussion questions for the instruc-
tor to use as prompts was provided for each Activity
in the Instructor Manual. For example, to recap
Activity A, instructors could ask students to discuss
how they were able to tell whether visualizations
included uncertainty and if there were some types of
visualizations that made it more or less difficult
to recognize and interpret forecast uncertainty. For
Activity B, instructors could ask students to present
their decisions in the case study and explain how the
trade-offs among their management objectives
influenced their decision-making. Lastly, for Activity C,
instructors could ask students to discuss the visualiza-
tion that they chose for their forecast user and how it
related to their forecast user’s decision needs, as well
as what they would do if they had to create a visuali-
zation that served multiple forecast user needs.

Instructional information and accessibility

As noted above, all materials for teaching this module are
publicly available. The teaching materials (introductory
lecture, introduction to R Shiny guide, pre-module student
handout, and instructor’s manual) are archived in the
Environmental Data Initiative repository (Woelmer
et al., 2023). The R Shiny application code is archived in
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the Zenodo repository (Woelmer et al., 2022) and can be
accessed at http://module8.MacrosystemsEDDIE.org. To
access the R Shiny application, students only need an inter-
net connection and a web browser. For students without

consistent access to an internet connection, the R Shiny
code can be downloaded from Zenodo (Woelmer
et al., 2022) and run locally on a computer using R and
RStudio software.

F I GURE 2 Screenshots of activities from the module R Shiny application showing (a) Activity B, in which students (1) make decisions
about how to manage a drinking water reservoir, using two different forecast visualizations (2a and 2b, which were shown separately to
students within the application), while weighing the consequences on multiple objectives, such as maintaining good drinking water quality,
preserving ecological health, maximizing economic benefit, and ensuring swimmer safety (3). In Activity C, students chose a forecast user
and customized a visualization for that particular user’s decision needs; for example, (b) shows a visualization and decision chosen for a
swimmer, while (c) shows a visualization and decision chosen for a local policymaker.
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Macrosystems EDDIE Module 8 is designed to be
taught either in-person, virtually, or in a hybrid modality.
The instructor’s manual includes instructions on best
practices for facilitating the module in each modality. For
example, we recommend using Zoom breakout rooms
with four students per room (two pairs of students) if
teaching virtually, or having students sit together in pairs
if teaching in-person.

To increase accessibility for users, the module
includes alternative (alt) text descriptions of all images.
In addition, text throughout the module was adjusted to
have sufficient levels of contrast for improved readability,
following Moore, Thomas, et al. (2022).

Module assessment

To assess the effects of our module on student learning
and answer our research questions, we administered pre-
and post-module assessment surveys to undergraduate
students before and after module completion, respec-
tively. A detailed description of the development of the
module assessment questionnaire can be found in
Appendix S1: Text S2. In total, we tested the module
in four undergraduate courses at four different universi-
ties with 314 consenting students and seven unique
instructors (Table 2). Not all students completed every
question, so the number of responses per assessment
question varied. All students who completed the assess-
ment were undergraduates in their second year or later
and were enrolled in general ecology, zoology, or fresh-
water ecology courses. Because the module was taught
across a variety of institutions, course types, classroom
formats, and student experience levels, we were not able
to control for these variables in our design, and thus
focused our analysis on the total pool of consenting stu-
dents who completed the module. Instructors were
recruited via personal communication, participation in
conference workshops, or through an email listserv. The
module was taught both virtually and in-person
(Table 2), though the majority of students (92%) com-
pleted the module with in-person instruction.

As described above, the goal of the assessment was to
measure the effects of the module on students’ ability
to understand foundational ecological forecasting con-
cepts (LO1) and uncertainty communication (LO2;
Figure 1, Table 3). We grouped the questions by LOs,
resulting in three questions that measured foundational
ecological forecasting concepts (LO1) and five questions
that measured uncertainty communication concepts
(LO2; Figure 1).

The assessment included multiple-choice and qualita-
tive, open-ended questions (Table 3). Pre- and post-surveys

were identical and administered via an online, secure
portal run by the Science Education Research Center at
Carleton College. All students and faculty consented to par-
ticipate in the study per our Institutional Review Board
(IRB) protocols (Virginia Tech IRB 19-669 and Carleton
College IRB 19-20065).

Analysis of assessment surveys

We analyzed multiple-choice and qualitative assessment
questions from the pre- and post-module surveys.
Multiple-choice questions (Q1–2, 5–9) were scored by
whether students selected the correct answer. Qualitative
questions (Q3–4) were scored using a rubric developed by
two Macrosystems EDDIE coordinators, following a stan-
dardized two-step process (see Appendix S1: Text S3 for
methodology), based on the rubric methodology of Moore,
Thomas, et al. (2022) and Miles et al. (2020). A detailed
description of the coding criteria for both Q3 and Q4 is
included in Appendix S1: Tables S5 and S6, respectively.
We also screened answers to Q4 (Table 3) for the presence
of three keywords related to uncertainty communication
(“icon,” “color,” and “forecast output/index”). We
recorded whether the keywords were present or absent in
student responses but did not consider responses correct
unless students also explained how the keywords were
used to communicate uncertainty.

To determine the overall performance within and
across LO1 (foundational ecological forecasting) and LO2
(uncertainty communication), we calculated the percent
correct within each LO (i.e., resulting in a score for LO1
and LO2) for each student. For the two qualitative ques-
tions, which included multiple open-ended responses,
student responses were considered “correct” if they iden-
tified at least one benefit of ecological forecasting (Q3)
and at least one way of communicating uncertainty (Q4).
For Q3, we also calculated the number of students who
identified each of the categories of benefits for
decision-making (e.g., management or policy, under-
standing of ecological systems or models).

For all assessment questions, we calculated the per-
centage of student responses given for each question
within the pre- and post-assessment responses and com-
pared performance. We used paired Wilcoxon signed-rank
tests to analyze the differences between pre- and
post-survey responses on both multiple-choice and qualita-
tive questions as well as the grouped categories. Due to
varying class sizes, instruction, student experience levels,
and teaching modalities across the four institutions, all
data were pooled and analyzed together. Statistical signifi-
cance was defined as p < 0.05. All analyses were
conducted in R version 4.2.1 (R Core Team, 2022).
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RESULTS

Our assessment data indicate that student understanding
of foundational ecological forecasting and uncertainty
communication concepts increased after module comple-
tion (Figures 3 and 4). Specifically, students identified
significantly more ways to communicate uncertainty in a
forecast and were significantly more likely to identify
“decision-making” and “prediction” as important benefits
of ecological forecasts (Figure 4). Across the two LOs, stu-
dents scored higher in foundational ecological forecasting
concepts after completing the module, but showed strong
growth in understanding both ecological forecasting and
uncertainty communication concepts from pre- to
post-module surveys (Figure 5).

Student understanding of uncertainty
communication

Students were more likely to correctly identify and
describe multiple ways to communicate uncertainty in
forecast visualizations after completion of the module
(Figures 3 and 4b,d, Table 4). The percent of students
able to correctly distinguish among different ways to
visualize forecast uncertainty increased from 33%
pre-module to 60% after module completion (p < 0.001;
Figure 3e, Table 4). In addition, students were signifi-
cantly more likely to identify and interpret differences
between two visualizations that had varying representa-
tions of uncertainty after module completion (33% of stu-
dents pre-module vs. 49% post-module; p < 0.001;

TAB L E 3 Selected assessment questions and their corresponding learning objectives for Macrosystems Environmental Data-Driven
Inquiry and Exploration Module 8: “Using Ecological Forecasts to Guide Decision-Making.”

Assessment question Learning objective (LO)
Assessment question

short name Question style

Q1. Which of the following statements best
describes an ecological forecast?

LO1: EF concepts Define MC

Q2. When an ecological forecast is generated,
how does the uncertainty of the forecast
change as it predicts conditions further into
the future?

LO1: EF concepts Uncertainty MC

Q3. List what you think are some benefits of
ecological forecasting.

LO1: EF concepts Forecast benefits Q

Q4. Describe two different ways uncertainty can
be visualized in a forecast.

LO2: UC communication Communication type Q

Q5. Which of the following is the best
description of the forecast presented in
Figure 1a?

LO2: UC communication Interpret MC

Q6. The ecological forecasts in Figure 1a,b
present information differently. Which of
the following is true?

LO2: UC communication Contrast MC

Q7. Which of the following is an example of a
forecast index, as opposed to a forecast
output?

LO2: UC communication Distinguish MC

Q8. You have been hired as a marine resource
manager tasked with deciding which region
of the world you should prioritize for coral
reef conservation based on coral reef stress.
The forecaster you are working with is
trying to develop a visualization that can
help you make your conservation decision.
Which of the following visualization options
would be best?

LO2: UC communication Connect to user MC

Note: The full list of possible answers for multiple-choice questions is listed in Appendix S1: Table S3, and thematic bins used for scoring the qualitative
questions are listed in Appendix S1: Tables S5 and S6. LO1: EF concepts, describe what ecological forecasts are and how they are used; LO2: UC
communication, identify different ways to represent uncertainty in a visualization. The assessment question short names are used to refer to specific questions
throughout the text and in Figures 3 and 4.
Abbreviations: EF, ecological forecasting; MC, multiple choice; Q, qualitative; UC, uncertainty.
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Figure 3d, Table 4). We also observed post-module
increases in the percent of students who correctly
interpreted a forecast visualization (49% pre-module; 52%
post-module) and matched a forecast visualization with a
forecast user decision need (42% pre-module; 49%
post-module), but these increases were not statistically
significant (p = 0.34 and 0.28, respectively; Figure 3c,f,
Table 4).

Students also showed increased comprehension of
uncertainty communication after module completion in
our qualitative assessment. When asked to describe two
different ways to communicate uncertainty, the number
of correct answers students provided increased from
0.2 ± 0.5 (mean ± SD) on the pre-survey to 1.1 ± 0.8 on
the post-survey (p < 0.001; Figure 4d, Table 4).
Specifically, the number of students who identified
numeric, visual, or probabilistic methods to visualize
uncertainty increased significantly after module comple-
tion (all p < 0.001; Figure 4b), while student responses
that included text or multiple predictions increased, but

not significantly (both p = 0.18; Figure 4b, Table 4). The
number of students who identified “numeric” methods to
visualize uncertainty (e.g., “SD,” “statistical CIs,”
“intervals,” or “ranges”) increased from 8% on the
pre-survey to 29% on the post-survey (p < 0.001;
Figure 4b, Table 4). Additionally, student responses
that included “visual” descriptions of uncertainty
(e.g., “boxplots,” “shaded area around a line,” “error
bars”) increased from 8% to 41% (p < 0.001; Figure 4b,
Table 4), while responses including “probabilistic”
methods to visualize uncertainty (e.g., “percentage
likelihood,” “probability of exceeding a certain thresh-
old”) increased from 2% to 15% from the pre-survey to
the post-survey (p < 0.001; Figure 4b, Table 4).

Several keywords were significantly more prevalent
in post-module than pre-module responses to the ques-
tion about identifying uncertainty communication
methods (Q4, Table 3). None of our keywords were iden-
tified in the pre-survey responses, but 4% (n = 9) of stu-
dents included the word “icon” and 13% (n = 31) of

F I GURE 3 Percentage of students who answered multiple-choice questions correctly in the pre- and post-module surveys.
Asterisks (***) indicate a statistically significant difference between the pre- and post-module survey according to a Wilcoxon signed-rank
test (p < 0.001). Colors of the bars correspond to LO1: Foundational ecological forecasting (EF) concepts (green) and LO2: Uncertainty
Communication (orange; Figure 1, Table 3). A description of questions can be found in Table 3 and Appendix S1: Table S3. LO, learning
objective.
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students included “color” in their answers when asked to
identify ways of communicating uncertainty in the
post-survey. In addition, 11% (n = 27) of students named
“forecast output” or “forecast index” in their post-survey
responses. However, we note that of the 27 students who
listed “forecast index/output” as a way to visualize

uncertainty in their post-module response, only three
students correctly described these terms in the context of
uncertainty communication. For example, one student
explicitly described what they meant by a “forecast
index/output” (“Forecasts can be visualized through fig-
ures that show forecast output, which have direct

F I GURE 4 Percentage of students who identified (a) different benefits of ecological forecasting (Q3) and (b) different ways to visualize
uncertainty (Q4) in the pre- and post-module responses. These responses correspond to the (c) total number of benefits identified by
individual students in Q3 and (d) the total number of ways to visualize uncertainty identified by individual students in Q4. Students were
also given the option to state “I don’t know,” represented as “IDK” in panels (a) and (b). The categories listed on the x-axis in panels
(a) and (b) were determined through the methods outlined in Appendix S1: Text S1 and are listed in Table 4, respectively. Asterisks (***)
indicate a significant difference (p < 0.001) between the pre- and post-survey responses according to paired Wilcoxon signed-rank tests.
A full description of questions can be found in Appendix S1: Table S4. UC, uncertainty.
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information on it, and forecast index, which contains a
meaningful threshold that is based off what decision is
being made”), demonstrating a deeper understanding

than students who mentioned forecast index/output
without a definition (e.g., “You can visualize uncertainty
with a forecast index and a forecast output”).

F I GURE 5 Legend on next page.
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Student understanding of foundational
ecological forecasting

We found that student understanding of foundational
ecological forecasting concepts increased after module
completion (Figures 3 and 4, Table 4). Students were sig-
nificantly more likely to correctly define an ecological
forecast after completing the module, with an increase
from 27% pre-module to 78% of students answering cor-
rectly post-module (p < 0.001; Figure 3a). Student under-
standing of how forecast uncertainty changes over time
also increased from 52% to 58% after module completion,
although this increase was not statistically significant
(p = 0.16; Figure 3b, Table 4).

We saw a significant increase in the total number of
benefits of ecological forecasts identified by students after
module completion (p < 0.001; Figure 4c, Table 4).
Certain benefits were more likely to be mentioned than
others in the student responses. Specifically, students
were more likely to identify how forecasting can be used

for facilitating decision-making (which was included in
13% of pre-module responses and 35% of post-module
responses) and predicting a future event (included in 47%
of pre-module and 59% of post-module responses;
Figure 4a, Table 4). Correspondingly, the number of
“I don’t know” responses to the question about forecast
benefits significantly decreased from 38% to 8% after
module completion (Figure 4a, Table 4). Students also
identified other benefits of ecological forecasting in both
the pre- and post-survey (e.g., benefits related to manage-
ment or policy, as well as increased understanding of eco-
logical systems or models), although these themes were
not significantly more prevalent in student responses
after module completion (Figure 4a).

Overall, student responses to the open-ended, qualita-
tive question about forecast benefits showed an expan-
sion in their understanding of how ecological forecasts
can be used. Several students provided fairly simplistic
answers about the benefits of forecasts in their
pre-module responses and then more nuanced and

F I GURE 5 Pre- and post-survey results across the two learning objectives (LOs) showing (a) the total percent correct for all students
across each category, and (b) the change in the number of correct answers for each student after module completion relative to each
student’s percent correct before taking the module. Color in (b) corresponds to the number correct on the pre-survey only and points are
jittered to improve the legibility of individual points. Note that the number of questions corresponding to each LO varied, with three
questions assessing foundational ecological forecasting concepts and five questions assessing uncertainty communication concepts. The
percentage of correct answers is standardized to the total number of questions per LO in (a), while the number of questions answered
correctly is shown in (b). “Foundational” corresponds to LO1: Ecological Forecasting Concepts, and “Communication” corresponds to
LO2: Uncertainty Communication.

TAB L E 4 Summary statistics of pre- and post-module assessment questions for assessment questions in this study (Q1–8).

Question
Two-tailed

p
Test

statistic
Effect
size

Correct responses

nPre-module Post-module Units

Q1: Define <0.001 725 0.67 28 80 Percent correct (%) across all
students

240

Q2: Uncertainty 0.16 1628 0.09 55 60 Percent correct (%) across all
students

240

Q3: Forecast benefits <0.001 1606 0.12 0.82 ± 0.79 1.13 ± 0.69 No. correct (mean ± 1 SD)
per student

208

Q4: Communication
method

<0.001 238 1.09 0.4 ± 1.02 2.52 ± 1.79 No. correct (mean ± 1 SD)
per student

240

Q5: Interpret 0.34 1716 0.06 50 53 Percent correct (%) across all
students

240

Q6: Contrast <0.001 1751 0.22 33 47 Percent correct (%) across all
students

240

Q7: Distinguish <0.001 1633.5 0.39 33 61 Percent correct (%) across all
students

240

Q8: Connect to user 0.28 2392 0.07 46 51 Percent correct (%) across all
students

221

Note: Test statistics, p values, and effect sizes are for paired, two-sided Wilcoxon signed-rank tests. Significant p values (p < 0.05) appear in boldface.
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complex answers in their post-module responses. For
example, one student answered “Limiting the effects of
climate change” in their pre-module response as a fore-
cast benefit, while their response after module comple-
tion showed a more in-depth understanding of forecast
applications: “Ecological forecasting allows people to
better understand how environmental conditions will
change and how that will impact them.” Another student
similarly wrote in their pre-survey response to the fore-
cast benefit question, “Maybe it’ll show the effects of cli-
mate change in response to what we do now?” and then
expanded to “They [forecasts] can assist in planning
future events as well as management or conservation for
at risk areas” in their post-survey response.

Performance across ecological forecasting
and uncertainty communication LOs

Student performance improved from pre- to post-module
in correctly answering questions on both foundational
ecological forecasting concepts (LO1) and uncertainty
communication (LO2; Figure 5). The increase in perfor-
mance was stronger for students who scored lower on the
pre-survey (Figure 5b). Students were more likely to cor-
rectly answer questions on ecological forecasting con-
cepts than questions on uncertainty communication
concepts on the pre-module assessment (Figure 5a). Both
LOs showed strong growth after module completion,
with many students who answered zero questions cor-
rectly on the pre-survey answering all questions correctly
on the post-survey in both categories (Figure 5b). More
students scored 100% (all LO-specific questions answered
correctly) on foundational ecological forecasting concepts
than on uncertainty communication both before and
after module completion, though we note that the num-
ber of questions in the two categories differed (Figure 1).

DISCUSSION

Our results indicate that completion of a 3-h module can
significantly improve undergraduate ecology students’
understanding of uncertainty communication and ecolog-
ical forecasting. While the percentage of correct answers
increased for all assessment questions after module com-
pletion, students were more likely to perform higher on
foundational ecological forecasting concepts than uncer-
tainty communication concepts prior to module comple-
tion. Higher initial performance on ecological forecasting
questions may be because students were more familiar
with ecological forecasting concepts relative to uncer-
tainty communication concepts before completing the

module. However, students showed more growth in
describing multiple ways to communicate uncertainty
than in identifying benefits of ecological forecasting
(Figure 4c,d). Below, we explore the implications of our
results for undergraduate education in uncertainty com-
munication, ecological forecasting, and ecology broadly.

Improved uncertainty communication
skills and implications for visualization
literacy

Students identified significantly more ways to communi-
cate uncertainty following module completion, indicating
that the module introduced students to a toolbox of
approaches for developing and understanding uncer-
tainty in ecological visualizations. Before completing our
module, the majority (85%) of students were unable to
describe any ways to communicate uncertainty, while
after module completion, 72% were able to describe one
or more ways to communicate uncertainty (Figure 4d).
Being able to identify and describe multiple methods for
uncertainty communication is an important skill, as the
method used to visualize uncertainty can have a substan-
tial effect on user comprehension and decision-making
(Cheong et al., 2016; Kinkeldey et al., 2017; McKenzie
et al., 2016; Nadav-Greenberg et al., 2008; Ramos
et al., 2013). For example, using summary visualizations
(e.g., boxplots) can decrease users’ cognitive load and
increase the speed of decision-making, but are more
likely to lead to misinterpretation (Correll et al., 2018;
Ruginski et al., 2016). In contrast, ensemble-based visual-
izations (i.e., forecast visualizations that show all possible
model outputs) may provide users with more information
about the whole spread of uncertainty, but viewers may
overweight certain ensemble members, leading to incon-
sistent decision-making (Padilla, Ruginski, et al., 2017).
Given that there is no single “best” visualization method
for uncertainty communication due to differences in
decision-making needs (Spiegelhalter et al., 2011),
the ability to create a variety of visualization options
and adapt visualizations based on forecast user
feedback is critical for developing effective uncertainty
visualizations.

All of the methods for uncertainty communication
included in the students’ post-module responses are
aligned with current state-of-the-art practices for uncer-
tainty communication in visualization science. “Visual”
and “numeric,” the two uncertainty communication
methods most commonly reported by students in
post-module responses (Figure 4b), mirror the two key
uncertainty representation techniques (“visualization”
and “quantification”) identified in a recent review
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(Kamal et al., 2021). Probabilistic methods, which were
also significantly more common in student responses fol-
lowing module completion, can decrease cognitive load
and increase use and understanding of visualizations for
decision support (Kox et al., 2018). Some students (n = 8)
also identified “text” as a useful method for uncertainty
communication (Figure 4b), but “text” was almost always
(7 of 8 students) reported in addition to another form of
communication (e.g., “visual,” “numeric,” or “probability”),
which agrees with existing literature that shows that text
is most useful for explaining and providing context for
visualizations (Carr et al., 2018). Additionally, common
keywords throughout student responses included “color”
and “icon.” Thoughtful use of color palettes (e.g., by
using discrete rather than continuous color palettes) has
been shown to be a powerful tool in representing ranges
of uncertainty (Correll et al., 2018; Padilla, Quinan,
et al., 2017). Similarly, the use of icons or symbols has
been shown to improve user understanding and usability
of decision support tools in diverse settings (Galesic
et al., 2009; Garcia-Retamero et al., 2010; Kamal
et al., 2021; Zikmund-Fisher et al., 2014), potentially by
decreasing the cognitive load required to interpret the
communication. While neither text, icons, or numbers
alone are typically most effective in scientific communi-
cation of complex ideas (Larkin & Simon, 1987; Tait
et al., 2010), the student post-module responses are
reflective of a common theme in the visualization litera-
ture that using multiple communication forms increases
user comprehension and confidence in decision-making
(Fagerlin et al., 2005; Spiegelhalter et al., 2011).
Ultimately, the module increased students’ ability to
communicate uncertainty using multiple approaches, a
key skill for developing decision support tools for forecast
users.

Our results demonstrate that the module shows
promise for increasing visualization literacy and intro-
ducing much needed skills in uncertainty communica-
tion to undergraduate ecology students. Most students
who completed this module had little to no prior
experience with uncertainty communication, but showed
substantial improvement in performance after module
completion, indicating that a 3-h module can help build
these critical skills (Figure 5). Students’ lack of previous
exposure to uncertainty communication is likely because
undergraduate ecology classes do not currently include
uncertainty communication and visualization literacy
topics as often as, for example, ecological modeling and
prediction (Willson et al., 2022). Because the communica-
tion of uncertainty is just as important as the quantifica-
tion of uncertainty in forecasts for ensuring that forecast
visualizations guide end users’ decision-making, it is crit-
ical that science communication and visualization

science, including incorporation of end user decision
needs in visualization development, are included in eco-
logical forecasting training (Eisenhauer et al., 2021;
Robinson et al., 2012; Schwartz et al., 2017). Overall,
given the importance of uncertainty communication not
only in ecology but across scientific disciplines broadly
(e.g., medicine, meteorology, economics; Ferstl et al.,
2017; Tait et al., 2010; Wesslen et al., 2022), improving
students’ ability to interpret and produce uncertainty
visualizations may help enable student participation in
a variety of scientific disciplines. Moreover, providing
students with improved visualization literacy and uncer-
tainty communication skills will yield a more data-literate
population, regardless of students’ future careers. This
module provides an important first step for incorporating
visualization literacy coursework across undergraduate
curricula broadly and initiating training in critical visuali-
zation interpretation and communication skills.

Increase in student understanding of
foundational ecological forecasting
concepts

In addition to expanding students’ uncertainty communi-
cation skills, completion of the 3-h module improved
students’ understanding of foundational ecological fore-
casting concepts. Following module completion, students
were significantly more likely to correctly define an eco-
logical forecast as a future prediction of environmental
conditions with uncertainty (Figure 3a; Appendix S1:
Table S1). Overall, developing a common definition of
“forecast” is important for furthering the field of ecologi-
cal forecasting, as having common definitions enables
meaningful discourse on topics within and across disci-
plines, providing a scaffold for interdisciplinary work to
address complex socioecological problems (Lélé &
Norgaard, 2005; Robinson et al., 2012). Given that eco-
logical forecasting is an emerging field (Woelmer
et al., 2021), codifying definitions in training materials
enables undergraduate ecology students to more effec-
tively discuss and learn forecasting topics.

Student understanding of the benefits of ecological
forecasting also significantly increased after module com-
pletion. Specifically, we found a significant increase in
the number of students who identified “decision-making”
and “prediction” as benefits but saw only a minimal
increase for “policy” and decreases for “management”
and “understanding.” Since “decision-making” and “pre-
diction” were emphasized throughout the module, it is
unsurprising that these two benefits of ecological fore-
casting were most commonly provided in student
responses. However, the small decrease in responses
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related to management and understanding is surprising,
and may indicate that the module did not sufficiently
focus on the benefits of forecasts for management or eco-
logical understanding. For example, while Activity B
used a management-centered role-playing example, the
activity was primarily focused on the effect of visualiza-
tion type on decision-making, rather than how forecasts
could be integrated into management workflows.
Similarly, the module did not emphasize how ecological
forecasts can advance understanding of ecosystems and
testing of ecological theory or be integrated into
policy-making decisions, leaving an opportunity to bol-
ster these forecast applications in future iterations of the
module. Alternatively, it is possible that students who
identified “decision-making” as a benefit of forecasts may
have had policy or management decisions in mind, but
not specifically stated this.

We note that students’ ability to correctly identify that
uncertainty should increase the further into the future a
forecast is made (Q2) showed only marginal growth
(Figure 3b), leaving room for improvement in teaching
this foundational concept of ecological forecasting (sensu
Dietze et al., 2018). To complement this module and pro-
vide additional training in foundational ecological fore-
casting concepts, we suggest pairing this module with
other Macrosystems EDDIE modules (Module 5:
Introduction to Ecological Forecasting, Moore, Carey,
et al., 2022; Module 6: Understanding Uncertainty in
Ecological Forecasts, Moore et al., 2021; or Module 7:
Using Data to Improve Ecological Forecasts, Lofton
et al., 2022).

Integration of decision support concepts
into ecology curricula

Integrating applied decision-making concepts into eco-
logical forecasting and uncertainty communication les-
sons heeds a widespread call to make ecological research
more societally relevant (e.g., Belovsky et al., 2004; Ruhl
et al., 2022). Training that incorporates components of
translational ecology (e.g., science communication, end
user engagement, structured decision-making, multidis-
ciplinary training) has long been recommended for ecol-
ogists at all career stages (Eisenhauer et al., 2021;
Robinson et al., 2012; Schwartz et al., 2017), but
resources targeted at the undergraduate level have been
lacking (Bakermans & Pfeifer, 2018). Our module aims
to close this gap by incorporating complex water man-
agement decision-making scenarios with multiple end
users to engage students in solving real-world problems,
while also developing visualization literacy skills. While
we did not quantitatively assess the engagement of

students in the module, we received open-ended positive
feedback from many students. Students reported that
the module was enjoyable and important (“I really
enjoyed looking at decision analysis in an ecology class”;
“I think it’s very important to talk about this in science
classes”). Additionally, student responses suggest that
they found that the module was interesting (“This was
informative and a really interesting way for me to real-
ize the actual impacts of ecological forecasting”) and
novel (“It was helpful because I came in with no
information”).

Updating ecology curricula to incorporate materials
on visualization literacy and translational ecology con-
cepts (such as this module) could be beneficial for stu-
dents. From our experience with the Macrosystems
EDDIE program, we identified two common pathways
for implementing this module: (1) targeting new
instructors looking for ready-made materials as they
develop syllabi for the first time, and (2) targeting expe-
rienced instructors who are looking to update existing
syllabi with new, easy-to-use materials on visualization
and data science topics. For the second case of revising
established courses, it is inevitable that incorporating
new material comes with the trade-off of removing
other content. We note that these substitutions are
likely to be highly variable from instructor to instructor
and across different courses (i.e., introductory ecology vs.
more specialized ecology courses), and should be
determined at the discretion of the instructor. Some
instructors have used this module as a culminating
activity at the end of the semester to emphasize the
utility of ecology as a discipline for informing environ-
mental decision-making broadly. To further develop
students’ knowledge of visualization and decision
science, we suggest supplementing this module with
additional coursework or courses focused on science
communication, data science and visualization, and/or
applied ecology material. Ultimately, introducing stu-
dents to applications of ecological forecasting for
real-world decision-making may help recruit students to
work in this subdiscipline, as well as highlight the
importance of using ecology to produce actionable tools
to address societal problems (e.g., Enquist et al., 2017).
Many ecological forecasters have already begun to inte-
grate decision support and uncertainty communication
components into their forecasts by making forecasts that
are actionable, useful, and targeted toward forecast
users (e.g., Gerst et al., 2019; Jackson-Blake et al., 2022;
Turner et al., 2020). Our experience with this module
indicates that even a short (3-h) exposure to decision
support and uncertainty communication concepts can
increase students’ understanding of potential applica-
tions and benefits of ecological forecasting.
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Module caveats and opportunities for
future use

The impact of this module on student learning of deci-
sion science and uncertainty communication skills could
be improved in several aspects. First, during module
development, we intentionally introduced students to a
single method of structured decision-making (PrOACT)
and a limited number of uncertainty communication
methods (i.e., visual, numeric, probabilistic) to provide a
simplified introduction to the decision and visualization
sciences. While students showed successful understand-
ing of the PrOACT tool (Appendix S1: Figure S4), the
addition of other decision support components, including
solutions-oriented decision-making theory (Deitrick &
Wentz, 2015) or additional methods of structured
decision-making (Gregory et al., 2012), would increase
students’ breadth of understanding of decision science.
Inclusion of a broader variety of decision support con-
cepts could also lead to improved performance on the
decision-related questions (e.g., Figure 3c,f). Second,
allowing students more control over visualizations within
the Shiny app (e.g., additional visualization or personali-
zation options, inclusion of R-based coding activities)
would likely increase students’ visualization literacy
(Alper et al., 2017; Börner et al., 2016, 2019; Huron
et al., 2014). Third, due to time constraints, our module
asked students to imagine what type of forecast visualiza-
tion would best meet different end users’ needs, rather
than asking them to actively engage in co-development
of visualizations with different forecast users, which
would likely increase the utility of the visualization
(Gerst et al., 2019; Padilla, Quinan, et al., 2017;
Raftery, 2016). Fourth, shifting the focus of the case study
in Activity B to be customizable for specific, nearby eco-
systems that are directly relevant to students’ everyday
lives could potentially increase engagement and student
learning (Cid & Pouyat, 2013; Henri et al., 2022;
Vance-Chalcraft & Jelks, 2022). For example, students
living in areas where wildfires are common may be more
engaged in analyzing a case study presenting a
decision-making scenario on wildfire forecasts. While we
recognize the value in including additional content on
uncertainty communication, decision science, and eco-
logical forecasting, we note that expanding the module
may make it less feasible for instructors to add into their
ecology curricula.

Several caveats should be considered when
interpreting the assessment results from our module.
First, we used a pre- and post-module methodology
because instructors were unable to divide their classes
into treatment and control groups for instruction.
Second, there were many factors that were not held

constant across the classrooms that tested our module,
including student experience level, instructor experience
level, classroom size, institutional familiarity with fore-
casting, and others that could influence the effect of the
module on individual student learning. Third, due to
the length of the module and limitations of our assess-
ment survey, our analysis provides only a limited under-
standing of students’ knowledge gain. Future longer term
assessments are needed to assess student growth over a
longer duration of time. Lastly, while we did not collect
student responses to embedded questions within the
module for analysis, a future analysis that relates student
answers to within-module questions could provide valu-
able insight on student engagement with the material
and performance on post-assessment responses.

CONCLUSIONS

Communication of model uncertainty is of paramount
importance for advancing the utility of ecological
research findings for decision-making. Our teaching
module provides an introduction to concepts and skills
needed for ecology students to increase their visualization
literacy, engage in data science applications, and develop
decision support tools. Introduction to ecological fore-
casting concepts at an early educational stage, including
an improved understanding of the importance of ecologi-
cal forecasting for societal benefit, is increasingly neces-
sary for training the next generation of predictive
ecologists to meet both European (Nativi et al., 2021) and
US government agency directives (Arsenault et al., 2020;
CDC, 2022; NOAA, 2022; Vought & Droegemeier, 2020).
Moreover, by teaching ecological forecasting and
uncertainty communication skills via a real-world
decision-making scenario, this module helps to empha-
size the relevance and lower the barrier of entry to ecol-
ogy. Through an R Shiny interface that is easy to
implement for educators in a range of classroom experi-
ence levels, this 3-h, adaptable module fills a critical gap
in undergraduate ecology curricula. By introducing stu-
dents to uncertainty communication and ecological fore-
casting early in their careers, this module can help train
the next generation of ecologists to conduct societally rel-
evant research and tackle pressing ecological challenges.
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